When is the Dual of an Ideal a Ring?

Evan G. Houston
Department of Mathematics, University of North Carolina at Charlotte, North Carolina 28223

Salah-E ddine K abbaj
Département de Mathématiques et Informatique, Faculté des Sciences "Dhar El-Mehraz," Université de Fès, Fès, Morocco
Thomas G. Lucas
Department of Mathematics, University of North Carolina at Charlotte, Charlotte,
North Carolina 28223
and
A bdeslam M imouni
Département de Mathématiques et Informatique,
Faculté des Sciences "Dhar El-Mehraz," Université de Fès, Fès, Morocco
Communicated by Melvin Hochster
R eceived J anuary 8, 1996

1. INTRODUCTION

Throughout this work, R denotes a domain with quotient field K. For a nonzero fractional ideal I of R, the fractional ideal $I^{-1}=(R: I)=\{x \in$ $K \mid x I \subseteq R\}$ is called the inverse (or dual) of I. In [HuP], Huckaba and Papick studied the question of when I^{-1} is a ring, and this question has received further attention by these authors and by Anderson, Fontana, Heinzer, and Roitman [A], [FHP1], [FHP2], [FHP3], [HP], and [FHPR]. The authors of the present paper have also studied the question in the specific contexts of pullbacks [HKLM 1] and polynomial rings [HKLM 2]. Our purpose here is to determine when I^{-1} is a ring in much more general situations.

In the second section, we show that if I^{-1} is a ring, then P^{-1} is a ring for each minimal prime ideal of I. It is known [H uP, Proposition 2.2] that I^{-1} is a ring $\Leftrightarrow I^{-1}=\left(I_{v}: I_{v}\right)$; thus it is natural to consider connections with divisoriality. In Proposition 2.5, we characterize when the inverse of a nonzero intersection of divisorial ideals is a ring.

It is clear that I^{-1} is a ring when $I^{-1}=(I: I)$, and $[\mathrm{A}$, Proposition 3.3] shows that the converse is true when I is a radical ideal. The third section is devoted to a study of the question for radical ideals. In Theorem 3.1, we give several characterizations of when I^{-1} is a ring for radical I; as a corollary we show that if P is prime, then P^{-1} fails to be a ring $\Leftrightarrow P$ has the form ($a R_{R}: b$) and $P R_{P}$ is principal. One of the characterizations in Theorem 3.1 states that the inverse of a radical ideal I is a ring \Leftrightarrow for each valuation overring V of R with $I V \neq V$, we have $I^{-1} \subseteq V_{Q}$, where Q is the prime of V which is minimal over $I V$. This is the first of our extensions of two results from [H uP]. There it is proved that if I is an ideal of a Prüfer domain, and if $\left\{P_{\alpha}\right\}$ and $\left\{M_{\beta}\right\}$ are the set of minimal primes of I and the set of maximal ideals which do not contain I, then $I^{-1} \supseteq\left(\cap R_{P_{\alpha}}\right)$ $\cap\left(\cap R_{M_{\beta}}\right)$ ([HuP, Lemma 3.3]) with equality $\Leftrightarrow I^{-1}$ is a ring ([HuP, Theorem 3.2]). We also obtain several results concerning intersections of radical ideals. We prove, for example, that if I and J are radical ideals, then I^{-1} and J^{-1} are rings $\Leftrightarrow(I \cap J)^{-1}$ and $(I+J)^{-1}$ are rings (Theorem 3.4); we also show that if I is the irredundant intersection of prime ideals P_{α}, then I^{-1} is a ring \Leftrightarrow each P_{α}^{-1} is a ring.

Section 4 is devoted to the case of integrally closed R. We give several characterizations of when I^{-1} is a ring in this case, again extending the above-mentioned results of [HuP]; and we apply these ideas to obtain generalizations to Prüfer v-multiplication domains of other results given in [H uP] and [FHPR] for Prüfer domains. We show, for example, that if I is an ideal in an integrally closed domain R, then I^{-1} is a ring $\Leftrightarrow I^{-1} \subseteq V$ for each valuation overring V whose maximal ideal is minimal over $I V$. W e also show that if I is an ideal of a Prüfer v-multiplication domain, then I^{-1} is a ring $\Leftrightarrow I^{-1}=(I: I)=R_{\mathscr{N}} \cap \mathscr{E}_{t}(R, I)$, where \mathscr{N} is the complement in R of the set of zero divisors on R / I and $\mathscr{C}_{t}(R, I)$ is the set of maximal t-ideals of R which do not contain I.

Finally, in Section 5, we present examples tending to show that (many of) the results in Sections $2-4$ are the best possible. For example, in Example 5.1 we show that it is possible for P^{-1} to be a ring for each minimal prime of a radical ideal I and yet have I^{-1} fail to be a ring, and in Example 5.2 we show that it is possible to have divisorial ideals I and J such that I^{-1} and J^{-1} are rings but such that $(I \cap J)^{-1}$ is not a ring. M any other examples are given.

M ost of our notation is standard as in [G 1]. We shall often make use of the so-called v-operation. This is defined on the set of nonzero fractional ideals I of a domain R by $I_{v}=\left(I^{-1}\right)^{-1}$. The ideal I is said to be divisorial or a v-ideal if $I=I_{v}$. For properties of the v-operation, the reader is referred to [G 1, Sections 32 and 34].

2. SOME RESULTS IN THE GENERAL CASE

Recall that R denotes a domain with quotient field K. A lso recall that if J is a radical ideal of R, then J^{-1} is a ring $\Leftrightarrow J^{-1}=(J: J)[\mathrm{A}$, Proposition 3.3]. W e shall often make use of this fact.

Proposition 2.1. Let I be a nonzero ideal of R for which I^{-1} is a ring. Then
(1) \sqrt{I}^{-1} is a ring, and (therefore) $\sqrt{I}^{-1}=(\sqrt{I}: \sqrt{I})$;
(2) P^{-1} is a ring for each minimal prime ideal of I;
(3) $I^{-1}=(\sqrt{I}: I)=(Q: I)$ for each prime $Q \supseteq I$;
(4) if V is a valuation overring of R with $I V \neq V$, then $I^{-1} \subseteq V_{Q}$, where Q is the prime ideal of V which is minimal over $I V$.

Proof. (1) Let $x \in(\sqrt{I})^{-1}$. It suffices to show that $x \sqrt{I} \subseteq \sqrt{I}$. Let a $\in \sqrt{I}$. Then $a^{n} \in I$ for some positive integer n. M oreover, since $(\sqrt{I})^{-1} \subseteq$ I^{-1} and I^{-1} is a ring, we have $x^{2 n} \in I^{-1}$. Hence $x^{2 n} a^{n} \in R$, whence $(x a)^{2 n} \in I$. Since $x a \in R$, this implies that $x a \in \sqrt{I}$. It follows that \sqrt{I}^{-1} $=(\sqrt{I}: \sqrt{I})$.
(2) Let $J=\sqrt{I}$. By (1) J^{-1} is a ring. Let $u \in P^{-1}$ and $b \in P$. Since J is a radical ideal, $J R_{P}=P R_{P}$. Hence $b \in J R_{P}$, and we have $s b \in J$ for some $s \in R \backslash P$. Since $u \in P^{-1} \subseteq J^{-1}$, this yields $u s b \in J \subseteq P$, whence $u b \in P$. Hence $P P^{-1} \subseteq P$, and P^{-1} is a ring.
(3) Let Q be a prime ideal containing I. Let $x \in I^{-1}$. Then $x^{2} \in I^{-1}$, so that $x^{2} I \subseteq R$ and $x^{2} I^{2} \subseteq I \subseteq Q$. Since $x I \subseteq R$, this implies $x I \subseteq Q$. Thus $I I^{-1} \subseteq Q, I^{-1} \subseteq(Q: I) \subseteq(R: I)=I^{-1}$, and we have $I^{-1}=(Q: I)$. Since this is true for each Q, we have $I I^{-1} \subseteq \sqrt{I}$, from which it follows that $I^{-1}=(\sqrt{I}: I)$.
(4) Suppose that $x \in I^{-1} \backslash V_{Q}$. Then $x^{-1} \in Q V_{Q}=Q$. Since Q is minimal over $I V, x^{-n} \in I V$ for some n. However, since I^{-1} is a ring, $x^{n} \in I^{-1}$, whence by (3) $1=x^{n} x^{-n} \in I^{-1} I V \subseteq \sqrt{I} V \subseteq Q$, a contradiction.

In Section 5, we present an example of an ideal I satisfying all four conditions of Proposition 2.1 but for which I^{-1} is not a ring. However, for
radical ideals condition (4) characterizes when I^{-1} is a ring (Theorem 3.1 below), and, if R is integrally closed, condition (4) characterizes when I^{-1} is a ring for general I (Theorem 4.4). (The first three conditions together do not imply that I^{-1} is a ring when R is integrally closed-see the remark following Proposition 4.1.)
Thus the conditions in Proposition 2.1 do not characterize when I^{-1} is a ring. The following (admittedly unsatisfying) result is the best characterization we have been able to obtain.

Proposition 2.2. Let I be a nonzero ideal of the domain R. The following conditions are equivalent:
(1) I^{-1} is a ring.
(2) I is not invertible, and ($M: I$) is a ring for each maximal ideal $M \supseteq I$.
(3) $I^{-1}=(\sqrt{I}: I)$, and $(P: I)$ is a ring for each minimal prime P of I.

Proof. A ssume (1). Then I is not invertible by [H uP, Proposition 2.2]. Statement (2) now follows from Proposition 2.1. Conversely, if I is not invertible, then $I I^{-1} \subseteq M$ for some maximal ideal, and it follows that $I^{-1}=(M: I)$, so that I^{-1} is a ring. Thus (1) and (2) are equivalent. Assume (3), and let P be a minimal prime of I. Then $I^{-1}=(\sqrt{I}: I) \subseteq$ $(P: I) \subseteq I^{-1}$, and $I^{-1}=(P: I)$ is a ring. The converse follows from Proposition 2.1.

Proposition 2.3. Let S be an overring of R which is also a fractional ideal of R. Then $S_{v}=\left(S^{-1}: S^{-1}\right)$; hence S_{v} is also an overring of R.

Proof. Let $I=S^{-1}$. Then I is an integral ideal of R, and I is the conductor of the overring S in R. Hence by [B, Proposition 6], $I^{-1}=(I: I)$; that is, $S_{v}=\left(S^{-1}: S^{-1}\right)$.

