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. I 

ABSTRACT. Let D be a domain with quotient field [(. Let E k J( be a subset; the 
ring of D-integer-valued polynomial. over E is Int(E, Dj :; {f E [([X): f(Ej !:; DJ. 
The polynomial closure in D of a subset E ~ [( is the largest subset F ~ [( containing 
E such that Int(E, Dj ; Int(F, Dj, and It Is denoted by clD(Ej. We study the 
polynomial closure of ideals in several classes of domains, including essential domains 
and domains of strong Krull-type, and we relate it with the t-closure. For domains 
of Krull-type we also compute the Krull dimension of Int(D). 

INTRODUCTION 

Let D be any integral domain with quotient field K. For each subset E ~ K, 
Int(E, D) := {f E K[X]; f(E) ~ D} is called the ring of D-integer-valued polyno­
mials over E. As usual, when E = D, we set Int(D) := Int(D, D). When E is 
"large enough", it may happen that Int(E, D) = D (for instance, Int(S-IZ, Z) = Z 
for each nontrivial multiplicative subset S of Z, [CC2, Corollary 1.1.10]). This 
does not happen if E is a D-fractional subset of K, i.e. if there exists d E D\(O) 
such that dE ~ D. Indeed, in this case, dX E Int(E, D). It is well known that 

.. Partiaity Bupported by a" NATO Collaborative Research Grant No; 970140. 

307 

Dr.Kabbaj
Typewritten Text
Dekker Lect. Notes Pure Appl. Math. 205 (1999) 307-321.



308 
Fontana et al. 

Int(D) ~ Int(g,D) if and 'only if E~ D [CC2, Corollary 1.1.7]. Two subsets E 
and F of [( may be distinct while Int(E, D) = Int(F, D). When this happens, we 
say that E and Fare polynomially D-equivalent. For instance, !II and Z are poly­
nomially Z-equivalent [CC2, Corollary 1.1.2]. In particular, if Int(E,D) = Int(D) 
we say that E is a polynomially dense subset of D (so, !II is a polynomially dense 
subset of Z). In [G1] Gilmer characterized the polynomially dense subsets of Z and, 
in [C2] and [C4], Cahen studied the polynomial density, with special emphasis to 
the Noetherian domains case. McqUillan, pursuing Gilmer's work, investigated the 
polynomially D-equivalent subsets of a Dedekind domain D [Mc]. Among other 
results, he proved that two fractional ideals I and J of a Dedekind domain Dare 
polynomially equivalent if and only if I = J. After noticing that, Cahen introduced 
the notion of polynomial 610sure (in D) of a subset E of [( as follows: 

c/D(E):= {a: E [(;/(a:) E D, for each I E Int(E,D)}, 

that is, c/D(E) is the largest subset F ~ [( such that Int(E, D) = Int(F, D). 
Obviously, E is said to be polynomially dense in D If CID(E) = D and polynomial/y 
D-closed if CID(E) = E. 

In the first section ofthis paper, we consider essential domains, that is, domains 
D such that 

(1) 

where P is a subset ofSpec(D) and Dp is a valuation domain. In particular, among 
these domains, we will focus our attention on the strong Krull-type domains, that 
is the essential domains D such that the intersection (1) is locally finite (I.e., each 
nonzero of D belongs to finitely many prime ideals PEP) and the valuation rings 
D p are pairwise independent. Examples of strong Krull-type domains are Krull 
domains and generalized Krull domains [G1, p. 524]. We prove that if E is a 
fractional subset of a strong Krull-type domain D, then clvCE) = npEPclDp (Ep), 
where clDp(Ep) denotes the polynomial Dp-closure of Ep := {e/s;e E E, s E 
D\P}. This yields a: generalization of a result proved by Cahen for Krull domains, 
[C3] 01' [C4]. Moreover, we study the polynomial closure as a star-operation and 
we relate it to the t-operation. We find that if D is an essential domain, then 
It ~ CID(I), for each fractional ideal I of D and, for some distinguished classes of 
domains, as Krull domains, Priifer domains in which each nonzero ideal is divisorial, 
It = clD(I). . 

