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1 Introduction

Since Seidenberg’s (1953-54) papers [35, 36] and Jaffard’s (1960) pamphlet
[28] on the dimension theory of commutative rings, the literature abounds in
works exploring the prime ideal structure of polynomial rings, including four
pioneering articles by Arnold and Gilmer on dimension sequences [3, 4, 5, 6].
Of particular interest is Bastida-Gilmer’s (1973) precursory article [8] which
established a formula for the Krull dimension of a polynomial ring over a
D + M issued from a valuation domain. During the last three decades, nu-
merous papers provided in-depth treatments of dimension theory and other
related notions (such as the S-property, strong S-property, and catenarity) in
polynomial rings over various pullback constructions. All rings considered in
this paper are assumed to be integral domains.

A polynomial ring over an arbitrary domain R is subject to Seidenberg’s
inequalities: n + dim(R) ≤ dim(R[X1, ..., Xn]) ≤ n + (n + 1) dim(R), ∀ n ≥ 1.
A finite-dimensional domain R is said to be Jaffard if dim(R[X1, ..., Xn]) =
n + dim(R) for all n ≥ 1; equivalently, if dim(R) = dimv(R), where
dim(R) denotes the Krull dimension of R and dimv(R) its valuative di-
mension (i.e., the supremum of dimensions of the valuation overrings of R).
The study of this class was initiated by Jaffard [28]. For the convenience
of the reader, recall that, in general, for a domain R with dimv(R) < ∞
we have: dim(R) ≤ dimv(R), dimv(R[X1, ..., Xn]) = n + dimv(R) for all
n ≥ 1, and dim(R[X1, ..., Xn]) = n + dimv(R) for all n ≥ dimv(R) − 1 (Cf.
[2, 11, 18, 26, 28]).

As the Jaffard property does not carry over to localizations (see Example 1
below), R is said to be locally Jaffard if Rp is a Jaffard domain for each prime
ideal p of R; equivalently, S−1R is a Jaffard domain for each multiplicative
subset S of R. A locally Jaffard domain is Jaffard [2]. The class of (locally)
Jaffard domains contains most classes involved in dimension theory, includ-
ing Noetherian domains [31], Prüfer domains [26], and universally catenarian
domains [10].
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Fig. 1. Diagram of implications

In order to treat Noetherian domains and Prüfer domains in a unified
manner, Kaplansky [31] introduced the following concepts: A domain R is
called an S-domain if, for each height-one prime ideal p of R, the extension
pR[X] in R[X] has height 1 too; and R is said to be a strong S-domain if
R
p is an S-domain for each prime ideal p of R. A strong S-domain R satisfies
dim(R[X]) = dim(R) + 1. Notice that while R[X] is always an S-domain for
any domain R [24], R[X] need not be a strong S-domain even when R is a
strong S-domain [12]. Thus R is called a stably strong S-domain (also called a
universally strong S-domain) if the polynomial ring R[X1, ..., Xn] is a strong S-
domain for each positive integer n. A stably strong S-domain is locally Jaffard
[2, 29, 32].
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This review paper deals with dimension theory of polynomial rings over
certain families of pullbacks. While the literature is plentiful, this field is still
developing and many contexts are yet to be explored. I will thus restrict
the scope of the present survey, mainly, to topics I have worked on over the
last decade. The set of pullback constructions studied includes D + M , D +
(X1, ..., Xn)DS [X1, ..., Xn], A + XB[X], and D + I.

Any unreferenced material is standard, as in [9, 26, 28, 31, 33]. In Figure 1,
a diagram of implications summarizes the relations between some spectral
notions and well-known classes of integral domains (some of which should be
either finite-dimensional or locally finite dimensional).

2 Preliminaries on Pullbacks

Pullbacks have proven to be useful for the construction of original examples
and counter-examples in Commutative Ring Theory. The oldest in date is
due to Krull (Cf. [8, page 1]). However, the first systematic investigation of a
particular family of pullbacks; namely, D+M issued from valuation domains,
was carried out by Gilmer [25, Appendix 2] and [26]. Later, during the 1970s,
six ground-breaking papers [8, 27, 19, 16, 13, 20] provided further development
in various pullback contexts and paved the path for most subsequent works
on these constructions. In Figure 2, a diagram provides more details on the
contexts studied in these works.