Corollary 2.4 ([H uP, Proposition 2.2]). If I is an ideal of R for which I^{-1} is a ring, then $I^{-1}=\left(I_{v}: I_{v}\right)$.
Proof. Set $S=I^{-1}$ in Proposition 2.3. 【
Proposition 2.5. Let $\left\{I_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ be a set of divisorial ideals of R for which each I_{α}^{-1} is a ring and $I=\cap I_{\alpha}$ is nonzero. Let S denote the compositum of the rings I_{α}^{-1}. Then the following statements are equivalent:
(1) I^{-1} is a ring.
(2) $I^{-1}=(I: I)$.
(3) $S \subseteq I^{-1}$.
(4) $S_{v}=I^{-1}$.

Proof. The equivalence of (1) and (2) follows from [H uP, Proposition 2.2] and the fact that I is divisorial. Suppose that I^{-1} is a ring. Then, since $I_{\alpha}^{-1} \subseteq I^{-1}$ for each α, we must have $I_{\alpha_{1}}^{-1} I_{\alpha_{2}}^{-1} \cdots I_{\alpha_{k}}^{-1} \subseteq I^{-1}$ for each finite subset $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ of \mathscr{A}. Thus (1) \Rightarrow (3). Now assume (3), and let $x \in S^{-1}$. Then $x I_{\alpha_{1}}^{-1} I_{\alpha_{2}}^{-1} \ldots I_{\alpha_{k}}^{-1} \subseteq R$ for each finite subset $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ of \mathscr{A}. In particular, $x I_{\alpha}^{-1} \subseteq R$ for each α. Since each I_{α} is divisorial, this gives $x \in \cap I_{\alpha}=I$. Hence $S^{-1} \subseteq I$ and $S_{v} \supseteq I^{-1}$. On the other hand, since I^{-1} is divisorial, (3) implies that $S_{v} \subseteq I^{-1}$, yielding (4). Finally, (4) implies (1) by Proposition 2.3.

Corollary 2.6. Let I and J be ideals of R for which I^{-1} and J^{-1} are rings. Then $\left(I_{v} \cap J_{v}\right)^{-1}$ is a ring $\Leftrightarrow I^{-1} J^{-1} \subseteq\left(I_{v} \cap J_{v}\right)^{-1}$.

Remark. It is possible to have $\left(I_{v} \cap J_{v}\right)^{-1}$ be a ring even though $(I \cap J)^{-1}$ is not-see Example 5.3 below.

3. RADICAL IDEALS

In this section, we consider (intersections of) radical ideals. We begin by characterizing when the inverse of a radical ideal is a ring.
Theorem 3.1. Let I be a radical ideal of R. The following statements are equivalent:
(1) I^{-1} is a ring.
(2) $I^{-1} \subseteq \cap\left\{R_{P} \mid P\right.$ is a minimal prime of I and $I R_{P}$ is principal $\}$.
(3) There does not exist a minimal prime P of I and an element $x \in K$ for which $I R_{P}$ is principal and $I \subseteq\left(R:_{R} x\right) \subseteq P$.
(4) For each valuation overring V of R with $I V \neq V$, we have $I^{-1} \subseteq V_{Q}$, where Q is the prime of V which is minimal over $I V$.
(5) For each minimal prime P of I, there is a valuation overring V of R centered on P with $I^{-1} \subseteq V$.
(6) For each $x \in I^{-1}, x^{2} \in I^{-1}$.

Proof. (1) \Rightarrow (2). By [A, Proposition 3.3(1)], $I^{-1}=(I: I)$. If P is a minimal prime of I with $I R_{P}=a R_{P}, a \in I$, then $I^{-1}=(I: I) \subseteq$ $\left(I R_{P}: I R_{P}\right)=\left(a R_{P}: a R_{P}\right)=R_{P}$.
(2) \Rightarrow (3). Let P and x be as described in (3). Then ($\left.R:_{R} x\right) \subseteq P$ implies $x \notin R_{P}$, and $I \subseteq\left(R:_{R} x\right)$ implies $x \in I^{-1}$. Hence $I^{-1} \nsubseteq \cap\left\{R_{P} \mid P\right.$ is minimal over I and $I R_{P}$ is principal $\}$.
(3) \Rightarrow (1). If I^{-1} is not a ring, then $I I^{-1} \nsubseteq I$, whence $I I^{-1} \nsubseteq P$ for some minimal prime P of I. It follows that $I R_{P}$ is principal. Choose $x \in I^{-1}$ with $x I \nsubseteq P$. Of course, $I \subseteq\left(R:_{R} x\right)$. If $a \in\left(R:_{R} x\right)$, then $a x \in R$. Thus
$a x I \subseteq I \subseteq P$; since $x I \nsubseteq P$, we have $a \in P$. Thus $\left(R:{ }_{R} x\right) \subseteq P$. This shows that (3) implies (1).
(1) \Rightarrow (4). This is true for general I by Proposition 2.1.
$(4) \Rightarrow(5)$. This is clear.
$(5) \Rightarrow(1)$. Suppose that I^{-1} is not a ring. Then we may choose $x \in I^{-1}$ and $a \in I$ with $x a \notin P$ for some minimal prime P of I. Let (V, M) be a valuation overring of R centered on P. Since $x a \notin P$, we have $x a \notin M$. It follows that $x \notin V$. Hence $I^{-1} \nsubseteq V$.
(1) \Rightarrow (6). Clear.
(6) \Rightarrow (1). Let $x \in I^{-1}$. It suffices to show that $x I \subseteq I$. By hypothesis, $x^{2} \in I^{-1}$. H ence $x^{2} I \subseteq R$, and $(x I)^{2} \subseteq I$. Since $x I \subseteq R$ and I is radical, we have $x I \subseteq I$.

We observe, as a consequence of Theorem 3.1, that if I is a radical ideal of R and $I R_{P}$ is nonprincipal for each minimal prime P of I, then I^{-1} is a ring.

Corollary 3.2. Let P be a prime ideal of R. The following statements are equivalent:
(1) P^{-1} is a ring.
(2) Either $P R_{P}$ is not principal or P is not of the form $\left(a R:_{R} b\right)$ for $a, b \in R$.
(3) $P^{-1} \subseteq V$ for each valuation overring V of R whose maximal ideal is minimal over $P V$.

For convenience, we state (without proof) a straightforward variation of Theorem 3.1.

Theorem 3.3. Let I be a nonzero radical ideal of R, and let $\left\{P_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ be a set of minimal primes of I for which $I=\cap P_{\alpha}$. The following statements are equivalent:
(1) I^{-1} is a ring.
(2) $I^{-1} \subseteq \cap\left\{R_{P_{\alpha}} \mid \alpha \in \mathscr{A}\right.$ and $I R_{P_{\alpha}}$ is principal $\}$.
(3) There does not exist an $\alpha \in \mathscr{A}$ and an element $x \in K$ for which $I R_{P_{\alpha}}$ is principal and $I \subseteq\left(R:_{R} x\right) \subseteq P_{\alpha}$.
(4) For each $\alpha \in \mathscr{A}$, there is a valuation domain $\left(V_{\alpha}, M_{\alpha}\right)$ with $R \subseteq V_{\alpha}$, $M_{\alpha} \cap R=P_{\alpha}$, and $I^{-1} \subseteq V_{\alpha}$.
Theorem 3.4. Let I and J be radical ideals of R. Then the following statements are equivalent:
(1) I^{-1} and J^{-1} are rings.
(2) $(I \cap J)^{-1}$ and $(I+J)^{-1}$ are rings.

M oreover, if (either of) these statements hold, then $(I+J)^{-1}=((I+$ $J):(I+J)$).

Proof. A ssume (1). Then $(I+J)^{-1}=I^{-1} \cap J^{-1}$ is a ring. Let $t \in(I \cap$ $J)^{-1}, r \in(I \cap J), a \in I$, and $b \in J$. Since $t a b \in R, t a \in J^{-1}=(J: J)$, and $t b \in I^{-1}=(I: I)$. Hence tar, tbr $\in(I \cap J)$. Thus $t^{2} a r, t^{2} b r \in R$, and we have $t^{2} r \in I^{-1} \cap J^{-1}$. It follows that $t^{2} r^{2} \in I \cap J$, and since $I \cap J$ is a radical ideal and $t r \in R$, we have $t r \in I \cap J$. Hence $t \in((I \cap J):(I \cap J))$. Therefore, $(I \cap J)^{-1}=((I \cap J):(I \cap J))$ is also a ring, and (2) holds.

Now assume (2). It suffices to show that I^{-1} is a ring. Let $x \in I^{-1}$, $a \in I$, and $b \in J$. Since $I^{-1} \subseteq(I \cap J)^{-1}$ and $(I \cap J)^{-1}$ is a ring, we have $x^{2} \in(I \cap J)^{-1}$. Hence $x^{2} a b \in R$, and so $x^{2} a \in J^{-1}$. Since $x a \in R, x \in$ I^{-1}, and I^{-1} is an R-module, we obtain $x^{2} a \in I^{-1}$. Thus $x^{2} a \in I^{-1} \cap J^{-1}$ $=(I+J)^{-1}$, and, since $(I+J)^{-1}$ is a ring, we have $x^{4} a^{2} \in I^{-1} \cap J^{-1}$. Thus $x^{4} a^{3} \in R$ and $x^{4} a^{4} \in I$. Since I is a radical ideal of R and $x a \in R$, this yields $x a \in I$. Hence $x \in(I: I)$. It follows that $I^{-1}=(I: I)$, as desired.
To prove the last statement, note that $(I+J)^{-1}=I^{-1} \cap J^{-1}=(I: I)$ $\cap(J: J)$ (since I and J are radical ideals). It is straightforward to show that this latter ideal is equal to $((I+J):(I+J))$.

Remarks. (1) A though the implication (1) \Rightarrow (2) can be easily extended to an intersection of any finite number of radical ideals, we have not been able to extend it to infinite irredundant intersections. (In Proposition 3.13 we do show that if a nonzero ideal I is an irredundant intersection of prime ideals P with each P^{-1} a ring, then I^{-1} is also a ring.)
(2) The radical assumptions are necessary. In E xample 5.2, we show that it is possible for $(I \cap J)^{-1}$ to fail to be a ring even though I and J are divisorial ideals with I^{-1} and J^{-1} both rings; and in Example 5.3, we exhibit (non-divisorial) ideals I and J for which $I^{-1}=(I: I), J^{-1}=(J: J)$ (so that I^{-1} and J^{-1} are rings), $\left(I_{v} \cap J_{v}\right)^{-1}$ is a ring, but $(I \cap J)^{-1}$ is not a ring.
(3) The implication (2) \Rightarrow (1) may not hold for an intersection of more than two radical ideals, as the following example shows.

