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ABSTRACT. Let D be a domain with quotient field K. Let E C K be a subset; the
ring of D-integer-valued polynomials over E is Int(E, D) = {f € K[X}; f(F) € D}.
The polynomial closure in D of a subset E C K is the largest subset F' € K containing
E such that Int(E, D} = Int{F, D), and it is denoted by clp(E). We study the
polynomial closure of ideals in several classes of domains, including essential domains
and domains of strong Krull-type, and we relate it with the t-closure. For domains
of Krull-type we also compute the Krult dimension of Tnt{ D).

INTRODUCTION

Let D be any integral domain with quotient field XK. For each subset E C I,
Int(E, D) := {f € K[X]; f(E) C D} is called the ring of D-integer-valued polyno-
miels over E. As usual, when E = D, we set Int(D) := Int(D, D). When F is
“large enough”, it may happen that Int(E, D) = D (for instance, Int(S~'Z,Z) = Z
for each nontrivial multiplicative subset S of Z, [CC2, Corollary 1.1.10]). This
does not happen if F is a D-fractional subset of K, i.e. if there exists d € D\(0)
such that dE € D. Indeed, in this case, dX € Int(E, D). It is well known that
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Int(D) C Int(E, D) if and-only if EC D [CC2, Corollary 1.1.7]. Two subsets E
and F of K may be distinct while Int(E, D) = Int(F, D), When this happens, we
say that £ and F are polynomially D-equivalent. For instance, N and Z are poly-
nomially Z-equivalent [CC2, Corollary 1.1.2]. In particular, if Int(E, D) = Int(D)
we say that E is a polynomiolly dense subset of D (so, Nis a polynomially dense
subset of Z). In {G1] Gilmer characterized the polynomially dense subsets of Z and,
in [C2] and [C4], Cahen studied the polynomial density, with special emphasis to
the Noetherian domains cage. McQuillan, pursuing Gilmer’s work, investigated the
polynomially D-equivalent subsets of a Dedekind domain D [Mc]. Among other
results, he proved that two fractiona] ideals I and J of a Dedekind domain D are
bolynomially equivalent if and onlyif I = J. After noticing that, Cahen introduced
the notion of polynomial closure (in D) of a subset E of K as follows:

clp(E):={z € K; f(z} € D, for each f € Int(E, D)},

that is, clp(E) is the largest subset B C K such that Int(E,D) = Int(F, D).
Obviously, E is said to be polynomially dense in D if elp(E) = D and polynomially
D-closed if clp(E) = E.

In the first section of this baper, we consider essential domains, that is, domains
D such that

1) D =nNpepDp,

where P is a subset of Spec(D) and Dp is a valuation domain, In particular, among
these domains, we will focus our attention on the strong Krull-type domains, that
is the essential domains D such that the intersection (1) is locally finite (i.e., each
nonzero of D belongs to finitely many prime ideals P € P) and the valuation rings
Dp are pairwise independent, Examples of strong Krull-type domains are Krull
domains and generalized Krull domains [G1, p. 524). We prove that if £ ig a
fractional subset of s strong Krull-type domain D, then ¢l p(E) =Npepel pr(Ep),

. where ¢lp,(Ep) denotes the polynomial Dp-closure of Ep := {e/s;e € B, s e

D\P}. This yields a generalization of & result proved by Cahen for Krull domains,
[C8] or [C4]. Moreover, we study the polynomial closure as a star-operation and
we relate it to the f-operation. We find that if D is an essential domain, then
Iy C ¢lp(I), for each fractional ideal I of D end, for some distinguished classes of

domains, as Krull domains, Priifer domaing in which each nonzero ideal is divisorial,
It = elp(D). S :

- In the second section we compute the Krull dimension of the ring of Int(D), when
D is 3 domain with a locally finite representation. By using this result we show that
if D is a domain of Krull-type then dim(Int(D)). = dim{D[X]), obtaining further
evidence for the validity of the conjecture about the Krull dimension of Int{D)
stating that, dim(Int(D)) < dim(D{X]) for each integral domain D (cf. [Ch], [C1],
and [FIKT]).

In Section 3, we study the quotient of the polynomial closure of & subset modulo
a divided prime ideal, and we apply this result to some classes of domains defined
by making use of pullback constructions.
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1. POLYNOMIAL CLOSURE .IN STRONG KRULL-TYPE .AND
NOETHERIAN DOMAINS : o

We start this section by studying the polynomial élosurt? of the ideals i-n a., strong
Krull-type domain, that is a domain D having the following representation:

(1.0.1) D =nNpepDp,

where P C Spec(D), the intersection (1.0.I) is locally finite and the rings Dp ?,re
irwise independent valuation domains. o

pal;\‘;:a prove flc))r this class of domains some results already proved by ??‘h_en in c;sse

of Noetherian and Krull domains [C3, Proposition 1.3), [C4, Proposition 3.2,. 5,

3.6, Corollaries 3.7 and 3.8]. '

THEOREM 1.1. With the notation above, let D be o strong Krull-type domain
with quotient field K and let E be any D-fractional subset of K. Then:

(1) Int(E, D)p = Int(E, Dp), for each P € P; .