Let’s recall some results on the classical D + M constructions (i.e., those
issued from valuation domains). We shall use qf(R) to denote the quotient
field of a domain R.

Theorem 1 ([25] and [19]). Let V be a valuation domain of the form K+M ,
where K is a field and M is the maximal ideal of V . Let D be a proper subring
of K with k := qf(D). Set R := D + M . Then:
(1) dim(R) = dim(V ) + dim(D).
(2) dimv(R) = dim(V ) + max{dim(W )| W is valuation on K containing D}.
(3) The integral closure of R is D′+M , where D′ is the integral closure of D.
(4) R is a valuation domain ⇔ D is a valuation domain and k = K.
(5) R is Prüfer ⇔ D is Prüfer and k = K.
(6) R is Bezout ⇔ D is Bezout and k = K.
(7) R is Noetherian ⇔ V is a DVR, D = k, and [K: k] < ∞.
(8) R is coherent ⇔ either “k = K and D is coherent” or “M is a finitely
generated ideal of R.” The latter condition yields D = k and [K: k] < ∞.

In [16], the authors established several results, similar to the statements
(1-6) and (8) above, for rings of the form D + XK[X] where K := qf(D);
particularly, dim(D + XK[X]) = 1 + dim(D) and dimv(D + XK[X]) = 1 +
dimv(D). The next result handles the general context of D + XDS [X] rings.
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Gilmer, 1968/1972

V := K + M , Valuation
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Bastida-Gilmer, 1973
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Greenberg, 1974

R := ϕ−1(D) −→ D, qf(D) = K
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Costa-Mott-Zafrullah, 1975/1978

R := D + XK[X], D ⊂ K

R := D + XDS [X]
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Dobbs-Papick, 1975/1976
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Brewer-Rutter, 1976

T := K + M
R := D + M , D ⊂ K

'
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%

[20]

Fontana, 1980

R := ϕ−1(D) −→ D
∩ ∩
T

ϕ−→ K := T/M
Local

'

&

$

%

Fig. 2. Diagram of various pullback contexts studied in the 1970s
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Theorem 2 ([16]). Let D be an integral domain and S a multiplicative subset
of D. Set R(S) := D + XDS [X]. Then:
(1) R(S) is GCD ⇔ D is GCD and GCD(d,X) exists in R(S),∀ d ∈ D∗.
(2) dim(DS [X]) ≤ dim(R(S)) ≤ dim(D[X]).
(3) If D is a valuation domain, then dim(R(S)) = 1 + dim(D). ut

in [13], Brewer and Rutter investigated general D +M constructions (i.e.,
issued from an integral domain not necessarily valuation) and gave unified
proofs of most results known on classical D+M and D+XK[X] rings. Their
result on the Krull dimension reads as follows:

Theorem 3 ([13]). Let T be an integral domain of the form K + M , where
K is a field and M is a maximal ideal of T . Let D be a proper subring of K
with k := qf(D). Set R := D + M .
If k = K, then dim(R) = max{htT (M) + dim(D), dim(T )}. ut

Later, Fontana [20] used topological methods (particularly, his study of
amalgamated sums of two spectral spaces) to extend most of these results to
pullbacks (issued from local domains). We close this section by citing some
basic facts connected with the prime ideal structure of a pullback. These
will be used frequently in the sequel without explicit mention. We shall use
Spec(R) to denote the set of prime ideals of a ring R.

Theorem 4 ([20] and [2, Lemma 2.1]). Let T be an integral domain, M a
maximal ideal of T , K its residue field, ϕ : T −→ K the canonical surjection,
D a proper subring of K, and k := qf(D). Let R := ϕ−1(D) be the pullback
issued from the following diagram of canonical homomorphisms:

R −→ D
↓ ↓
T

ϕ−→ K = T/M

(1) M = (R : T ) and R/M ∼= D.
(2) Spec(R) ' Spec(D)

∐
Spec(K) Spec(T ) (i.e., topological amalgamated sum)

(3) Assume T is local. Then M is a divided prime and so every prime ideal
of R compares with M under inclusion. If, in addition, k = K then RM = T .
(4) Assume T is local. Then dim(R) = dim(T ) + dim(D).
(5) For each prime ideal P of R such that M * P , there exists a unique prime
ideal Q of T such that Q ∩R = P , and hence TQ = RP .
(6) For each prime ideal P of R such that M ⊆ P , there exists a unique
prime ideal p of D such that P = ϕ−1(p), and hence RP can be viewed as the
pullback of TM and Dp over K.
(7) T is integral over R ⇔ D = k and K is algebraic over k. ut
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3 Dimension Theory

This section studies the Krull dimension and valuative dimension of polyno-
mial rings over various families of pullbacks. It also examines the transfer of
the Jaffard property to these constructions.