Example 3.5. Let X be an indeterminate over \mathbb{Q}, and set $T=\mathbb{Q}[X]$ $=\mathbb{Q}+X \mathbb{Q}[X]$ and $R=\mathbb{Z}+X \mathbb{Q}[X]$. Consider the ideals I, J, K of R given by $I=2 \mathbb{Z}+X \mathbb{Q}[X]=2 R, \quad J=3 \mathbb{Z}+X \mathbb{Q}[X]=3 R$, and $L=$ $X \mathbb{Q}[X]$. Then I, J, L are prime ideals with $I \cap J \cap L=L$. It is easy to see that $(I \cap J \cap L)^{-1}=L^{-1}=(L: L)=T$. Since I and J are comaximal, $I+J+L=R$, so that $(I+J+L)^{-1}=R$. Hence $(I \cap J \cap L)^{-1}$ and $(I+J+L)^{-1}$ are rings, but, since I and J are principal ideals, I^{-1} and J^{-1} are not rings.

Corollary 3.6. If I and J are ideals of R for which I^{-1} and J^{-1} are rings, then $(\sqrt{I} \cap \sqrt{J})^{-1}$ is a ring.

Proof. This follows from Propositions 2.1(1) and 3.4.
Theorem 3.7. Let I and J be ideals of R for which $I^{-1} \cap J^{-1}=R$. Then the following statements are equivalent.
(1) I^{-1} and J^{-1} are rings.
(2) $(I \cap J)^{-1}$ is a ring.
(3) $\left(I_{v} \cap J_{v}\right)^{-1}$ is a ring.

Moreover, if the statements hold, then $(I \cap J)^{-1}=\left(I_{v} \cap J_{v}\right)^{-1}=(I J)^{-1}=$ $\left(I_{v} J_{v}\right)^{-1}$.

Proof. (1) \Rightarrow (2). Let $x, y \in(I \cap J)^{-1}, z \in I \cap J, a, b \in I$, and $c, d \in$ J. Then $x a c, y b d \in R$. Hence $x a, y b \in J^{-1}$ and $x c, y d \in I^{-1}$. Thus $z x y a b, z x y c d \in R$, whence $z x y a \in I^{-1}$ and $z x y c \in J^{-1}$. Since $x a \in J^{-1}, x c$ $\in I^{-1}, z y \in R$, and I^{-1} and J^{-1} are R-modules, we have $z x y a, z x y c \in I^{-1}$ $\cap J^{-1}=R$. It now follows that $z x y \in I^{-1} \cap J^{-1}=R$, whence $x y \in(I \cap$ $J)^{-1}$. Therefore, $(I \cap J)^{-1}$ is a ring.
(2) \Rightarrow (1). We show that I^{-1} is a ring. Let $x, y \in I^{-1}, a \in I$, and $b \in J$. Since $I^{-1} \subseteq(I \cap J)^{-1}$ and $(I \cap J)^{-1}$ is a ring, we have $x y \in(I \cap J)^{-1}$, whence $x y a b \in R$. Thus $x y a \in J^{-1}$. Since $x \in I^{-1}, y a \in R$, and I^{-1} is an R-module, we also have xya $\in I^{-1}$. Hence xya $\in R$. Therefore, $x y \in I^{-1}$, as desired.
The equivalence of (1) and (3) follows from the equivalence of (1) and (2) and the fact $A^{-1}=\left(A_{v}\right)^{-1}$ for any ideal A. To prove the last statement, we first note that it is clear that $\left(I_{v} \cap J_{v}\right)^{-1} \subseteq(I \cap J)^{-1} \subseteq$ $(I J)^{-1}$. Let $x \in(I J)^{-1}, z \in I_{v} \cap J_{v}$. Then $x I J \subseteq R$, from which it follows that $x I_{v} \subseteq J^{-1}$ and $x J_{v} \subseteq I^{-1}$. Hence $x z \in I^{-1} \cap J^{-1}=R$. Thus $x \in\left(I_{v} \cap\right.$ $\left.J_{v}\right)^{-1}$. It follows that $\left(I_{v} \cap J_{v}\right)^{-1}=(I \cap J)^{-1}=(I J)^{-1}$. The remaining equality follows from standard facts about star operations [G 1, Proposition 32.2].

The following example shows that Theorem 3.7 cannot be extended to the case of an arbitrary finite number of ideals.

Example 3.8. Let D be a domain with quotient field $k, D \neq k$, and let X, Y, Z be indeterminates over k. Let $T=D[X, Y, Z]=D[X, Y]+P$, where $P=Z T$, and let $R=D+P$. Consider the ideals I, J, L of R given by $I=Z(D[X]+P), J=Z(D[Y]+P)$, and $L=a D+P$, where a is any nonzero nonunit of D. We shall show that $I^{-1}=J^{-1}=T$ and that $L^{-1}=R$. Since $I T=P$, we have $I^{-1} \subseteq(T: I T)=(T: P)=Z^{-1} T$. Let $f \in I^{-1}$, and write $f=h / Z$ with $h \in T$. W rite $h=h_{0}+m$, where $h_{0} \in$
$D[X, Y]$ and $m \in P$. Since $Z X \in I$, we have $h_{0} X+m X=h X=f Z X \in R$, from which it follows that $h_{0} X \in D$. Hence $h_{0}=0$, and we have $h \in P$, i.e., $f \in T$. Thus $I^{-1} \subseteq T$. The reverse inclusion follows from the fact that $I T=P \subseteq R$. Thus $I^{-1}=T$, and, similarly, $J^{-1}=T$. Now by [HKLM, Theorem 1], we have $P^{-1}=(P: P)=T$ (P is being considered as an ideal of R). Since $P \subseteq L$, we have $L^{-1} \subseteq P^{-1}=T$. Let $f \in L^{-1}$. Then $f \in T$, and we may write $f=f_{0}+n$ with $f_{0} \in D[X, Y]$ and $n \in P$. Since $a \in L, f a \in R$, whence $f_{0} a \in D$. Hence $f_{0} \in D$, and $f \in R$. It follows that $L^{-1}=R$. Thus $I^{-1} \cap J^{-1} \cap L^{-1}=R$, and I^{-1}, J^{-1}, and L^{-1} are rings. However, $I \cap J \cap L=I \cap J$ is the principal ideal $Z R$, so that ($I \cap J \cap$ $L)^{-1}$ is not a ring.

Corollary 3.9. Let I and J be ideals of R for which I_{v} and J_{v} are comaximal. Then the following statements are equivalent.
(1) I^{-1} and J^{-1} are rings.
(2) $(I \cap J)^{-1}$ is a ring.
(3) $\left(I_{v} \cap J_{v}\right)^{-1}$ is a ring.

Proof. We have $I^{-1} \cap J^{-1}=\left(I_{v}\right)^{-1} \cap\left(J_{v}\right)^{-1}=\left(I_{v}+J_{v}\right)^{-1}=R$.
Corollary 3.10. Let R be a completely integrally closed domain, and let I and J be ideals of R. Then the following statements are equivalent:
(1) I^{-1} and J^{-1} are rings.
(2) $I^{-1}=J^{-1}=R$
(3) $(I \cap J)^{-1}$ is a ring.
(4) $(I \cap J)^{-1}=R$.

Proof. The implications (1) $\Rightarrow(2)$ and $(3) \Rightarrow(4)$ follow from [A, Corollary 2.4], and the implication $(2) \Rightarrow(3)$ follows from Theorem 3.7. It is straightforward to show that (4) $(\Rightarrow(2)) \Rightarrow(1)$.

Proposition 3.11. Let I be a radical ideal of R such that I^{-1} is a ring. If $I=A \cap B$ for ideals A and B, then $\left(I:_{R} A\right)$ is a radical ideal, $\left(I:_{R} A\right)^{-1}$ is a ring, and $I=\left(I:_{R} A\right) \cap A$.

Proof. Set $B^{\prime}=\left(I:_{R} A\right)$, and let $r \in B^{\prime} \cap A$. Then $r A \subseteq I$ and $r \in A$ together imply $r^{2} \in I$; since I is a radical ideal, we have $r \in I$. Hence $I=B^{\prime} \cap A$. Now let $u \in\left(B^{\prime}\right)^{-1}$. Then, since $\left(B^{\prime}\right)^{-1} \subseteq I^{-1}$, we have $u I \subseteq I$. Thus if $y \in B^{\prime}$, then $y A \subseteq I$, and $u y A \subseteq I$; that is, $u y \in\left(I:_{R} A\right)=B^{\prime}$. Thus $\left(B^{\prime}\right)^{-1}=\left(B^{\prime}: B^{\prime}\right)$. Finally, to see that B^{\prime} is a radical ideal, observe that $z^{n} \in B^{\prime}$ implies $z^{n} A \subseteq I$, whence $(z A)^{n}=z^{n} A^{n} \subseteq I$. Since I is a radical ideal, this yields $z A \subseteq I$, and $z \in B^{\prime}$.

Corollary 3.12. Let I be a radical ideal of R such that $I=A \cap B$ for ideals A and B. Then I^{-1} is a ring \Leftrightarrow there are radical ideals $A_{1} \supseteq A$ and $B_{1} \supseteq B$ of R such that $I=A_{1} \cap B_{1}$ and $\left(A_{1}\right)^{-1}$ and $\left(B_{1}\right)^{-1}$ are rings.

Proof. Suppose that I^{-1} is a ring, and set $B_{1}=\left(I:_{R} A\right)$. Then $B_{1} \supseteq B$, and by Proposition 3.11, we have $I=A \cap B_{1}$ with B_{1} a radical ideal and $\left(B_{1}\right)^{-1}$ a ring. Now set $A_{1}=\left(I:_{R} B_{1}\right)$, and apply Proposition 3.11 again. The converse follows from Theorem 3.4.

Remark. In the notation of Corollary 3.12, it need not be the case that A^{-1} is a ring. A counterexample is presented in Example 5.7 below.

Proposition 3.13. Let $\left\{P_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ be a set of prime ideals in R, and let $I=\bigcap_{\alpha \in \mathscr{A}} P_{\alpha}$ be a nonzero irredundant intersection. The following statements are equivalent:
(1) I^{-1} is a ring.
(2) P_{α}^{-1} is a ring for each $\alpha \in \mathscr{A}$.
(3) $\left(\cap_{\beta \in \mathscr{A}} P_{\beta}\right)^{-1}$ is a ring for each subset \mathscr{B} of \mathscr{A}.