2} clp(E) = Npepelp,(Ep); . o o

ES% ;} %‘(C)D, thii E z‘stolynomz'ally dense in D if and only if E is polynomially
dense in Dp for each P € P.

-allel with the one used in [C4,
Proof. (1) The argument of the proof runs paral : !
Propositis)n) 3.2] (cf. also [CC2, Proposition 1.2.8 and I1V.2.9]). We W'ISh.tO prove
that Int(E, Dp) € Int(E, D)p, for each fixed ideal P € P (the opposite inclusio

i neral, [CC2, Lemma 1.2.4]). o
hOlgiSn:; !i;% is a frg.c't.ional D-gubset of K, with a standard argument we can easily

assume, without loss of generality, that £ C D. Let f € Int(E, D), f #0. Lt is
obvious that there exists d € D, d # 0, such that df € D[X]. Set

P(d):={Q € P;d€ Qand Q) ¢ F}.

Since the given representation of D is locally finite, then P(d) is a fimtedsetéh |;
We claim that there exists @ € D such that a € dDg\ P, for each.Q E P l), . :n
is, vg(a) = vg(d), for each @ € }?Ef)’ ;a,pnd vp(a) = 0, where vp is the valua
i the ring Dp for each P € P. _ _ -
ass’%{;::tz(i):ygoximatign '?heorem for valuations [B, Ch. VI § 7 n. 2(’; Ci)r(()]ll:;:‘:l:
1, p. 135] states that there exists an element b G' K such that vg(b ) = D and
vo(b) = vg(d), for each @ € P(d). Now, there exist a,c € D, a & Pt: sug A
b =a/c. For each P € P, we have that vp{a) = vp(b) + vp(c). Tht;;, i Qer sincé
then vg(c) 2 0 (sincec e D C .D(Q)) angl vo(a) 2 vo(b) = vg(d). Moreover,
={b) = vg(e) = 0, then also vg(a) = 0.
VP'(I‘blz.ere;)ié C)Lf € DplX] for e};,ch P ¢ P(d) and' P € P such thf.i.t d.ﬁf P Ig a
matter of fact, for each P € P \ P(d), with d ¢ P, we have that dis a ;ll'llt m‘P(dI;'
Thus, since df € D[X], we deduce that f € Dp[X] and af € Dp[).f]'. IEQCGD a,nd,
then ad~! € Dg and af = (ad™)(df) € Do[X]. In these cases, since € D an
af € Dp[X], then af(E) € Dp, that is, af € Int(E, Dp). On ((:iht;oc e}ij then,
f € Int(E,Dg) and a € D, wlgnce 3f}E€)I§t(gﬁb I)f d e P an C bt
e C D5 C Dp an nt(E, Dp). : -
DPV&?e féjr;cgll(llgst{ng)a}(lﬁ C NpepDp = D, that is af € Ipt(E, D). Hencg

f € Int(E, D)5, because a € D\P. : .
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“+(2)follows from.(1) and‘from.[04,-Proposition 3.5 -
(3) is a straightforward consequence of (2). O

In order to deepen the study of the poly

recall some properties about star-operations

Let D be an integral domain wi

nonzero fractional ideals of D and

finitely generated fractional ideals

called a star-operation on D if the following conditions hold £
1,J € §(D):

(*1) (aD)* = aD;

(*2) (al)* = al*;
C(s3)IC I

(*4)[§J=~I*§J*;

(%5) I** = *, :
A fractional ideal [ ¢ §(D) is called a star-
I8 said to be of finite character if, for each I € ¥(D),

'=u{inJicClandJe F(D)}.

Given a star-operation *, then the function *s defined as follows:

T I = U{J%J S T and J € 3oy(D))

is a star-operation of fnite character. The star-

operation %; is called the star.
operation of finite character associated o %. It is

obvious that;
J* = J*, for each J ¢ Srg(D),
I € I, for each I € §(D).

'The v-operation
I'v I, o= (D: (D: 1))
isa star-operatidn. The t-operation

ImL=U{J;JCland Je Fig (D)}
is the star-operation of
Sections 32 and 34)), S

The following result ig implicitly proved by Cahen

LEMMA 1.2. Let D pe an z'ﬁteyml damain,

finite character associated to the v-operation {cf. [G2,
[C4, Lemma 1.2].
then the polynomial closure

p:3(D) = FD), I clp(7),

i a star-operation, [J

nomial closure of fractional ideals, we

th quotient field K, let F{(D) denote the set of
let Fe(D) denote the subset of §(D) of nonzero
of D. A mapping I s I* of §(D) into F(D) is
or all a € K\ {0} and

ideal if T =1* A star-operation x on D
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COROLLARY 1.3. Let D be an integral domain. Then; for all I,J in F(D) and
for each subset {I,; € A} of §(D), we‘ have: o ‘