In 1969, Arnold established a fundamental theorem, [3, Theorem 5], on the
dimension of a polynomial ring over an arbitrary integral domain; namely, for
any integral domain R with quotient field K and for any positive integer n,
dim(R[X1, ..., Xn]) = n + max{dim(R[t1, ..., tn]) | {ti}1≤i≤n ⊆ K}. In [8],
Bastida and Gilmer generalized this result to the case where {ti}1≤i≤n is a
subset of an extension field of K. It allowed them to establish a formula for
the Krull dimension of a polynomial ring over a classical D + M as stated
below:

Theorem 5 ([8, Theorem 5.4]). Let V be a valuation domain of the form
K+M , where K is a field and M is the maximal ideal of V . Let D be a proper
subring of K with k := qf(D) and let t.d.(K: k) denote the transcendence
degree of K over k. Let n be a positive integer. Set R := D + M . Then:

dim(R[X1, ..., Xn]) = dim(V ) + dim(D[X1, ..., Xn]) + min{n, t.d.(K: k)}. ut

In [11], we refined Gilmer’s statement on the valuative dimension of a
classical D + M in order to build a family of examples of Jaffard domains
which are neither Noetherian nor Prüfer domains.

Proposition 1 ([11, Proposition 2.1]). Under the same notation of Theo-
rem 5, we have:
(1) dimv(R) = dimv(D) + dim(V ) + t.d.(K: k).
(2) R is a Jaffard domain ⇔ D is a Jaffard domain and t.d.(K: k) = 0. ut

From this result stems a first family of Jaffard domains An with dimension
n + 3 which are neither Noetherian nor Prüfer, for every n ≥ 1. Indeed, the
ring B := Z + YQ(X)[Y ](Y ) is not a Jaffard domain since dim(B) = 2 and
dimv(B) = 3 by Proposition 1. For each n ≥ 1, set An := B[X1, ..., Xn]. For
n = 1, A1 = B[X1] is a 4-dimensional Jaffard domain, since, by Theorem 5,
dim(B[X1]) = 4 = dimv(B)+1 = dimv(B[X1]). Clearly, for each n ≥ 2, An is
an (n+3)-dimensional Jaffard domain. Further, A1 is not a strong S-domain,
otherwise B would be so and hence we would have 5 = dim(B[X1, X2]) =
1+dim(B[X1]) = 2+dim(B) = 4, which is absurd. Consequently, none of the
rings An is a strong S-domain (hence it is neither Noetherian nor Prüfer), as
desired.

We now proceed to explore a general context. Let T be an integral domain,
M a maximal ideal of T , K its residue field, ϕ : T −→ K the canonical
surjection, D a proper subring of K, and k := qf(D). Let R := ϕ−1(D) be
the pullback issued from the following diagram of canonical homomorphisms:
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R −→ D
↓ ↓
T

ϕ−→ K = T/M.

Theorem 6 ([2, Theorem 2.6]). Assume T is local. Then:
(1) dimv(R) = dimv(D) + dimv(T ) + t.d.(K: k).
(2) R is Jaffard ⇔ D and T are Jaffard and t.d.(K: k) = 0. ut

The next result generalizes Theorem 1(1), Theorem 4(4), and Theorem 6.