Proof. (1) \Rightarrow (2). This follows from Proposition 2.1, in view of the fact that irredundancy forces each P_{α} to be minimal over I.
(2) \Rightarrow (3). Put $J=\cap_{\beta \in \mathscr{A}} P_{\beta}$, and let $z \in J^{-1}$. Fix $\beta \in \mathscr{B}$, let $\mathscr{C}=$ $\mathscr{B} \backslash\{\beta\}$, and choose $b \in\left(\cap_{\gamma \in \mathscr{E}} P_{\gamma}\right) \backslash P_{\beta}$. Then $b P_{\beta} \subseteq J$. Hence $z b P_{\beta} \subseteq R$ and $z b \in P_{\beta}^{-1}$. Since P_{β}^{-1} is a ring, we have $z b P_{\beta} \subseteq P_{\beta}$. Thus $z b J \subseteq P_{\beta}$; since $z J \subseteq R$ and $b \notin P_{\beta}$, we have $z J \subseteq P_{\beta}$. Since this is true for each β, $z J \subseteq J$, and $J^{-1}=(J: J)$ is a ring.
(3) \Rightarrow (1). Clear.

Proposition 3.14. Let I be a radical ideal of R, and let $\left\{P_{\alpha}\right\}_{\alpha \in \mathscr{A}}$ be a set of minimal primes of I with $I=\bigcap_{\alpha \in \mathscr{A}} P_{\alpha}$. Then I^{-1} is a ring \Leftrightarrow $\left(\bigcap_{\beta \in \mathscr{B}} P_{\beta}\right)^{-1}$ is a ring for each proper subset \mathscr{B} of \mathscr{A}.
Proof. (\Rightarrow) Set $J=\left(\cap_{\beta \in \mathscr{B}} P_{\beta}\right)$. A pplying Theorem 3.3 we have $J^{-1} \subseteq$ $I^{-1} \subseteq \cap\left\{R_{P_{\alpha}} \mid \alpha \in \mathscr{A}\right.$ and $I R_{P_{\alpha}}$ is principal $\} \subseteq \cap\left\{R_{P_{\beta}} \mid \beta \in \mathscr{B}\right.$ and $J R_{P_{\beta}}$ is principal\}, the last inequality following from the fact that $I R_{P_{\beta_{1}}}=J R_{P_{\beta}}=$ $P_{\beta} R_{P_{\beta}}$ for each β. Invoking Theorem 3.3 again, we have that J^{-1} is a ring.
(\leftarrow) Pick $\alpha \in \mathscr{A}$, and set $\mathscr{B}=\mathscr{A} \backslash\{\alpha\}$ and $J=\bigcap_{\beta \in \mathscr{B}} P_{\beta}$. By hypothesis, P_{α}^{-1} and J^{-1} are rings, and since P_{α} and J are radical ideals, Theorem 3.4 assures that $I^{-1}=\left(P_{\alpha} \cap J\right)^{-1}$ is a ring.

Remarks. (1) In spite of the preceding two results, we present in Section 5 an example of a radical ideal I for which I^{-1} is not a ring while P^{-1} is a ring for each minimal prime P of I (Example 5.1). We show in Proposition 3.15 below, however, that divisoriality of the P_{α} does force I^{-1} to be a ring.
(2) From Proposition 3.14, one might suspect that if I is a radical ideal for which I^{-1} is a ring, and if J is a radical ideal trapped between I and some minimal prime of I, then J^{-1} should also be a ring. Example 5.7 below, however, shows that this is not necessarily the case.
(3) The simplest way to ensure that each P_{α}^{-1} be a ring in Propositions 3.13 and 3.14 is to have each $P_{\alpha}^{-1}=R$. However, even though for an ideal I equal to the irredundant intersection of such P_{α}, we must have that I^{-1} is a ring, it need not be the case that $I^{-1}=R$. For such an I, see Example 5.4 below.

Proposition 3.15. Let I be a nonzero ideal of R, and suppose that $I=\cap I_{\alpha}$, where each I_{α} is a divisorial radical ideal with I_{α}^{-1} a ring. Then I^{-1} is a ring.

Proof. Let $\left\{I_{\alpha_{1}}, \ldots, I_{\alpha_{t}}\right\}$ be a finite subset of $\left\{I_{\alpha}\right\}$. By Theorem 3.4 $\left(I_{\alpha_{1}} \cap \cdots \cap I_{\alpha_{t}}\right)^{-1}$ is a ring. By Proposition 2.5, this implies that $I_{\alpha_{1}}^{-1} \cdots$ $I_{\alpha_{t}}^{-1} \subseteq\left(I_{\alpha_{1}} \cap \cdots \cap I_{\alpha_{t}}\right)^{-1} \subseteq I^{-1}$. A nother application of Proposition 2.5 shows that I^{-1} is a ring.

4. THE INTEGRALLY CLOSED CASE

In this section, we characterize when I^{-1} is a ring when I is an ideal in an integrally closed domain R (Theorem 4.4); we then study the situation in Prüfer v-multiplication domains. We begin with a result in the seminormal case.

Proposition 4.1. If I is a nonzero ideal of the seminormal domain R for which I^{-1} is a ring, then $I^{-1} \subseteq \cap\left\{R_{P} \mid P\right.$ is minimal over I and $P R_{P}$ is principal\}.

Proof. Let P be minimal over I with $P R_{P}$ principal. Then by [FHPR, Corollary 3.4(1)], we have $I^{-1}=(\sqrt{I}: \sqrt{I}) \subseteq\left(\sqrt{I} R_{P}: \sqrt{I} R_{P}\right)=\left(P R_{P}: P R_{P}\right)$ $=R_{P}$.
Remark. The converse of Proposition 4.1 is false. For an example, let V be a valuation domain of the form $V=K+M$, where M is the maximal ideal of V and K is a field; we further assume that M is nonprincipal in V and that M is branched (so that M is minimal over a principal ideal of V). Let F be a subfield of K which is algebraically closed in K, and set $R=F+M$. Then R is integrally closed. Choose $a \in M$ with M minimal over $V a$, and let $I=M a$. Then I is a divisorial ideal of R (but is not divisorial in V). Note that $I^{-1}=M^{-1} a^{-1}=V a^{-1}$, whence I^{-1} is not a ring. Now $M R_{M}$ is not principal, so that $\cap\left\{R_{P} \mid P\right.$ is minimal over I and $P R_{P}$ is principal $\}$ is the quotient field of R. Thus $I^{-1} \subseteq \cap\left\{R_{P} \mid P\right.$ is minimal over I and $P R_{P}$ is principal\}, but I^{-1} is not a ring. A lso note that $I^{-1} I=V a^{-1} M a=M$; thus $I^{-1}=(M: I)=(\sqrt{I}: I)$. Since $M=\sqrt{I}$ and $M^{-1}=V$ is a ring, we see that the first three conditions of Proposition 2.1 are satisfied.

In [FHPR, Lemma 3.5], the following result is proved: if R is seminormal, I is an ideal of R for which I^{-1} is a ring, and J is an ideal of R with $I \subseteq J \subseteq \sqrt{I}$, then $J^{-1}=I^{-1}$ (so that J^{-1} is also a ring). We observe that the seminormal hypothesis cannot be removed. To see this, let F be a field, let X be an indeterminate over F, and let $R=F\left[X^{3}, X^{4}\right]$. Let $I=\left(X^{6}, X^{7}, X^{8}\right)$ and $J=\left(X^{3}, X^{6}, X^{7}, X^{8}\right)$. Then $I \subseteq J \subseteq \sqrt{I}=$ $\left(X^{3}, X^{4}\right)$. It is easy to check that $I^{-1}=F[X]$, so that I^{-1} is a ring. However, $X \in J^{-1}$, but $X^{2} \notin J^{-1}$.

We next turn our attention to some results in the integrally closed case. Recall that for an ideal I of an integrally closed domain R, the completion of I is the ideal $I^{*}=\cap I V$, where the intersection is taken over all valuation overrings V of R. (For a discussion of completion, see [G 1, Sect. 24].)

For convenience, we state without proof several (probably well-known) easily verified facts about completions.

Lemma 4.2. Let I be an ideal of the integrally closed domain R. Then
(1) $\left(I^{*}: I^{*}\right)=\cap(I V: I V)$, where the intersection is taken over all valuation overrings V of R;
(2) $\quad(I: I) \subseteq\left(I^{*}: I^{*}\right)$;
(3) if I is a radical ideal, then I is complete; and

$$
\begin{equation*}
(\sqrt{I}: \sqrt{I})=\left((\sqrt{I})^{*}:(\sqrt{I})^{*}\right)=\cap(\sqrt{I} V: \sqrt{I} V) . \tag{4}
\end{equation*}
$$

For an ideal I of a domain R, set $\mathscr{V}(I)=\{(V, M) \mid(V, M)$ is a valuation overring of R whose maximal ideal M is minimal over $I V$ \} and $\mathscr{W}(I)=$ $\{W \mid W$ is a valuation overring of R with $I W=W\}$. Observe that $I^{-1} \subseteq W$ for each $W \in \mathscr{W}(I)$. When no confusion is likely, we will write \mathscr{V} for $\mathscr{V}(I)$ and \mathscr{W} for $\mathscr{W}(I)$.

Lemma 4.3. If I is an ideal of the integrally closed domain R, then $I^{-1} \supseteq\left(\cap_{V \in \mathscr{V}} V\right) \cap\left(\cap_{W \in \mathscr{V}} W\right)$.

Proof. Let x be an element of the given intersection, and let $a \in I$. Let U be any valuation overring of R. If $U \in \mathscr{W}$, then $x \in U$, whence $x a \in U$. If $U \notin \mathscr{W}$, then $I U \neq U$. Let Q be the prime of U minimal over $I U$. Then $U_{Q} \in \mathscr{V}$, whence $x \in U_{Q}$. It follows that $x a \in Q U_{Q}=Q \subseteq U$. Thus $x a$ is in every valuation overring of R; since R is integrally closed, this implies that $x a \in R$. Thus $x \in I^{-1}$, as desired.