(1) elp(F o Ia) = clp(X 4 elp(la)); if Lo Ta € B(D);

(2) Naclp(ls) = elp(Naclp(la)), if Nady # (0); )

(3) elp(IJ) = clp(Icip(J)) = clplclp(I)J) = clp(clp(Ielp(F));

(4) elp(l) € Ly; '

(6) elp(ly) = Iy, _ y .
Proof. It is a straightforward consequence of Lemma 1.2 and of {G2, Proposition
32.2 and Theorem 34.1(4)]. O

. k] ) 1
Note that, from Corollary 1.3{1) and (321, ge recméez]fcnif1 g;iéi?;;;;ozael (;Sf:i :
’ - bsets [C4, Lemma 2.4],
results proved by Cahen for su
:;I;:;ecl (I) 4+ elp(J) C elp(I + J), ch(I)ch.(J) Cclp{LJ). ¢ (4, Proposition
We JLx::\.'ill need the Following result, that is a consequence o 1 1(;5ure position
3.5(2)], in order to deepen the relation between the polynomial ¢

star-operations. 7 _
LEMMA 1.4. Let D be an integral domain and let P be a subset of Spec(D) such
that D = NpepDp. For each I € F(D), we have:

Npepclp.(IDp) Cclp(f). O

i i : Al is a
It is well known from the theory of star-(g)erat;o?}? thgt,_ 1fn {D:J,Da eand} e
i i integral domain I such tha D =nNaeaDa;
collection of overrings of an in
is a star-operation on D, for each a € A, then the mapping

I'w I* :=N{(IDa)*;cx € A}

=, for A [A, Theorem 2].
i i I*4 D)% = (IDy)*=, foreach o € » Tk
II? %St&r;]oﬁ e;%lgn;c))r; g}r&::;dsflbset ’f:?) C Spec(I.f)!), we call the P-polynomial closure
= € + ) ; . ‘
of I € §(D), the following fractional ideal of D:

P-CID(I) = ﬂpe'pchP(IDp).

PROPOSITION 1.5, Let D be an integral domain such thet D = fij?Dp , for
some subset P of Spec(D). :

(1) The mapping: Iws Peclp(l)

defines a star-operation on D, with P-clp(I) C clp(I) for each I € F(D).
2) Let I e F(D). IfIDp # Dp fqr ﬁ@itely mcmy Pe ?, then

P-clp(I)Dp = clp,{IDp).

F,G e
(3) If clpp(FNG) = clp. (F) Nelpp (@), for each P € P and for all
3(Dp), then -

P-clp(INJ) = P-clp(I) N P-clp(J), for all 1,J € §(D).
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il ") elp, (Fipp @) = (elp: (FY:p ol (EHY o
and G € 3fg(‘b£=),azen)) (el (F):pp clp, (@), for each P €P, F e ¥Dp) (5) If dim(D) = 1, then every nonzero prime ideal of I is polynomially closed.
Proof. (1) is an easy consequence of Proposition 1.5(2) and Corollary 1.6, since D
is Noetherian and D = Npremax(pyDar- L _
(2) Note that S7'D = N{Dp; M € Max(D) and M NS = 0} is locally finite.
Hence the conclusion follows frotn (1) and from Corollary 1.6, since

| P-clp({I:p J)) = (P-clp(I)ip P-clp(J)),

! | for each I € F(D) and J ¢ Seg (D).

r’ h i1 (8) If D = NpepDp is locall i p

| : _ . ¥ finite and 8f, for each P ¢ P ;

| operation on Dp with finite character, then P:Clp is a star-open f 'IDP o D aith
‘[ ! finite character. ‘ perasion on D with

S~lelp(I) = N{clp(I)Dp; M € Max(D) and MNS =0} =

-a\ Proof. These results are a straightfotward consequence of Lemma 1'.4’ of the = N{clp, (IDn); M € Max(D) and MN S =0} =
' = clg-1p(S~11).

| definition of the P-polynomial closure and of [A, Theorem 2. O

|
i CO j
‘ ROLLARY 1.8, If D = NpepDp i3 a strong Krull-type or a Noetherign

: J | domain, then, for each I ¢ (D), we have that (3) By Corollary 1.6 we have

”J Peclp(I) = elp(I). elp(M) = Nyemax()eloy (MDy) =

= ¢clp,, (MDy)n (ﬂ{DN;N € Max(D), N # M}) = CEDM(MDM) nD.
Moreover, by the proof of [C4, Proposition 2.3], we know that if (R, m) is a local