Theorem 7 ([2, Theorem 2.11 and Corollary 2.12]). Assume T is an
arbitrary domain (i.e., not necessarily local). Then:
(1) dim(R) = max{dim(T ), dim(D) + htT (M)}.
(2) dimv(R) = max{dimv(T ), dimv(D) + dimv(TM ) + t.d.(K: k)}.
(3) R is locally Jaffard ⇔ D and T are locally Jaffard and t.d.(K: k) = 0.
(4) If T is locally Jaffard with dimv(T ) < ∞, D is Jaffard, and t.d.(K: k) = 0,
then R is a Jaffard domain. ut

There are examples which show that none of the hypotheses in Theo-
rem 7(4) is a necessary condition for R to be Jaffard. Indeed, let V and
W be two incomparable valuation domains of a suitable field K with n :=
dim(V ) ≥ 3 and dim(W ) = 1. By [34, Theorem 11.11], T := V ∩ W is
an n-dimensional Prüfer domain with two maximal ideals, say M1 and M ,
TM1 = V , and TM = W . Let ϕ : T −→ T/M ∼= K be the canonical surjec-
tion. We further require that K has a subfield k and a subring D such that
dim(D) = dimv(D) = 1, qf(D) = k, and t.d.(K: k) = 1. Set R := ϕ−1(D).
By Theorem 7(1) & (2), dim(R) = dimv(R) = n. So that R is Jaffard though
K is not algebraic over k. Now, alter the above construction by taking n ≥ 4
and dimv(D) = 2, so that D is not Jaffard anymore, but one can easily check
that R is Jaffard.

Next we proceed to the construction of the first example of a Jaffard
domain which is not locally Jaffard.

Example 1 ([2, Example 3.2]). Let k be a field and X1, X2, Y indeterminates
over k. Set V1 := k(X1, X2)[Y ](Y ) = k(X1, X2) + M1 and A := k(X1) + M1,
where M1 = Y V1. Let (V,M) be a one-dimensional valuation domain of
the form V = k(Y ) + M such that k(Y )[X1, X2] ⊂ V ⊂ k(X1, X2, Y )

(
In

order to build such a ring, consider the valuation v: k(Y )[X1, X2] −→ Z2

defined by v(X1) = (1, 0) and v(X2) = (0, 1), where Z2 is endowed with
the order induced by the group isomorphism i:Z2 −→ Z[

√
2] defined by

i(a, b) = a + b
√

2
)
. Consider the two-dimensional valuation ring V2 :=

k[Y ](Y ) + M = k + M2 with maximal ideal M2 = Y k[Y ](Y ) + M . One
can easily check that V1 and V2 are incomparable. By [34, Theorem 11.11],
B := V1 ∩ V2 is a 2-dimensional Prüfer domain with two maximal ideals,
say N1 and N2, BN1 = V1, and BN2 = V2. Finally, put R := A ∩ V2. One
can show that R is semi-local with two maximal ideals M1 = N1 ∩ R and
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M2 = N2 ∩ R with RM1 = A and RM2 = V2 (Cf. [17, Example 2.5]).
Via Theorem 7, we obtain dim(R) = max{dim(RM1), dim(RM2)} = 2 and
dimv(R) = max{dimv(RM1), dimv(RM2)} = 2. Thus R is Jaffard but not
locally Jaffard, since dim(RM1) = dim(A) = 1 6= dimv(RM1) = dimv(A) = 2.

ut
The next result examines the possibility of extending Bastida-Gilmer’s

result (Theorem 5) on the classical D + M ring to a general context.

Theorem 8 ([2, Proposition 2.3 and Proposition 2.7]). Under the same
notation as above, the following statements hold.
(1) Assume k = K. Then: dim(R[X1, ..., Xn]) = dim(D[X1, ..., Xn]) +
dim(T [X1, ..., Xn])− dim(K[X1, ..., Xn]), for each positive integer n.
(2) Assume D = k and set d := t.d.(K: k). Then, for each n ≥ 0, we have:
n + dim(T ) + min{n, d} ≤ dim(R[X1, ..., Xn]) ≤ n + dimv(T ) + d. ut

Now, one should design an example to show that the above can be strict.

Example 2 ([2, Example 3.9]). Let Y1, Y2, U, V, Z,W be indeterminates over a
field k. Define K := k(Y1, Y2), S := K(U)[V ](V ), R1 := K(U, V, Z)[W ](W ),
A := K(U, V )+WR1, B := K+V S, R2 := S+WR1, and T := K+V S+WR1.
Thus, we have the following pullbacks (with canonical homomorphisms):

T −→ B −→ K
↓ ↓ ↓

R2 −→ S −→ K(U)
↓ ↓
A −→ K(U, V )
↓ ↓

R1 −→ K(U, V, Z)

R1 and S are discrete valuation rings. Further, by applying Theorem 4(4) and
Theorem 6, we obtain:

dim(A) = 1 ; dimv(A) = 2
dim(R2) = dim(S) + dim(R1) = 2 ; dimv(R2) = 3
dim(B) = 1 ; dimv(B) = 2
dim(T ) = dim(k) + dim(R2) = 2 ; dimv(T ) = 4.