Theorem 4.4. Let I be an ideal of the integrally closed domain R. Then the following statements are equivalent.
(1) I^{-1} is a ring.
(2) $I^{-1} \subseteq\left(I I^{-1} V: I I^{-1} V\right)$ for each valuation overring V of R.
(3) $I^{-1} \subseteq\left(I_{v} V: I_{v} V\right)$ for each valuation overring V of R.
(4) \exists an ideal J of R for which $J \supseteq I$ and $I^{-1} \subseteq(J V: J V)$ for each valuation overring V of R.
(5) $I^{-1} \subseteq \cap_{V \cap \mathscr{V}} V$.
(6) $I^{-1}=\left(\cap_{V \in \mathscr{V}} V\right) \cap\left(\cap_{W \in \mathscr{V}} W\right)$.

Moreover, if I^{-1} is a ring, then $I^{-1}=J^{-1}$ for each ideal $J \supseteq I$ such that $I^{-1} \subseteq(J V: J V)$ for each valuation overring V of R.

Proof. By [H uP, Proposition 2.2], (1) implies (2) and (3), and it is clear that both (2) and (3) imply (4). Let J be an ideal as given in (4). By Lemma 4.2, we have $\left(J^{*}: J^{*}\right)=\cap(J V: J V)$. Hence $I^{-1} \subseteq\left(J^{*}: J^{*}\right) \subseteq\left(J^{*}\right)^{-1} \subseteq$ $J^{-1} \subseteq I^{-1}$. Thus I^{-1} is a ring, and we have $I^{-1}=J^{-1}$ for each such J. Thus (4) \Rightarrow (1). Therefore, statements (1)-(4) are equivalent, and the "moreover" statement has been proved. The equivalence of (5) and (6) follows easily from Lemma 4.3, and it is obvious that $(6) \Rightarrow(1)$. Hence it suffices to show that (4) \Rightarrow (5). A gain, let J be as given in (4). Let $V \in \mathscr{V}(I)$. If $J V=V$, then $I^{-1} \subseteq(J V: J V)=V$. If $J V \neq V$, then, since the maximal ideal of V is minimal over $I V$, it is also minimal over $J V$. Hence $J^{-1} \subseteq V$ by Proposition 2.1. A s shown above, $I^{-1}=J^{-1}$, and hence $I^{-1} \subseteq V$.

Remark. Lemma 4.3 may be regarded as an extension of [HuP, Lemma 3.3] to the integrally closed case; similarly, the equivalences (1), (5), and (6) represent an extension of [H uP, Theorem 3.2].

In Example 5.6 below, we use an example of Heinzer and Papick to show the necessity of the v 's in statement (3) of Theorem 4.4; that is, we show that I^{-1} a ring does not imply $I^{-1} \subseteq(I V: I V)$ for every valuation overring V.

We now wish to generalize the above-mentioned results of [HuP] to Prüfer v-multiplication domains. We first recall the t-operation: for a nonzero fractional ideal I of a domain R, set $I_{t}=\bigcup\left\{J_{v} \mid J\right.$ is a nonzero finitely generated subideal of I; ; I is called a t-ideal if $I=I_{t}$. Of course, the t-operation is an example of a star-operation (see [10] or [13]). Of particular importance are the well-known facts that every t-ideal is contained in a maximal t-ideal, that maximal t-ideals are prime, and that any prime minimal over a t-ideal is a prime t-ideal (t-prime). Recall that a domain R is a Prüfer v-multiplication domain (PVMD) $\Leftrightarrow R_{M}$ is a valuation domain for each (maximal) t-prime M of R [Gr, Theorem 5].

Theorem 4.5. Let I be an ideal of the PVMD R. Let $\left\{P_{\alpha}\right\}$ denote the set of minimal primes of $I,\left\{Q_{\beta}\right\}$ the set of minimal primes of I_{t}, and $\left\{M_{\gamma}\right\}$ the set of maximal t-ideals of R which do not contain I. The following statements are
equivalent:
(1) I^{-1} is a ring.
(2) $I^{-1}=\left(\cap R_{P_{\alpha}}\right) \cap\left(\cap R_{M_{\gamma}}\right)$.
(3) $I^{-1}=\left(\cap R_{Q_{\beta}}\right) \cap\left(\cap R_{M_{\gamma}}\right)$.

Proof. We first observe that $Q_{\beta} \in\left\{P_{\alpha}\right\}$ for each β. To see this, note that $Q_{\beta} \supseteq Q$ for some prime Q minimal over I. As a minimal prime of a t-ideal, Q_{β} is a t-prime. Hence $R_{Q_{\beta}}$ is a valuation domain. It follows that R_{Q} is also a valuation domain, and it is well known that this implies that Q is itself a t-prime. Thus $Q \supseteq I_{t}$, and we have that $Q_{\beta}=Q$ is minimal over I. Now suppose that I^{-1} is a ring, and let $x \in I^{-1}$. We wish to show that $x \in R_{P_{\alpha}}$ for each α. If $\left(P_{\alpha}\right)_{t}=R$, then there is a finitely generated ideal $A \subseteq P_{\alpha}$ with $A_{v}=R$. Since P_{α} is minimal over I, there is an element $s \in R \backslash P_{\alpha}$ and a positive integer n for which $s A^{n} \subseteq I$. Hence $x_{s} A^{n} \subseteq R$. Since $\left(A^{n}\right)_{v}=R$, this gives $x s \in R$, whence $x \in R_{P_{\alpha}}$. If $\left(P_{\alpha}\right)_{t} \neq R$, then as in the argument given above for Q, we have that $R_{P_{\alpha}}$ is a valuation domain. By Theorem 4.4, $I^{-1} \subseteq R_{P_{\alpha}}$ in this case as well. It follows that $I^{-1} \subseteq\left(\cap R_{P_{\alpha}}\right) \cap\left(\cap R_{M_{\gamma}}\right) \subseteq\left(\cap R_{Q_{\beta}}\right) \cap\left(\cap R_{M_{\gamma}}\right)$. Now let $y \in\left(\cap R_{Q_{\beta}}\right)$ $\cap\left(\cap R_{M_{\gamma}}\right)$ and $a \in I$. To show that $y a \in R$, it suffices to show that $y a \in R_{M}$ for each maximal t-ideal M of R. This is clear if $M=M_{\gamma}$ for some γ. If $I \subseteq M$, then $M \supseteq Q_{\beta}$ for some β. Since $y \in R_{Q_{\beta}}$, we have $y a \in I R_{Q_{\beta}} \subseteq Q_{\beta} R_{Q_{\beta}}=Q_{\beta} R_{M}$ (using the fact that $Q=Q V_{Q}$ for each prime ideal Q in a valuation domain V). Thus $y a \in R_{M}$. It follows that (1) implies (2) and (3). Of course, it is clear that either (2) or (3) implies (1).

Remark 4.6. (1) In Theorem 4.5, although each minimal prime of I_{t} is in fact minimal over I, a minimal prime of I need not contain I_{t}, even when I^{-1} is a ring properly containing R. Example 5.8 below is an example of a PVMD R containing an ideal I and a minimal prime M of I such that I^{-1} is a ring but $M_{t}=R$.
(2) For a general integrally closed domain R and t-ideal I of R, I^{-1} need not be contained in $\cap R_{P}$, where the intersection is taken over the minimal (necessarily t-) primes P of I. For an example, let $F \subseteq K$ be fields with F algebraically closed in K, let (V, M) be a valuation domain of the form $K+M$, and let $R=F+M$. Then M is divisorial (and therefore a t-ideal), but $M^{-1}=V \nsubseteq R_{M}=R$.
(3) For any ideal I of a domain R, if P is minimal over I with $I^{-1} \neq R$ but $I^{-1} \nsubseteq R_{P}$, we have $P_{t} \neq R$. To see this, suppose that A is a finitely generated ideal contained in P with $A^{-1}=R$. As in the proof of Theorem 4.5, we have $s A^{n} \subseteq I$ for some $s \notin P$. Then $s A^{n} I^{-1} \subseteq R$, and since
($\left.A^{n}\right)_{v}=R$, this implies that $I^{-1} \subseteq s^{-1} R \subseteq R_{P}$, a contradiction. Hence $A^{-1} \neq R$. Thus $P_{t} \neq R$.

W e continue to study when I^{-1} is a ring, where I is a nonzero ideal of a PVMD R. In particular, we wish to generalize a theorem of Fontana-Huckaba-Papick-R oitman [FHPR, Theorem 4.11]. We shall use the following notation and notions from [FHPR]:
$\mathscr{Z}(R, I)=$ the set of zero divisors on the R-module R / I,
$\mathbf{Z}(R, I)=\{P \in \operatorname{Spec}(R) \mid I \subseteq P \subseteq \mathscr{Z}(R, I)\}$,
$\mathscr{N}(R, I)=R \backslash \mathscr{Z}(R, I)$,
$\mathscr{E}_{t}(R, I)=\cap\left\{R_{M} \mid M\right.$ is a maximal t-ideal of R with $\left.I \nsubseteq M\right\}$.

We say that I has no embedded primes if each element of $\mathbf{Z}(R, I)$ is minimal over I. Finally, we note that $\mathscr{N}=\mathscr{N}(R, I)$ is a multiplicatively closed subset of R, and we let $\mathbf{M}(\mathcal{N})$ denote the set of maximal elements in the set of ideals which have empty intersection with \mathcal{N}.

Theorem 4.7 (cf. [FHPR, Theorem 4.11]). Let R be a PVMD, and let I be an ideal of R with no embedded primes. Then
(1) $(I: I)=(\sqrt{I}: \sqrt{I})=R_{\mathscr{V}} \cap \mathscr{E}_{t}(R, I)$ and
(2) I^{-1} is a ring $\Leftrightarrow I^{-1}=(I: I)$.