Noetherian domain then clp(m) = m,. Finally, since D is Noetherian, by (G2,
Theorem 4.4(4)], we have that (M Dp)y = M,Dar and by [G2, Theorem 4.10(3)]

we have

;1 r(;":}f;'e I; g’ is strong Kr ull-type, the thesis is a consequence of Theorem 1 1(2)
| 107, D) then (1) el e oo 1% eSSl € k(1D D) =
| ’ , DU )¢ elp,(IDp) [C4, Propositi ’ c
/| P-clp(I). Therefore clp(J) =J;D-cln()l')[ by LemI:I?:,ltllzn 38(1)} and hence dlp (1) ¢
‘ If D is Noetherian, then S=lnt(7 D) = Int(§-1F P
| set S of D [CC2, Proposition L2.7], As shown coner o L) 07 each multiplicative

also in the Noethont position 1.2.7]. As shown above for strong Krull-type domai

¢ Noetherian domain case, for P = Max(D), we have that: ype domains,

M, = (MDag)y 0 D.

The conclusion is straightforward. .

{4} Since I is Noetherian, c/p is a star-operation on D with finite character
{Corollary 1.6). It is well known, in this situation, that each proper star-ideal of
D is contained in a maximal proper star-ideal of D and that a maximal proper

star-ideal of D is a prime ideal (cf. for example {J}).

(5) follows immediately from (4). O - : .
Note that Corollary 1.7(2) gives a positive answer to Question 3.10 in [C4] an .
Corollary 1.7(3) generalizes to the nonlocal case [C4, Proposition 2.3]. Note also
that Cahen [C4, Example 3.9] has given an example of an ideal I of an integrally
closed (non Noetherian) domain D such that I = ¢lp(I)} and $71 # elg-1p(S~I),

for some multiplicative set S of D, . o S o ,
The equality in Corollary 1.7(3) does not hold for the nonmaximal ideals, i.e. the

|
b '} clp(I) = Npepelp, (IDp),

‘| : . . .
for each I € F(D), that i = ,
1[ dosure. O (D), that is, clp(I) = P-alp(1), by definition of P-polynomial

|
\i[ COROLLARY L.7. Let D be a Noetherian domain,
u (1) For each M ¢ Max(D) and for each I ¢ (D), we have:

Jl/ . . ep(I}Dy = clpy (IDr).
_ (2) ‘-rf.S is a multiplicative subset of D, for each I € F(D) we have:

/ , . S lelp(l) = cls-1p(S71I),

‘ Jf i‘ inclusion ¢lp(I) C I, may be-a proper inclusion even in the Noetherian local case.
i In particular, if I is pol, ; o In fact, it is enough to consider a local, Noetherian, one-dimensional, analiticall

. ynomaa” (,'l -1 : X ? ¥ g ' ] ¥ ] Y

in .S.—l D. Y closed in D then $~11 i polynomially closed irreducible domain D with finite residue field and a nonzero nonmaximal ideal [

(3) For each M & Maix( D). . | £ of D (cf. [C4, Corolla;y 44.8] or [CcCe, Theore;m IY.1.15]). For instance, let k be a

. - . finite field, D := k{[X3, X4, X5)] and I := (X3, X%)D. In this case (D: I} = k[[X]],

ep(M)= (MDy),ND = M ' hence I, = (X3, X4, X5)D; but I = ¢lp(f) [C4, Corollary 4.8).
I sicular. : : ¢ v We recall some definitions. An essential domain is an integral domain D such
" particutar, M is polynomiall ; . that D = NpepDp, where Dp is a valuation domain for P belonging to a subset
‘_md only %fM ; M, (resgiectz'v:ly? Acalfisid}ggesf: C?;::g;f;:}lltylnomzallg dense') in D 4 P aciJf Spec(gfplf'jz) is a;l esszntial domain with the valuation 1‘ifgsgD P pairwise
; 18 polynomially closed (respectively, polynomiail;r dense) in %  and only i M Dy independent and D = NpepDp is locally finite (i.e. each nonzero element of D
l " (4) For each nonzero ideal ; M ' ; % belongs to finitely many prime ideals P of P) then D is a domain of strong Kruli-
i I of D there exists a prime ideal P E y

) prime toea ?f D such that 2 type. Obviously, each Priifer domain is an essential domain and each Krull domain

ICP=clp(P).
is a domain of strong Krull-type.
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A relevant case is when P is the set tm(D) of all t-mazimal ideals of D (i.e. the
maximal elements among the integral -ideals of D). It is well known that each
maximal {-ideal is a prime ideal and, for each ideal I of D I= Npet,. 0y IDp; in
particular D = Npgy,. 0y Dp [Gr, Proposition 4]. A Priifer v-multiplication domain
D is an integral domain such that Dp is a valuation domain for each P € t,,(D).
This class of domains was introduced by Griffin [Gr].- :

In order to study the polynomial closure of fractional ideals in an essential do-

main, we start by considering the local case, i.e. when D = V is a valuation
domain,

PROPOSITION 1.8. Let V be a valuation domain with mazimal ideal M.
(1) If M is principal, then, for each nonzero fractional ideal I of V,I=cly(I) =1I,.
(2) If M is not principal, then:
a) clv(M)=M, =V;

b} for each nonzero ideal I of V, ely(I) = I,,; moreover, if I # I, then cly (I) =
Iy is a principal ideal of V.