Let ϕ : T −→ K be the canonical surjection and R := ϕ−1(k). The pullback
R has Krull dimension 2 and valuative dimension 6. Further, dim(R[X]) = 5
by [21, Theorem 2.1]. Set d := t.d.(K: k) = 2. The desired strict inequalities
follow: 1 + dim(T ) + min{1, d} � dim(R[X]) � 1 + dimv(T ) + d. ut

Next, we explore Costa-Mott-Zafrullah’s D+XDS [X] construction under a
slight generalization. Let D be a domain, S a multiplicative subset of D, and r
an integer ≥ 1. Put R(S,r) := D+(X1, ..., Xr)DS [X1, ..., Xr]. Let p ∈ Spec(D).
The S-coheight of p, denoted S-coht(p), is defined as the supremum of the
lengths of all chains p ⊂ p1 ⊂ p2 ⊂ ... ⊂ pn of prime ideals of D with
p1 ∩ S 6= ∅. Set S-dim(D) := max{S-coht(p) | p ∈ Spec(D)}.
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Theorem 9 ([16] and [24]). Under the above notation, the following state-
ments hold.
(1) max{dim(DS [X1, ..., Xr]), r + dim(D)} ≤ dim(R(S,r))

≤ min{dim(D[X1, ..., Xr]), dim(DS [X1, ..., Xr]) + S-dim(D)}.
(2) dimv(R(S,r)) = r + dimv(D).
(3) D is Jaffard ⇔ R(S,r) is Jaffard and dim(R(S,r)) = r + dim(D).
(4) R(S,r) is Jaffard ⇔ so is D[X1, ..., Xr] with the same dimension as R(S,r).

ut
Now, we provide an example to show that the Jaffard property of R(S,r)

does not force D to be Jaffard. Here too we appeal to pullbacks. Let k be
a field and X,Y two indeterminates over k. Put V := k(X) + Y k(X)[Y ](Y )

and D := k + Y k(X)[Y ](Y ). Clearly, D is a local domain with maximal ideal
M := Y k(X)[Y ](Y ), dim(D) = 1, and dimv(D) = 2 by Theorem 1(1) and
Proposition 1. Set S := D \M and R(S,1) := D + XDS [X]. So R(S,1) ∼= D[X]
since DM

∼= D. It follows that dim(R(S,1)) = dim(D[X]) = 1 + dimv(D) =
3 = dimv(R(S,1)), as desired.

Next we move to a general context. Let A ⊆ B an extension of integral
domains and X an indeterminate over B. Put R := A + XB[X] = {f ∈
B[X] | f(0) ∈ A}. This construction was introduced by D.D. Anderson-
D.F. Anderson-Zafrullah in [1]. Also, R is a particular case of the construc-
tions B, I, D introduced by P.-J. Cahen [15]. Also, Int(A) ∩ B[X] = {f ∈
B[X] | f(A) ⊆ A} is a subring of R and hence a deeper knowledge of
A + XB[X] constructions may have some interesting impact on the integer-
valued polynomial rings.

As a consequence of some general properties of the spectrum of a pull-
back [20], we state the following: First, XB[X] is a prime ideal of R :=
A + XB[X] with R/XB[X] ∼= A and hence we have an order-isomorphism
Spec(A) −→ {P ∈ Spec(R) | XB[X] ⊆ P}, p 7−→ p + XB[X]. Second,
S := {Xn | n ≥ 0} is a multiplicatively closed subset of R and B[X]
with S−1R = S−1B[X] = B[X, X−1]; by contraction, we obtain an order-
isomorphism {Q ∈ Spec(B[X]) | X /∈ Q} −→ {P ∈ Spec(R) | X /∈ P}.
Finally, the spectral space Spec(R) is canonically homeomorphic to the amal-
gamated sum of Spec(A) and Spec(B[X]) over Spec(B).

For the subfamilies D + XK[X] and D + XDS [X], it is known that
ht(XK[X]) = ht(XDS [X]) = 1. The next result probes the situation of
XB[X] inside Spec(R).