Proof. (1) By $[\mathrm{FHPR}$, Theorem 3.1], $(I: I) \subseteq(\sqrt{I}: \sqrt{I})$. Now let $y \in$ $(\sqrt{I}: \sqrt{I})$, let $M \in \mathscr{C}_{t}(R, I)$, and let $b \in \sqrt{I} \backslash M$. Then $y b \in \sqrt{I} \subseteq R$, whence $y \in R_{M}$. Thus $(\sqrt{I}: \sqrt{I}) \subseteq \mathscr{E}_{t}(R, I)$. By [G1, Corollary 4.6], $R_{\mathscr{R}}=$ $\cap\left\{R_{Q} \mid Q \in \mathbf{M}(\mathcal{N})\right\}$. Let $Q \in \mathbf{M}(N)$. By [FHPR, Lemma 4.6], $I \subseteq Q$, and, since Q is prime, we have $Q \in \mathbf{Z}(R, I)$. Since I has no embedded primes, Q is minimal over I. Since Q is minimal over I, we have $\sqrt{I} R_{Q}=Q R_{Q}$. Thus $y \in(\sqrt{I}: \sqrt{I}) \subseteq\left(\sqrt{I} R_{Q}: \sqrt{I} R_{Q}\right)=\left(Q R_{Q}: Q R_{Q}\right)$. If $Q=Q_{t}$, then R_{Q} is a valuation ring, and $\left(Q R_{Q}: Q R_{Q}\right)=R_{Q}$, and we have $y \in R_{Q}$. If $Q \neq Q_{t}$, then, since maximal primes of t-ideals are t-primes, we have $I_{t} \nsubseteq Q$. Since $(\sqrt{I}: \sqrt{I}) \subseteq(\sqrt{I})^{-1} \subseteq I^{-1}=\left(I_{t}\right)^{-1}, y \in\left(I_{t}\right)^{-1}$. If $s \in I_{t} \backslash Q$, then $s y \in R$, whence, again, $y \in R_{Q}$. Thus $(\sqrt{I}: \sqrt{I}) \subseteq R_{\mathscr{P}}$, and we have $(\sqrt{I}: \sqrt{I}) \subseteq R_{\mathscr{R}} \cap \mathscr{C}_{t}(R, I)$. Now let $z \in R_{\mathscr{R}} \cap \mathscr{E}_{t}(R, I)$ and $a \in I$. We claim that $z a \in R$. For this it suffices to show that $z a \in R_{M}$ for each maximal t-ideal M of R [Gr, Theorem 5]. Let M be a maximal t-ideal. If $I \nsubseteq M$, then $z a \in \mathscr{C}_{t}(R, I) \subseteq R_{M}$. Suppose $I \subseteq M$ and that $z a \notin R_{M}$. Then, since R_{M} is a valuation ring, $z^{-1} a^{-1} \in R_{M}$. Since $z \in R_{\mathscr{r}}, \exists t \in N$ with $t z \in R$. Hence $t z a \in I \subseteq I R_{M}$, and we have $t=(z a)^{-1} t z a \in I R_{M}$. This produces $u \in R \backslash M$ with $u t \in I$. But then, since $t \in N$, we have $u \in I \subseteq M$, a contradiction. Hence $z a \in R_{M}$. Thus $z a \in R$, as claimed. Since $t z a \in I$
and $t \in N$, we have $z a \in I$. Hence $z \in(I: I)$, and we have $R_{\mathscr{N}} \cap \mathscr{C}_{t}(R, I)$ $\subseteq(I: I)$. This gives (1).
(2) If I^{-1} is a ring, then by Theorem 4.5, $I^{-1}=\left(\cap R_{P_{\alpha}}\right) \cap \mathscr{C}_{t}(R, I)$, where $\left\{P_{\alpha}\right\}$ is the set of minimal primes of I. R ecall that for $Q \in \mathbf{M}(N), Q$ is minimal over I, whence $I^{-1} \subseteq R_{Q}$. Thus $I^{-1} \subseteq R_{\mathcal{N}^{\prime}}$, and by (1) we have $I^{-1} \subseteq R_{\mathscr{N}} \cap \mathscr{C}_{t}(R, I)=(I: I)$.

Corollary 4.8 (cf. [HuP, Corollary 3.4]). If M is a maximal ideal of a $P V M D R$, then either M is invertible or $M^{-1}=R$.

Proof. Suppose that M is not invertible, so that $M^{-1}=(M: M)$. By Theorem 4.5 or 4.7 , this gives $M^{-1}=R_{M} \cap \mathscr{C}_{t}(R, M)$. If M is a t-ideal this yields $M^{-1}=R[G r$, Theorem 5]. Of course, if M is not a t-ideal, then $M_{v} \supseteq M_{t}=R$, and again we have $M^{-1}=R$.

In Example 4.9 below, we show that it is not enough to assume in Corollary 4.8 that M is a maximal t-ideal.

Corollary 3.2 asserts that P is a prime ideal of a domain R such that $P R_{P}$ is not principal, then P^{-1} is a ring. The following two examples show that it is possible to have $P R_{P}$ principal with P^{-1} a ring or not, where P is a maximal t-ideal of a PVMD.

Example 4.9. An example of a PVMD R containing a maximal t-ideal P such that P is not invertible, $P R_{P}$ is principal, and $P^{-1}=R$.

Let R be an almost D edekind domain which is not a D edekind domain. Then R is a PVMD (since it is a Prüfer domain). Since R is not a D edekind domain, there is a maximal ideal P of R which is not invertible. Since P is maximal and has height $1, P$ is a maximal t-ideal. Of course, $P R_{P}$ is principal by definition. Finally, $P^{-1}=R$ by Corollary 4.8.

Example 4.10. An example of a PVMD R containing a maximal t-ideal P such that P is not invertible, $P R_{P}$ is principal, and P^{-1} is not a ring.

Let $T=\mathbb{Q}[Y]=\mathbb{Q}+M$, where $M=Y \mathbb{Q}[Y]$, and let $S=\mathbb{Z}+M$. By [CM Z, Theorem 4.43], S is a PVMD. Hence $R=S[X]$ is also a PVMD. Let $f=Y X+(1 / 2) Y \in R$, and let $P=f \mathbb{Q}(Y)[X] \cap R$. Then P is an upper to zero, and by [Q, Lemma 1], $P=f(Y,(1 / 2) Y)^{-1} R$. It is easy to see that $(Y,(1 / 2) Y)^{-1}=M^{-1}=T$, so that $(Y,(1 / 2) Y)^{-1}(Y,(1 / 2) Y) \subseteq$ $M M^{-1}=M$, and $(Y,(1 / 2) Y)^{-1}$ is not invertible in S. Hence P is not invertible in R. By [HMM, Proposition 2.6] and [HZ, Theorem 1.4], P is a maximal t-ideal and $\left(P P^{-1}\right)_{t}=R$. Thus $P P^{-1} \nsubseteq P$, and P^{-1} is not a ring. Finally, that $P R_{P}$ is principal follows from the well-known fact that R_{P} is a DVR.

5. EXAMPLES

In this section, we give several examples tending to show that (many of) the results in Sections 2-4 are the best possible. In what follows, we use F to denote a field and (possibly subscripted) capital letters X, Y, Z, and W to denote indeterminates over F.

Example 5.1. An example of a domain R containing a radical ideal I for which I^{-1} is not a ring but P^{-1} is a ring for each minimal prime of I. Let R denote the semigroup ring $\mathbb{Q}\left[\mathbb{Q}_{0}\right]=\mathbb{Q}\left[\left\{X^{\alpha} \mid \alpha \in \mathbb{Q}_{0}\right\}\right]$. (Here, \mathbb{Q}_{0} denotes the set of non-negative rational numbers.) Set $I=(X-1) R$. Since I is principal, I^{-1} is not a ring. However, we shall show that I is a radical ideal and that $P^{-1}=R$ for each minimal prime P of R. By [G2, Theorem 13.5], R is a Bézout domain. For $n \geq 1$, set $R_{n}=\mathbb{Q}\left[X^{1 / n}\right]$. Then $R_{n} \simeq R_{1}$ is a PID, and $R=\cup R_{n}$. Let $I_{n}=(X-1) R_{n}$. The fact that I_{1} does not ramify in R_{n} implies that I_{n} is a radical ideal of R_{n}. (That I_{1} does not ramify in R_{n} means that each irreducible factor of $X-1$ in R_{n} occurs to the first power. A fter an application of the isomorphism $X^{1 / n} \mapsto$ X from R_{n} to R_{1}, this means that each irreducible factor of $X^{n}-1$ occurs to the first power in R_{1}. Of course, this follows from the well-known fact that the factors of $X^{n}-1$ are just the cyclotomic polynomials g_{d} for $d \mid n$.) It follows easily that $I=\bigcup I_{n}$ is a radical ideal of R. Now let P be a prime ideal of R containing I. By [G 2, Theorems 17.1 and 21.4], R is one dimensional. Hence P is maximal, and to show that P^{-1} is a ring, we need only show that P is not invertible. Thus, since R is Bézout, we need only show that P is not principal. Granting that P^{-1} is a ring, we have $P^{-1}=\left(P P^{-1}\right)^{-1}=R$, since a one-dimensional Bézout domain is completely integrally closed. We proceed to show that P is not principal. Suppose, on the contrary, that $P=f R$. Then f is a principal prime of R_{m} for each m for which $f \in R_{m}$. W rite $X-1=f g$. Choose n with $f, g \in R_{n}$, and set $P_{n}=P \cap R_{n}$. Then $P_{n}=f R_{n}$, and f is one of the irreducible factors of $X-1$ in R_{n}. Via the isomorphism $X^{1 / n} \rightarrow X$ from R_{n} to R_{1}, we get an equation $X^{n}-1=f\left(X^{n}\right) h$ for some $h \in R_{1}$. Thus $f\left(X^{n}\right)$ is an irreducible factor of $X^{n}-1$ in R_{1}, so that $f\left(X^{n}\right)$ is a cyclotomic polynomial. Let $p>n$ be a prime number. We have $X^{n p}-1=f\left(X^{n p}\right) h\left(X^{p}\right)$. Therefore, $f\left(X^{n p}\right)$ is irreducible in R_{1}, so that it must also be a cyclotomic polynomial. Thus $\operatorname{deg}\left(f\left(X^{n p}\right)\right)=\phi(r)$ for some positive integer $r \mid n p$. If $p+r$, then $r \mid n$, and $\phi(r) \leq r \leq n<p \leq \operatorname{deg}\left(f\left(X^{n p}\right)\right)$, a contradiction. If $p \mid r$, then $r=p s$ for some $s \mid n$. In this case $\phi(r)=\phi(p) \phi(s)$, contradicting that $\operatorname{deg}\left(f\left(X^{n p}\right)\right)$ is divisible by p. Hence $f\left(X^{n p}\right)$ is not irreducible in R_{1}, whence f is not irreducible in $R_{n p}$, a contradiction. Therefore, P is not principal, as claimed.

Example 5.2. An example of a domain R containing divisorial ideals I and J, such that I^{-1} and J^{-1} are rings but $(I \cap J)^{-1}$ is not a ring (cf. Theorem 3.4). Let $R=F\left[\left\{X^{n} Z, Y^{n} Z \mid n \geq 0\right\}\right]$, and let I and J denote the ideals generated by the sets $\left\{X^{n} Z\right\}$ and $\left\{Y^{n} Z\right\}$, respectively. We make the following claims:
(1) $I^{-1}=F\left[X, Z,\left\{Y^{n} Z \mid n \geq 0\right\}\right]=R[X]$.
(2) $J^{-1}=F\left[Y, Z,\left\{X^{n} Z \mid n \geq 0\right\}\right]=R[Y]$.
(3) I and J are divisorial.
(4) $(I \cap J)^{-1}=I^{-1}+J^{-1}=R[X]+R[Y]$. In particular, $X, Y \in(I$ $\cap J)^{-1}$, but $X Y \notin(I \cap J)^{-1}$.