Proof. We recall that, in general, for each integral domain D and for each I € ¥ (D)
we have the following inclusions: I C ¢l o{l) € I, (Corollary 1.3).
(1) If M is principal, then each nonzero fractional ideal of V' is divisorial [G2,

Exercige 12, p. 431]. The conclusion follows immediately from the previous tower
of inclusions.

(2) If M is not principal, then {aM;a € V,a # 0} is the set of all nonzero
nondivisorial (integral) ideals of V' [G2, Exercise 12, p. 431]. Therefore, in this
case, M # M,, hence M, =V,

(a) In order to prove that cly (M ) =V, we will show that Int(V) = It(V, V) =
Int(M, V).
~ Since M is not principal, V[X] = Int(V) [CC2, Proposition 1.3.16).
Let fi=coter X+ +eaX™ € Int(M, V) be o polynomial of degree n. By {CC2,
Corollary 1.3.3], if ag, 01, , ap, are n+1 elements of M and if d = [logicjcnloi—
a;), then df € VIX]. Let v be the valuation associated to V. By using the
assumption that A is not finitely generated, we can choose the elements a;'s such
that 0 < v(d) < |v(¢))|, for each ¢t such that v(e;} # 0. On the other hand,
df € V[X] hence v(de;) = v{d) +v(e;) 20, for each 0 < i < . If f & V[X], then
v(c;) < 0 for some i with 0 <% £ n, hence we have a contradiction. Therefore, we
can conclude that V[X)] = Int(M, V) and thus a) holds.

b) It is obvious that, if = I, then cdv(l)=ely(l,) =1, (Corollary 1.3(5)). If
I'#£1,and I CV, then I'= aM for some nonzero element @ € V, hence cly (I) =
clv(aM) = acly (M) (Lemma 1.2). By point a), we deduce that ev(Il)=aV is a
principal (hence, divisorial) ideal and ely(I) = I,. 1 # 1, and I is a fractional

ideal of V, then b C V and bJ # bl,, for some nonzero element b € V. The
conclusion follows easily from the previous argument, [0

THEOREM 1.9. Let D = NpepDp be an essential domain.
(1) For each J ¢ Sig(D), we have:

P-clp(J) =clp(J) = J,.
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(2) For each I.€ §(D), we have:
I € P-clp(l) Celp(l) & L.

Proof. (1) If J is finitely generated, then
JoDp C (JDp)y, for each prime ideal P of D,
[B, Ch. 1§ 2n. 11 (11), p. 41]. On the other hand, by Proposition 1.8,
Jo € NpepdyDp C Npep(J/Dp)y =
= Npepclp(JDp) = P-clp{J).
The conclusion follows by recalling that, in general for each [ € (D), we have:
P-clp(I) C clp{l} € 1o

(2) Since Iy 1= U{Jy; JC T and J € 3r(D)} then, by Proposition 1.5(1) anq by
(1), we have: .
I 1= U{P-clp(J); J C I and J € Fe(D)} € P-clp(f). O

COROLLARY 1.10. Let D = NpepDp be an essential domain.
(1) For all J',J" € Fg(D): ,
cdp(J ' NnJ") = elp(JY Nelp(J7).

(2) For oll I', I" € §(D), then: '
Poclp(I' N I") = P-clp(I) NP-clp(I").
' Theorem 1.9(1).
Proof. (1) follows from (2) and from . )
(2) SiElce Dp is a valuation domain, for each P € P, ’then elthler I(’II')'IE) Q) I 'IP};Z
or I"Dp C I'Dp, hence ¢clp,(I'Dp N I"Dp) = elpp(T Dp)Nnelpy p..

j ition 1.5(3). O _ _
conclusion follows from Proposition 1.5( . B ;
Let D = Npey,,(pyDp and let I € F(D). In this case we set P = tm{D) an

t-clp(l) = npet;(p)clup (IDp). -

L. = be a Priifer v-multiplication domain.
OLLARY 1.1%, Let D = npetm(D)DP - TP
ggi{me that, for each mazimal t-ideal P of D, PDp is a principal ideal. Then, f??"

I D), we have:
each I € (D) I, = t-clp(I).

If, moreover, D = Npey,,(pyDp is locally finite .and the valuatéc:;a mng);st‘;zz ;:;:
pc;irwise ind;pendent (i.e. D is an integral domain qf strong Krull-type) then,

D), we have -
each I € §(D) I = t-clp(I) = elp(I).