Theorem 10 ([22, Theorem 1.2]). Let R := A+XB[X] and N := A\{0}.
Then:
(1) htR(XB[X]) = dim(N−1B[X]) = dim(B[X]⊗A qf(A)).
(2) 1 ≤ htR(XB[X]) ≤ 1 + t.d.(B: A). ut

Thus, if qf(A) ⊆ B, then htR(XB[X]) = dim(B[X]); and if A ⊆ B
is an algebraic extension, then htR(XB[X]) = 1. In general, htR(XB[X])
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can describe all integers between 1 and 1 + t.d.(B:A), as shown by the
following example: Let d be an integer, t ∈ {1, ..., d + 1}, K a field, and
X, X1, ..., Xd+1, Y1, ..., Yd indeterminates over K. Set A := K and B :=
K(X1, ..., Xd−t+1)[Y1, ..., Yt−1]. Hence t.d.(B:A) = d and htR(XB[X]) =
dim(B[X]) = t.

The next result studies the Krull and valuative dimensions as well as the
transfer of the Jaffard property.

Theorem 11 ([22, Theorems 2.1 & 2.3]). Let R := A + XB[X] and set
k := qf(A) and d := t.d.(B: A). Then:
(1) max{dim(A) + htR(XB[X]),dim(B[X])} ≤ dim(R)

≤ dim(A) + dim(B[X]).
(2) If k ⊆ B, then dim(R) = dim(A) + dim(B[X]).
(3) dimv(R) = dimv(A) + d + 1.
(4) R is Jaffard and dim(R) = dim(A) + 1 ⇔ A is Jaffard and d = 0.
(5) If k ⊆ B, then: R is Jaffard ⇔ so is A and dim(B[X]) = 1 + d. ut

Now, one can easily construct new classes of Jaffard domains. For instance,
R+XC[X, Y ] and Z+XZ[X] both are 2-dimensional Jaffard domains, where
Z denotes the integral closure of Z inside an algebraic extension of Q.

The next result handles the locally Jaffard property.

Theorem 12 ([22, Theorems 2.8]). Let R := A+XB[X] and suppose that
A is a locally Jaffard domain. Then R is locally Jaffard ⇔ B[X] is locally
Jaffard and htR(XB[X]) = 1 + t.d.(B: A). ut

We cannot knock down the hypothesis “A is locally Jaffard” to “A is
Jaffard.” For, assume A is Jaffard but not locally Jaffard (Example 1). Set
B := qf(A) and R := A + XB[X] = A + Xqf(A)[X]. In this situation B[X]
is locally Jaffard and htR(XB[X]) = 1 = 1 + t.d.(B: A); whereas, R is not
locally Jaffard by Theorem 7(3). Notice, however, that the hypothesis “A is
locally Jaffard” is not necessary as shown below.

While several results concerning D + XK[X] and D + XDS [X] are re-
covered, some known results on these rings do not carry over to the general
context of A+XB[X] constructions. Next, an example provides some of these
pathologies and, also, shows that the double inequality established in Theo-
rem 11(1) can be strict.

Example 3 ([22, Example 3.1]). Let K be a field and let X,X1, X2, X3, X4 be
indeterminates over K. Set:

L := K(X1, X2, X3) ; V1 := k + N
k := K(X1, X2) ; D := K(X1)[X2](X2) + N
M := X4L[X4](X4) ; A := K[X1](X1) + M
N := X3k[X3](X3) ; B := D + M
V := L + M ; R := A + XB[X]
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Then:
(1) max{dim(A)+htR(XB[X]), dim(B[X])} � dim(R) � dim(A)+dim(B[X]).
(2) dim(A[X]) � dim(R) (in contrast with Theorem 9(1)).
(3) R is Jaffard and A[X] is not Jaffard (in contrast with Theorem 9(4)).
(4) R is locally Jaffard and A is not locally Jaffard (in contrast with Theo-
rem 7(3) applied to D + XK[X]).