Proof. (1) It is clear that $I^{-1} \supseteq F\left[X, Z,\left\{Y^{n} Z \mid n \geq 0\right\}\right]$. Let $f \in I^{-1}$. Since $Z \in I$, we may write $f=g / Z$ for some $g \in R$, and we may assume that g is a monomial, say $g=X^{n} Y^{m} Z^{k}$. We wish to show that $f=$ $X^{n} Y^{m} Z^{k-1} \in F\left[X, Z,\left\{Y^{n} Z \mid n \geq 0\right\}\right]$. If $k>1$, then clearly $f \in F[X, Z$, $\left.\left\{Y^{n} Z \mid n \geq 0\right\}\right]=R[X]$. From $f X Z=g X \in R$, we infer that $k \geq 1$ and that if $k=1$, then $m=0$. A gain, we have $f \in F\left[X, Z,\left\{Y^{n} Z \mid n \geq 0\right\}\right]=R[X]$.
(2) This is similar to (1).
(3) It suffices to show that if $h \in R$ and $h F\left[X, Z,\left\{Y^{n} Z \mid n \geq 0\right\}\right] \subseteq R$, then $h \in I$. We may assume that $h=X^{r} Y^{s} Z^{t}$. It is clear that $h \in I$ if $s=0$. If $s \neq 0$, then, since $h X=X^{r+1} Y^{s} Z^{t} \in R$, we have $t \geq 2$, whence again $h \in I$. This shows that $I=I_{v}$. Similarly, $J=J_{v}$.
(4) It suffices to show that $(I \cap J)^{-1}=R[X]+R[Y]$. Since $\left(I^{-1}+\right.$ $\left.J^{-1}\right)^{-1}=I_{v} \cap J_{v}=I \cap J$, we have $R[X]+R[Y]=I^{-1}+J^{-1} \subseteq(I \cap$ $J)^{-1}$. Now let $f=g / Z \in(I \cap J)^{-1}$, where $g=X^{i} Y^{j} Z^{k}$ is a monomial in R. Clearly, $k \geq 1$. If $i=0$, then $f=Y^{j} Z^{k-1} \in R[Y]$. Similarly, if $j=0$, then $f \in R[X]$. Finally, if $i, j \geq 1$, then $g \in R$ implies $k \geq 2$, and so, in this case, we have $f \in R[X] \cap R[Y]$. It follows that $(I \cap J)^{-1} \subseteq R[X]+$ $R[Y]$, and the proof is complete.

Remark. In Theorem 3.1, we showed that to determine whether the inverse of a radical ideal A of a domain R is a ring, it suffices to check that A^{-1} is closed under squares. We can use (a slight modification of) Example 5.2 to show that this is not true for general (non-radical) A. First, however, we observe that if A is an ideal of a domain R in which 2 is a unit, then A^{-1} is a ring $\Leftrightarrow A^{-1}$ is closed under squares. This follows from the equation $2 x y=(x+y)^{2}-x^{2}-y^{2}$, in view of the fact that A^{-1} is a fractional ideal of R.

Now suppose that R is the ring of Example 5.2 and that the characteristic of F is 2. Let $A=I \cap J$. Since $A^{-1}=R[X]+R[Y], A^{-1}$ contains the square of each of its monomial elements. For an arbitrary element $f \in A^{-1}$, let $f=f_{1}+\cdots+f_{k}$ be the representation of f as a sum of monomials.

Then, since $\operatorname{char}(R)=2, f^{2}=f_{1}^{2}+\cdots+f_{k}^{2} \in A^{-1}$. Thus A^{-1} is closed under squares but is not a ring.

Example 5.3. An example of a domain R with ideals I and J such that $I^{-1}=(I: I), J^{-1}=(J: J),\left(I_{v} \cap J_{v}\right)^{-1}$ is a ring, but $(I \cap J)^{-1}$ is not a ring.

Let $R=F\left[X, Y, W X Y, W^{2} X Y,\left\{W^{k} X^{2} Y, W^{k} X Y^{2} \mid k \geq 0\right\}\right], \quad I=\left(Y^{2}\right.$, $W X Y,\left\{W^{k} X^{2} Y, W^{k} X Y^{2} \mid k \geq 0\right\}$), and $J=\left(X^{2}, W X Y,\left\{W^{k} X^{2} Y, W^{k} X Y^{2} \mid k\right.\right.$ $\geq 0\}$).
We claim that
(1) $I^{-1}=(I: I)=F\left[X, Y,\left\{W^{k} X \mid k \geq 0\right\}\right]$,
(2) $J^{-1}=(J: J)=F\left[X, Y,\left\{W^{k} Y \mid k \geq 0\right\}\right]$,
(3) $I \cap J=\left(W X Y,\left\{W^{k} X^{2} Y, W^{k} X Y^{2} \mid k \geq 0\right\}\right)$,
(4) $I_{v}=\left(Y^{2}, X Y, W X Y, W^{2} X Y,\left\{W^{k} X^{2} Y, W^{k} X Y^{2} \mid k \geq 0\right\}\right)$
(5) $J_{v}=\left(X^{2}, X Y, W X Y, W^{2} X Y,\left\{W^{k} X^{2} Y, W^{k} X Y^{2} \mid k \geq 0\right\}\right)$,
(6) $I_{v} \cap J_{v}=\left(X Y, W X Y, W^{2} X Y,\left\{W^{k} X^{2} Y, W^{k} X Y^{2} \mid k \geq 0\right\}\right)$,
(7) $I^{-1} J^{-1} \subseteq\left(I_{v} \cap J_{v}\right)^{-1}$.

Proof.

(1) E asy calculations show that $F\left[X, Y,\left\{W^{k} X \mid k \geq 0\right\}\right] \subseteq(I: I)$. Let $f \in I^{-1}$. Since $f Y^{2}, f X Y \in R \subseteq F[X, Y, W]$, we have $f Y \in F[X, Y, W]$. Write $f=g / Y$ with $g \in F[X, Y, W]$. We may assume that g is a monomial, say $g=X^{i} Y^{j} W^{k}$. Since $f X Y W=X^{i+1} Y^{j} W^{k+1} \in R$, we have $j \geq 1$, so that $f=X^{i} Y^{j-1} W^{k} \in F[X, Y, W]$. Suppose $k \geq 1$. Then since $f Y^{2} \in R$, we must have $i \geq 1$. It follows that $I^{-1} \subseteq F\left[X, Y,\left\{W^{k} X \mid k \geq 0\right\}\right]$. Hence $I^{-1}=(I: I)=F\left[X, Y,\left\{W^{k} X \mid k \geq 0\right\}\right]$.
(2) Similar to (1).
(3) Clear.
(4) It is easy to see that $X Y, W^{2} X Y \in I_{\nu}$. Hence $I^{\prime}=\left(Y^{2}, X Y\right.$, $\left.W X Y, W^{2} X Y,\left\{W^{k} X^{2} Y, W^{k} X Y^{2} \mid k \geq 0\right\}\right) \subseteq I_{v}$. Let $g=X^{r} Y^{s} W^{t} \in I_{v}$. If r $=t=0$, then $g W^{3} X \in R$ implies $s \geq 2$, and we have $g \in I^{\prime}$. If $t=0$ and $r>0$, then $g W X \in R$ implies $s \geq 1$, and again $g \in I^{\prime}$. If $t>0$, then $g X, g Y \in R$ together imply $g \in I^{\prime}$. It follows that $I^{\prime}=I_{v}$, as desired.
(5) Similar to (4).
(6) Clear.
(7) Straightforward.

Now by (1) and (2), $I^{-1}=(I: I)$ and $J^{-1}=(J: J)$. That $\left(I_{v} \cap J_{v}\right)^{-1}$ is a ring follows from (7), in view of Corollary 2.6. Finally, from (3) it is easy to see that $W \in(I \cap J)^{-1}$ but that $W^{2} \notin(I \cap J)^{-1}$, so that $(I \cap J)^{-1}$ is not a ring.

Example 5.4. An example of a domain R containing a radical ideal I and a set $\left\{P_{\alpha}\right\}$ of minimal primes of I with I the irredundant intersection of the $P_{\alpha}, P_{\alpha}^{-1}=R$ (so that P_{α} is a ring) for each α, I^{-1} a ring, but $I^{-1} \neq R$. (See the third remark following Proposition 3.14.) D enote by S the set of all double sequences (k_{i}, m_{i}) of non-negative integers with $k_{i} \geq m_{i} \geq 0$ and $k_{i} \geq 1$ for infinitely many i; and for $s \in S$, denote by W_{s} the formal infinite product $\prod_{i=1}^{\infty} X_{i}^{k_{i}} Y_{i}^{m_{i}}$. Let $R=F\left[\left\{X_{i}, X_{i} Y_{i} \mid i \geq 1\right\}\right.$, $\left.\left\{Z^{n} W_{s} \mid n \geq 0, s \in S\right\}\right], I=\left(\left\{Z^{n} W_{s} \mid n \geq 0, s=\left(k_{i}, m_{i}\right)\right.\right.$ with $k_{i} \geq 1$ for each $i\}$), and $P_{i}=\left(X_{i}, X_{i} Y_{i}\right)$. Then
(1) for each i, P_{i} is prime and $P_{i}^{-1}=R$;
(2) each P_{i} is minimal over I, and I is the irredundant intersection of the P_{i};
(3) $I^{-1}=R[Z]$;
(4) $I_{v}=\left(\left\{Z^{n} W_{s} \mid n \geq 0, s \in S\right\}\right)$, which is a prime ideal.