Proof. In a Priifer w-multiplication domain D, for each I € §(D), I =

i A, Theorem 6]).
Npet,.(pyIDp (cf. for instance | .
Pgtn (thza other hand, by Proposition 1.8(1),

npetm(D)IDP c t*ClD(I) = nPetm(D)CE.DPl(IDP) = ﬂbetm(D)IDP,

hence I; = t-clp(I). The last statement is a consequence of Corollary 1.6. O
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COROLLARY 1.12. Let D = Mpet,,(0)Dp -be an integral domain -of strong
Krull-type. Assume that, for each P € tm (D)}, there exists a finitely generated
tdeal J of D such that J C P and J™! = P~ and that each prime t-ideal of D is
contained in a unigue moximal t-ideal. Then, for each I € ${D), we have:

I =t-cp(I) = clp(l) = I,

Proof. These assumptions characterize the Priifer v-multiplication domains such

that each ¢-ideal is divisorial [HZ, Theorem 3.1). The conclusion is a straightforward
consequence of Theorem 1.9(2), O ¢

Examples of integral domains satisfying the assumptions of Corollary 1.12 are

Krull domains and the Priifer domains in which each nonzero ideal is divisorial (cf.
[H, Theorem 5.1} and [K, 127)).

REMARK 1.13. For each nonzero fractiona) ideal I of an integral domain D,
since I~ is divisorial, I C elp(I) € I, and I-! = I;*, we have:

(1.13.1) elp(I™) = elp(I)~! = I,

Since I, = (I=1)~!, then the previous identity generalizes the fact that clp(l,) =
I, (Corollary 1.3(5)). From (1.13.I), we deduce that if D # I, then I is not
polynomially dense in D. In particular, for a maximal ideal M of D, we obtain
that D # M ™" implies that M = clp(M). This statement could be obtained also
as a consequence of Corollary 1.3(5), since M = M, if and only if D # M1,

2. KRULL DIMENSION OF INT(D) WHEN D IS OF KRULL-TYPE

- This section is devoted to the study of the Krull dimension of the ring Tnt(D)
for'the integral domains D having a locally finite representation. If a domain D
has a representation

D =NpepDp

where P C Spec(D), the ring Dp are valuation domains for each P € P and the
intersection is locally finite, then D is called a Krull-type domain. Strong Krull-type
domains studied in Section 1, are a particular case of Krull-type domains.

As a consequence of our main result we prove that, for each domain of Krull-type
D, dim(Int (D)) = dim(D(X]). This improves the knowledge of the Krull dimension
of the ring of integer-valued polynomials giving further evidence for the conjecture
stating that dim(Int(D)} < dim(D[X)), for each integral domain D.

THEOREM 2.1. Let D be an integral domain and P 'a subset of Spec(D). As-
sume that D = NpepDp is o locally finite representation of D. Set Py :={P e
P Max(D); Card(D/P) < oo} and M := Max(D) \ P,. Then

dim(Int(D)) = Max({dim(Dy[X]); M € M}, {dim(Int(Dp)); P € Po}).
Proof. We note that, for each maximal ideal M of D,

(2.1I)  Dur = nNper(Dp)ovan = (Npep, pcu Dp) N (Npep, pgm(Dp)D\ary)
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- . Gince 1D =
" is a locally finite representation of Dar [G2, -Proposition 43.5]. Smce‘

NateMax(p) D, then, by [cC1, Coroliaire 3, p. 303], |
Int(D) = NareMax(p)Int(Dar)-
Since Int(D) € Int(D)a € Int(Dar), for each M € Max(D), it follows that
(2.1.1T) Int{D) = NareMax(D)Int{D) a1
Now, we will show that for each M € M, Int(Dn) = Int(D)pr = %Mj[?Xi]g;
As a n;at.ter of fact, if M € Max(D) \ P, for eaqh Pe P&Pthinﬁﬁl; aﬂé o
i afld e por) = DI:[X]t; tjigmelégm“sltgrij;e%deal’s of D. Therefore,
Eng:-fl)rzya\l;ie}?i?iéfiig(ggﬁhzoﬁelzcand whence Int((Dp)(p\#)) :é 0(:.;‘_) P é)}ij\g& Eé’l
[cC2, Corollary 1.3.7]. From (2.1.1) and [CC1, Corollaire 3, p. ], w
that, if M € Max(D)\ P, o |
Int(Dyr) = Npepnt{(Dp)(D\a)) =
= (Npep, pcmInt(Dp)) N (Npep, e Int(DP) D)) =
= (Npep, pcmDp[X]) N (Npep, pgm (DP)wran XD = DM[{f]- .
It is obvious that if M € (Max(D)NP)\ Py then Int(Dar) = Du[X], in;ce .5)) éM 2
infinite. Since Dy[X) C Int(D)ar © Int(Du), we have that DX ] = Int( M
{:‘:;(riijﬁl)e previous claim and from (2.1.I1), we deduce that:
(2.1.11I) 1nt(D) = (Mareae DaalXD) N (arepe Tt (D))