Indeed, by Theorems 1 & 5 & 6, V , V1, D, and B are valuation domains
of dimensions 1, 1, 2, and 3, respectively; moreover, we have:

• dim(B[X]) = dim(B) + 1 = 4,
• dim(A) = dim(K[X1](X1)) + dim(V ) = 2,
• dimv(A) = dimv(K[X1](X1)) + dim(V ) + t.d.(L:K(X1)) = 4,
• dim(A[X]) = dim(K[X1](X1)[X]) + dim(V ) + min{1, t.d.(L:K(X1))} = 4,
• Spec(B) =

{
(0),M, P1 := N + M, P2 := X2K(X1)[X2](X2) + P1

}
,

• Spec(A) =
{
(0),M, Q := X1K[X1](X1) + M

}
,

• M ∩A = P1 ∩A = P2 ∩A = M .

Notice first that qf(A) = qf(B) = qf(V ). Now, inside Spec(R) we have the
following chain of prime ideals (in view of the discussion in the paragraph
right before Theorem 10):

(0) $M [X] ∩R $ P1[X] ∩R $ P2[X] ∩R $M + XB[X] $ Q + XB[X].

Therefore dim(R) ≥ 5, and hence R is a 5-dimensional Jaffard domain since
dimv(R) = dimv(A) + t.d.(B: A) + 1 = 5 by Theorem 11. Consequently, (1)
and (2) hold, and so does (3) since dimv(A[X]) = dimv(A) + 1 = 5. It re-
mains to deal with (4). The domain A is not locally Jaffard (since it is not
Jaffard). Let P ∈ Spec(R) with X /∈ P . Then RP = B[X, X−1]PB[X,X−1] is
a universally strong S-domain (Cf. [10, 32]) and hence Jaffard (since B is a
valuation domain). So, in order to show that R is locally Jaffard, it suffices
to consider the localizations with respect to the prime ideals that contain
X. Let P := p + XB[X] ∈ Spec(R) with p ∈ Spec(A). One can check that
RP = Ap + XB[X]P and thus Ap + XBp[X] ⊆ RP ⊆ Ap + XL[X](X).
We obtain, via Theorems 6 & 11, that dimv(RP ) = dimv(Ap + XBp[X]) =
dimv(Ap +XL[X](X)) = dimv(Ap)+t.d.(B: A)+1 = dimv(Ap)+1. We claim
that RP is Jaffard for all p ∈ Spec(A):

• Let p := (0). Then dim(RP ) = htR(XB[X]) = 1 = dimv(A(0)) + 1.
• Let p := M . Then the above maximal chain yields ht(P ) = 4. Hence

dim(RP ) = 4 = dimv(K(X1))+dim(V )+t.d.(L: K(X1))+1 = dimv(AM )+
1. Here we view AM as a pullback of V and K(X1) over L.

• Let p := Q. Then dim(RP ) = 5 = dimv(A) + 1 = dimv(AQ) + 1 =
dimv(RP ) (since AQ = A). ut
Next we move to a more general context. let T be a domain, I an non-

zero ideal of T , and D a subring of T such that D ∩ I = (0). Throughout, D
will be identified with its image in T/I. Also htT (I) will be assumed to be



12 S. Kabbaj

finite (though it’s not always indispensable). Let R := D + I; it is a pullback
determined by the following diagram of canonical homomorphisms:

R := D + I −→ D
↓ ↓
T −→ T/I.

So Spec(R) is canonically homeomorphic to the amalgamated sum of Spec(D)
and Spec(T ) over Spec(T/I). Precisely, I is a prime ideal of R and we have
the order isomorphisms: Spec(D) −→ {P ∈ Spec(R) | I ⊆ P}, p 7−→ p + I;
and {Q ∈ Spec(T ) | I " Q} −→ {P ∈ Spec(R) | I " P}, Q 7−→ Q ∩R.

This construction was introduced and developed by Cahen [14, 15]. Since
its study has proven to be difficult in its generality, the scope was mainly
limited to the so-called (T = B, I,D) almost-simple constructions (i.e., every
ideal of T containing I is maximal). The following results -due to Cahen-
approximate htR(I) and dim(R) with respect to htT (I), dim(D), and dim(T )
in the general context.