Proof. (1) It is easy to see that P_{i} is prime. Suppose that $f \in P_{i}^{-1}$, and write $f=g / X_{i}$ for some $g \in R$. Since $g Y_{i} \in R$, each monomial in g must contain $X_{i}^{k} Y_{i}^{m}$ with $k \geq m$; it follows that $f \in R$.
(2) If $h \in P_{j}$, then each infinite product in each monomial of h must contain a positive power of X_{j}. Hence each infinite product in a monomial contained in $\cap P_{i}$ must contain positive powers of each X_{j}. It follows that $I=\cap P_{i}$. Since $\Pi_{i \neq j} X_{i} \in \bigcap_{i \neq j} P_{i} \backslash I$, the intersection is irredundant (from which it follows that each P_{i} is minimal over I).
(3) Note that I^{-1} is a ring by Proposition 3.13. We show, in fact, that $I^{-1}=R[Z]$. It is clear that $I^{-1} \supseteq R[Z]$. Let $f \in I^{-1}$; as usual we may assume that f is a monomial. Write $f=g / \Pi X_{i}$ for some monomial $g \in R$. Since $\Pi_{i=1}^{\infty} X_{i} Y_{i} \in I$, we have $g \Pi_{i=1}^{\infty} Y_{i} \in R$. Thus $g=$ $Z^{n} \Pi_{i=1}^{\infty} X_{i}^{k_{i}} Y_{i}^{m_{i}}$, with $k_{i}>m_{i} \geq 0$ and $n \geq 0$. It follows that $f=$ $Z^{n} \Pi_{i=1}^{\infty} X_{i}^{k_{i}-1} Y_{i}^{m_{i}} \in R[Z]$. Hence $I^{-1}=R[Z]$.
(4) That $I_{v}=\left(\left\{Z^{n} W_{s} \mid n \geq 0, s \in S\right\}\right)$ follows from the fact that no finite product of the $X_{i} Y_{i}$ is multiplied into R by Z, but every infinite product is. It is easy to check that this ideal is prime. Note that it is not minimal over I.

Example 5.5. An example of a domain R containing an ideal I which satisfies the four conditions of Proposition 2.1 but for which I^{-1} is not a ring. Let $R=F\left[X, X Y, Y^{3}, Y^{4}, Y^{5}\right], I=\left(X, Y^{3}\right)$, and $M=\left(X, X Y, Y^{3}\right.$, $\left.Y^{4}, Y^{5}\right)$. It is easy to see that $M=\sqrt{I}$. The integral closure of R is $R^{\prime}=F[X, Y]$. Thus R is a two-dimensional N oetherian ring, and $\operatorname{ht}(M)=$ 2. It follows that I cannot be invertible. Since M is the only prime containing I, we have $I I^{-1} \subseteq M$, and condition (3) of Proposition 2.1 is satisfied. Since $I^{-1} \subseteq R^{\prime}$, condition (4) is automatically satisfied. For conditions (1) and (2), we need only show that M^{-1} is a ring, and this
follows from Corollary 3.2. On the other hand, I^{-1} is not a ring, since (as is easily checked) $Y \in I^{-1}$ but $Y^{2} \notin I^{-1}$.

Example 5.6. An example of a (Prüfer) domain R containing ideals I and J for which (1) I^{-1} is a ring, but $I^{-1} \nsubseteq(I V: I V)$ for some valuation overring V of R, and (2) J^{-1} is also a ring, but $(I \cap J)$ is principal (so that ($I \cap J)^{-1}$ is not a ring).

Let R be the domain of [H P, Example 2.6]. Thus R is a two-dimensional Prüfer domain with two maximal ideals M_{1} and M_{2}, both of height two, and a (unique) prime ideal P contained in $M_{1} \cap M_{2}$ with R_{P} a DVR. By localizing, if necessary, we may assume that M_{1} and M_{2} are the only maximal ideals of R. Let $x \in P$ be such that $P R_{P}=x R_{P}$, and let $I=x R_{M_{1}}$ and $J=x R_{M_{2}}$. Since $P \subseteq M_{1} \cap M_{2}, P R_{P}=P R_{M_{1}}=P R_{M_{2}}$. It follows that $P=R P_{P}$, that $P^{-1}=R_{P}$, and that $I, J \subseteq P$, so that I and J are ideals of R. We shall show that $I^{-1}=J^{-1}=P^{-1}=R_{P}$. Now $I^{-1}=\left(R:_{R} x R_{M_{1}}\right)=$ $x^{-1}\left(R:_{R} R_{M_{1}}\right)$ and $\left(R:_{R} x R_{M_{2}}\right)=x^{-1}\left(R:_{R} x R_{M_{2}}\right)$. Since $R_{M_{1}}$ and $R_{M_{2}}$ are valuation rings and R is seminormal, we have by [DF, Lemma 2.10] that ($R:_{R} R_{M_{1}}$) and ($R:_{R} R_{M_{2}}$) are nonzero prime ideals of R. We claim that ($R_{R}: R_{M_{1}}$) $\varsubsetneqq M_{1}$. If not, pick $a \in M_{2} \backslash M_{1}$, so that $a^{-1} \in R_{M_{1}}$; then $a^{-1} M_{1} \subseteq R$, and $M_{1} \subseteq a R \subseteq M_{2}$, a contradiction. It follows that ($R:_{R} R_{M_{1}}$) $=P=\left(R:_{R} R_{M_{2}}\right)$. Hence $I^{-1}=x^{-1} P=x^{-1} x R_{P}=R_{P}$, and similarly, J^{-1} $=R_{P}$. Hence $I^{-1} \nsubseteq(I V: I V)$ for $V=R_{M_{1}}$ and statement (1) follows. Finally, it is easy to see that $I \cap J=x R$; this gives statement (2).

Example 5.7. An example of a Prüfer domain D containing radical ideals I and J such that I is the intersection of radical ideals A and B, I^{-1} is a ring, but A^{-1} is not a ring (see Proposition 3.11 and Corollary 3.12) and such that J is a radical ideal between I and a minimal prime of I, but J^{-1} is not a ring (see the second remark following Proposition 3.14). Let D be a Prüfer domain with exactly two maximal ideals M_{1} and M_{2} with M_{2} principal, $\operatorname{ht}\left(M_{2}\right)=2, M_{1}$ not invertible, and $\operatorname{ht}\left(M_{1}\right)=1$; and let Q denote the (unique) height one prime ideal contained in M_{2}. Since Q is not maximal, it cannot be invertible, and by [Hu , Theorem 3.8], Q^{-1} and M_{1}^{-1} are both rings. Clearly, M_{2}^{-1} is not a ring. If $I=M_{1} \cap Q$, then Theorem 3.4 shows that I^{-1} is a ring. However, if we set $A=M_{1} \cap M_{2}$ and $B=Q$, then $I=A \cap B$, and A^{-1} is not a ring by Proposition 3.13. Finally, if $J=M_{1} \cap M_{2}$, then J is trapped between I and the minimal prime M_{1} of I, but J^{-1} is not a ring, again by Proposition 3.13.

Example 5.8. An example of a PVMD R containing an ideal I and a minimal prime M of I for which I^{-1} is a ring properly containing R but $M_{t}=R$. Let D denote the Prüfer domain of Example 5.7 , and let M_{1}, M_{2}, and Q be as defined there. By [HuP, Theorem 3.2] $Q^{-1}=D_{M_{1}} \cap D_{Q}$. Thus
if $b \in M_{2} \backslash\left(M_{1} \cup Q\right)$, then $b^{-1} \in Q^{-1}$. Now let $R=D[X]$. It is well known that R is a PVMD. Let $P=Q[X]$, and let $M=M_{1}+X R$. Then M is not a t-prime. As an ideal of a Prüfer domain, Q is a t-prime; thus P is a t-prime of R. Moreover, $P^{-1}=Q^{-1}[X]$, and P^{-1} is a ring which properly contains R. Let $I=M \cap P$. Since M is not a t-prime and M is maximal in R, we have $M_{t}=R$. By Theorem 3.4, I^{-1} is a ring. From above $b^{-1} \in Q^{-1} \subseteq Q^{-1}[X]=P^{-1} \subseteq I^{-1}$, and I^{-1} properly contains R.

REFERENCES

[A] D. F. A nderson, When the dual of an ideal is a ring, Houston J. Math. 9 (1983), 325-332.
[B] V. Barucci, Strongly divisorial ideals and complete integral closure of an integral domain, J. Algebra 99 (1986), 132-142.
[CM Z] D. Costa, J. M ott, and M. Z afrullah, The construction $D+X D_{S}[X]$, J. Algebra 53 (1978), 423-439.
[DF] D. E. Dobbs and R. Fedder, Conducive integral domains, J. Algebra 86 (1984), 494-510.
[FHP1] M. Fontana, J. Huckaba, and I. Papick, Divisorial ideals in Prüfer domains, Canad. Math. Bull. 27 (1984), 324-328.
[FH P2] M. Fontana, J. Huckaba, and I. Papick, Some properties of divisorial prime ideals in Prüfer domains, J. Pure Appl. Algebra 39 (1986), 95-103.
[FHP3] M. F ontana, J. H uckaba, and I. Papick, D omains satisfying the trace property, J. Algebra 107 (1987), 169-182.
[FHPR] M. Fontana, J. Huckaba, I. Papick, and M. Roitman, Prüfer domains and endomorphism rings of their ideals, J. Algebra 157 (1993), 489-516.
[G 1] R. Gilmer, "M ultiplicative Ideal Theory," D ekker, N ew Y ork, 1972.
[G2] R. Gilmer, "Commutative Semigroup Rings," The U niversity of Chicago Press, Chicago, 1984.
[Gr] M. Griffin, Some results on v-multiplication rings, Can. J. Math. 19 (1967), 710-722.
[H P] W. Heinzer and I. Papick, The radical trace property, J. Algebra 112 (1988), 110-121.
[H] E. Houston, Divisorial prime ideals in Prüfer v-multiplication domains, J. Pure Appl. Algebra 42 (1986), 55-62.
[H K L M 1] E. Houston, S. Kabbaj, T. Lucas, and A. Mimouni, Duals of ideals in pullback constructions, "Zero-dimensional Commutative Rings," Proceedings of the 1994 John H. Barrett Memorial Lectures and Conference on Commutative Ring Theory (D. F. A nderson and D. Dobbs, E ds.), Lecture Notes in Pure and A pplied M athematics 171, pp. 263-276, Dekker, New Y ork, 1995.
[HKLM 2] E. Houston, S. K abbaj, T. Lucas, and A. Mimouni, Duals of Ideals in Polynomial Rings, "Commutative Ring Theory," Lecture Notes in Pure and A pplied M athematics 185, pp. 349-358, Dekker, N ew Y ork, 1997.
[HMM] E. Houston, S. Malik, and J. M ott, Characterizations of *-multiplication domains, Canad. Math. Bull. 27 (1984), 48-52.
[HZ] E. G. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989), 1955-1969.
[HuP] J. A. Huckaba and I.J. Papick, When the dual of an ideal is a ring, Manuscripta Math. 37 (1982), 67-85.