i ht(N) = dim(Int(D))
there exists N € Max(Int(D}) such tlahat (N)
a.nc‘izvr ;T 213‘:,11;2?;153,1 m(?n fact, f NND=Pisa nonma)um[a}lf Il))ning 1d(zal,§ [c‘);;" ]J'S), tl{ez
. o = dim(D ; im -15
= Int(Dp) = Dp[X] and hence ht(N) = dlrp( P < dim !
fi?frggx)lf(D))n[éCg,) Prop}:)Lition V.1.6). Therefore dim(Int(D)) = t%:m(%[i(;]) rin:(;
Arguing as in the proof of [CC2, Proposition V.'l.ﬁ], we can find a chain P
ideals of Dp[X] of length n = dim(Dp[X)) = dim(Int(D)),

C: 0)CQC CQn1CCn

such that (Q: N Dp)[X] € C, for each i = 1, ,n. Therefore, Qn1 = PDp[X].
When we contract C to Int(D) we get a chain

R A

where Q'._, = PDp[X]NnInt(D). I M is a maximal ideal of D conta?.i_ni.t;? 1;’
and a eﬂbl, then it is easy to see that @ _; C P? - :Md, where %). .;Ove I
Int(D); f(e) € Q} for @ € {P, M} and M, is a mgxmilal uf;al(cl’fl :(nli;)() ) >an ove
+ i . )
fore we reach a contradiction: dim > _
[CC2, Lemma V.1.3]. There : e toen NI(Dyar 1 8
.= (N N D) € Max(D). Since N N ( \ = §, then NInt(D)
ma?c?:ilg idea,l( of Int()D) s. The conclusion follows immediately by exammn-lg the
two possible cases: L S 7 _
Case 1. M € M. In this case, Int(D)y = Int{Duy) = Du[X], henf:e ht(N) _
im(Du[X])- - o
dméasf[ 2?) M € P,. In this case, Int(D)y = Int{Dys) end ht{N) =
dim(Int(Dy)). O : ) . N
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COROL g ith th
OLLARY 2,2, With the same notation and hypotheses of Theorem 2.1, 5

dim(Int(Dp)) < dim(Dp[X)) f.
N = din or each P € Py, i ;
particular, the previoys inequality holds in th?g fa;le:w?:;gge(f)) S dim(D{X])., I

(2) Dp[X) is a Jaffard domas '
o) [ABDFK]); ﬁ" omain, for each P g P, (e.g. when D is g locally Joffard

(b) Dp is a PPVD, wi
domain, [F] or [DF]).
Proof. The first inequality is a i
concerns the particular Cases, we proceed as follows

(a) We note that, for each P ¢ Po, we have:

dim(Int(Dp)) < dimy(Int(Dp)) < dim, (Dp[X]) = dim(Dp[X)).
(b) follows from [FIKT, Lemma 3.1. O

COROLLARY 2.3 If D is ;
' 3. 4 doma - ;
domain [G2, p.524}), then dim(Int(D)) -T d?ﬁ]f{DT?JIé]‘;{Ipe (60 o generaized Hrull

Proof. In this case, P = tm(D

! % P =twm(D), Po = {P € P Max(D);
s.ir:;i(gj:)f la _vaélil:sz;gn g(omain, for each P ¢ P, Iy partgctzl’a?asgzggﬁﬂi)<))oo-}-
pp s p[X]) for each P ¢ Po. The conclusion follows from Thgorer;

3. POLYNOMIAL, CLOSURE IN PﬁLLBACK DOMAINS

L i '
et D be any domain and let P be a prime idea] of D with Card(D/P) = oo

Let I be an ideal of D gy h th
3.4] we have ch that P C I, thus Ip = IDp = Dp. From [C4, Lemma

Int(7, Dp) = Int(Ip, Dp) = Int(Dp) = Dp[X],

h I,
encg Int(1,D) C DplX]. Therefore, we can consider the canonical map

¢ 11041, D) > Int(I/P,D/P), frsF:= f + PDplX]

where it ig easily seen that fe Int(I/P, D/p),

‘We start this section with an ob i '
when P s a divided poi, o i.?a. sgtztg;gpabout Int(1, D) and Int(1/P, D/P)

LEMMA 3.1. Let D be an ¢
. ntegral domad " . .
Card(D/P) = 00 and I ap, ideal of D w#hﬂ;ﬂ,ci aTc’z;z;J;ded prime ideal of D with

(1) the canonical map @ ; '
phism; Pso .‘;r?t(f, D) = Int(1/P, D/P) is a surjective hom

(2) ker(y) = P[x];
(8) Int(, D)/P[X] & Int(1/ P, p /), | |
Proof. (1) Let g ¢ (Dp/PDp)[X] such that g(I/P)C D

see that g = (@ + PDp(X]=@G
. i) =G+ PlXx
for each ¢ € I. Therefore G € Int(J, 1[))] v