Theorem 13 ([14, Proposition 5, Théorème 1, and Corollaire 1]).
(1) htT (I) ≤ htR(I) ≤ dim(T ).
(2) dim(D) + htR(I) ≤ dim(R) ≤ dim(D) + dim(T ).
(3) dim(R) ≥ max{htT (Q) + dim(R/Q ∩R) | Q ∈ Spec(T ), I ⊆ Q}. ut

Later, Ayache devoted his paper [7] to the special case where T is either
a finitely generated K-algebra or a quotient of a power series ring in a finite
number of indeterminates. He established the following results:

Theorem 14 ([7]). Let K be a field, T a finitely generated K-algebra or a
quotient of a power series ring in a finite number of indeterminates, I a proper
non-zero ideal of T , D a subring of K with k := qf(D), and R := D+I. Then:
(1) dim(R) = dim(D) + dim(T ).
(2) Assume either T is a finitely generated K-algebra or htT (I) = dim(T ).
Then: dimv(R) = dimv(D) + dimv(T ) + t.d.(K: k), and hence R is Jaffard if
and only if D is Jaffard and t.d.(K: k) = 0. ut

We return to the general context. The next result shades more light on I
within the spectrum of R.

Lemma 1 ([23, Lemme 1.2]). Set X := {Q ∈ Spec(T ) | Q ∩ R = I} and
Y := {Q ∈ Spec(T ) | I " Q,∃ Q′ ∈ X , (0) ⊂ Q ⊂ Q′}. Then:
(1) X 6= ∅.
(2) Y = ∅ if and only if htR(I) = 1.
(3) htR(I) = 1 + max{htT (Q) | Q ∈ Y}.
(4) If htR[X](I[X]) = 1, then t.d.(T/Q: D) = 0, ∀ Q ∈ X . ut

Next we show how the S-domain property is reflected on htR(I).
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Theorem 15 ([23, Théorème 1.3]). Assume T is an S-domain. Then R is
an S-domain if and only if htR(I) > 1 or t.d.( T

Q : D) = 0, ∀ Q ∈ Spec(T ) such
that Q ∩R = I. ut

In the special case where T := V is a valuation domain, one can easily
check that htR(I) = htV (I) and dim(R) = dim(D) + htV (I). Moreover, we
have the following:

Theorem 16 ([23, Théorème 1.13]). Let V be a valuation domain, I an
non-zero ideal of V, D a subring of V with D ∩ I = (0), and R := D + I. Let
P0 denote the prime ideal of V that is minimal over I and let n be a positive
integer. Then:
(1) dimv(R) = dimv(D) + dimv(VP0) + t.d.( V

P0
: D).

(2) dim(R[X1, ..., Xn]) = dim(VP0)+dim(D[X1, ..., Xn])+min{n, t.d.( V
P0

: D)}.
(3) R is a Jaffard domain ⇔ D is a Jaffard domain and t.d.( V

P0
: D) = 0. ut

Another special case is when the D + I ring arises from a polynomial ring.
Namely, let B be a domain, X an indeterminate over B, D a subring of B,
and I an ideal of B[X] with I∩B = 0. Put R := D+I. We have the following
pullbacks (with canonical homomorphisms):

R := D + I −→ D
↓ ↓

B + I −→ B
↓ ↓

B[X] −→ B[X]/I.

Theorem 17 ([23, Théorème 2.1]). Under the above notation, set d :=
t.d.(B: D). We have:
(1) dimv(R) = dimv(D) + d + 1.
(2) R is Jaffard and dim(R) = dim(D) + 1 ⇔ D is Jaffard and d = 0. ut

The above result applies to the particular context of A + XnB[X] con-
structions. Specifically, Let A ⊆ B an extension of integral domains, X an
indeterminate over B, and n an integer ≥ 1. Put Rn := A + XnB[X]. Then
dimv(Rn) = dimv(A) + t.d.(B: A) + 1; and Rn is Jaffard and dim(Rn) =
dim(A) + 1 if and only if A is Jaffard and t.d.(B: A) = 0. Here the ef-
fect of the S-property appears as follows: Rn is an S-domain if and only if
htR1(XB[X]) > 1 or t.d.(B: A) = 0. (Since B[X] is always an S-domain.)

In this vein, the ring R := Z[(XY i)i≥0] = Z + XZ[X, Y ] was shown by
Ayache in [7] to be a 3-dimensional totally Jaffard domain [15]. In [23], we
improved this result by stating that Rn := Z[(XnY i)i≥0] = Z+ XnZ[X, Y ] is
a universally strong S-domain, for each integer n ≥ 1.
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