(2) .It is ob,v.ious that ker(yp) = PDp[X]NInt(7, D) = P[X]
(3)is a straightforward consequence of. (1) and (2. O -

omor-

/P. Then it is easy to
ere ¢ € Dp[X] and G@)+PeD/p,

re— g
o
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PROPOSITION 3.2, Let D,-P.and I as in Lemma 3.1. - Then, the canonical
homomorphism @ defines the following isomorphism:

elp(I)/P 2 clpp(I/P),

Proof. Let « € clp(I), then f(z) € D for each f € Int{I, D). Hence, f(i) =
f(x) € D/P for each f € Int(I, D). Since the map ¢ : f — [ is surjective (Lemma
3.1(1)}, then g(T) € D/P for each g € Int(J/P,D/P), i.e. T € clp;p(I/P).
Therefore clp(I)/P C elp;p{I/P). Conversely, if y = z+ P € clp/p(I/P) then
for each g € Int(I/P,D/P), g(y) € D/P. Since v is surjective, g = f = f + P[X]
for some f € Int(I, D). By the fact that g(y) € D/P, for each g € Int(I/P,D/P),
we deduce that f(x) € D, for each f € Int{Z, D), i.e. ¢ € clp(l). O

COROLLARY 3.3. Let D be o domain with a divided prime ideal P. Suppose
that D/ P is a valuation domain V with nonzero principal mazimal ideal. Then,
each ideal of D containing P is polynomially closed, '

Proof. If I is an ideal of D and P C I, then from Propositon 3.2 elp(I)/P =
elp;p(If/P). But D/P =V is a valuation domain with principal maximal ideal
and, by Proposition 1.8, ¢lp;p(I/P) = I/P. Therefore clp(I)/P = I/P and
cip(I) = I, since they both contain P. [

Relevant examples of divided domaing are the pseudo-valuation domains (PVD)
or, more generally, the pseudo-valuation domains of type n (P?VD). We recall that
a PVD, D, is defined by a pullback of the following type:

Di=a"'(k) — &k

6 | !
V, LY ViM

where (V, M) is a valuation domain (called the valuation overring associated to
D), a:V - V/M is the canonical projection and k is a subfleld of the residue
field of V. From [HH, Theorem 2.13], every prime ideal of D is divisorial, hence
it is polynomially closed. Moreover, if I is any nonprincipal integral ideal of D,
then I, = IV [HH, Corollary 2.14]. It follows immediately that clp(I) € IV.
Moreover, for a nonvaluation PVD, the t-operation and the v-operation coincide
[HZ, Proposition 4.3] so that elp(I) C I,. If D =V is a valuation domain, then it is
known that the t-operation and the v-operation coincide if and only if the maximal
ideal M of V is principal [HZ, Remark 1.5}; in fact, in this situation, every nonzero
ideal of V is divisorial. ' ‘ ‘ ' '

In [C4, § 4] the author establishes some relations between the polynomial closure
of a fractional subset and its A-adic closure, where % is an ideal of a Zariski domain
D (ie. a Noetherian domain, equipped with the 2-adic topology, in which every
ideal is %l-adic closed). Next goal is to obtain a link between the polynomial closure
and the adic closure for a special class of PVD’s. ' -
PROPOSITION 3.4. Let D be a PVD. Assume that D possesses a height-one
prime ideal P such that P # P2, Then, the polynomial closure of each D-fractional
subset E of K conteins the P-adic closure of E. : ‘ ‘

Proof. We start by proving that all ideals of D are closed in the P-adic topology.
It I is any ideal of D, then its P-adic closure is'given by T = Np3o( + P). If _
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I 2 P, it is obvious that J.= I. If-T ¢ P, then P2 G /T = P and I contains
a power of P by [HH, Corollary 2.5]. Therefore, I = I. Since each ideal of D is
closed in the P-adic topology, we can use the same argument of [C4, Theorem 4.1)
in order to eonclude. I '

Recall that a P"VD, D, is defined by induction on n in the following way, A
POVD is a PVD and a P*VD is obtained by a pullback diagram of the following
type:

.D := Ot_l(A,;_1) — ) An—l
W -1 "'"'a_)‘ F - Wn—]_/M

where W, is a P*~1VD with maximal ideal M, F is its residue fleld, a : W1 —
F is the canonical projection and 4,.; is a PVD with quotient field F. For details
about P"VD the reader is referred to [F].

In the next proposition, we will show that also in a P"VD all prime ideals are
polynomially closed.

PROPOSITION 3.5. Let D be a P VD, then all nonzero prime ideals of D are
polynomially closed,

Proof. Since in a P*VD every prime ideal is divided [F, Theorem 1.9], then if
( is a prime ideal of D, then Dgq is a P™VD, with in < n, and Q = (D: Dg},
since QDg = Q. Then, if Q@ # 0, Q is a divisorial ideal, whence it is polynomially
closed. [
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