In thesecond section we compute the Krull dimension ofthe ring ofInt(D), when 
D is a domain with a locally finite representation. By using this result we show that 
if D is a domain of Krull-type then dim(Int(D)) '" dim(D[X]), obtaining further 
evidence for the validity of the conjecture about the Krull dimension of Int(D) 
stating that dim(Int(D)) ::5 dim(D[X]) for each integral domain D (cf. [Ch], [Cl], 
and [FIKT]). 

In Section 3, we study the quotient of the polynomial closure of a subset modulo 
a divided prime ideal, and we appiy this result to some classes of domains defined 
by making use of pullback constructions. 
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1. POLYNOMIAL CLOSURE IN STRONG KRULL-TYPE .A.ND 
NOETHERIAN DOMAINS 

We start this section by studying the polynomial closur~ of the ideals ~n ~ strong 
[(mil-type domain, that is a domain D having the followmg representatIOn. 

(l.o.!) 

where P C Spec(D), the intersection (1.0.1) is locally finite and the rings Dp are 
pairwise i;;dependent valuation domains. . . . 

We prove for this class of domains some results already proved by ?~hen m case 
of Noetherian and Krull domains [C3, Proposition 1.3], [C4, ProposItion 3.2,.3.5, 
3.6, Corollaries 3.7 and 3.8J. 

THEOREM 1.1. With the notation above, let D be a strong Krull-type domain 
with quotient field [( and let E be any D-fractional subset 01 [(. Then: 

(1) Int(E,D)p = Int(E, Dp), lor each PEP; 

(2) clD(E) = npEPclDp (Ep); .. .. I miall 
(3) il E ~ D, then E is polynomially dense In D if and only if E .s po yno y 

dense in Dp lor each PEP. 

P f (1) The argument of the proof runs parallel with the one used in [C4, 
P;:PoO~ition 3.2J (ef. also [CC2, Proposition 1.2.8 and IV.2.9]). We w!sh .to pr?ve 
that Int(E, Dp) ~ Int(E, D)p, for each fixed ideal PEP (the opposite mcluslOn 
holds in general, [CC2, Lemma 1.2.4]). '1 

Since E is a fractional D-subset of [(, with a standard argument we can e;sl.y 
assume, without loss of generality, that E ~ D. Let I E Int(E, Dp), I ~ O. tiS 
obvious that there exists dE D, d ~ 0, such that df E D[X]. Set 

P(d):= {Q E P;d E QandQ rt P}. 

Since the given representation of D is locally finite, then P(d) is a finite set. 
Weclaim that there exists a ED such that a E dDQ \P, for each.Q E P(d), t~at 

is, vQ(a) ;?: vQ(d), for each Q E P(d), and vp(a) = 0, where Vp IS the valuatIOn 
associated to the ring D p for each PEP. . ll' 

The Approximation Theorem for valuations [B, Ch. VI § 7 n. 2, COl'O alr~ 
1 p 135] states that there exists an element b E f( such that vpi!') = a an 
v' (b) > vQ(d), for each Q E P(d). Now, there exist a, c E D, a ¢ ~, such that 
b ~ a/;; For each PEP, we have that vp(a) = vp(b) + vp(e). Thus, If Q E P5d), 
th~n v;(c) ;?: a (since c E D ~ DQ) and vQ(a) ;?: vQ(b) ;?: vQ(d). Moreover, smce 
v-(b) = v-(e) = 0, then also vp(a) = O. A 

p Theref:re alE Dp[XJ for each P E P(d) and PEP such th~t d ¢ .P: s a 
matter of fact for each PEP \ P(d), with d ~ P, we have that d IS a umt m Dp. 
Thus since,if E D[X], we deduce that IE Dp[XJ and af E Dp[~l. If Q E:(d~ 
then ~d-I E DQ and al = (ad- I )(dt) E DQ[XJ. In these cases, smce E ~ an 
af E Dp[X], then al(E) ~ Dp, that is, al E Int(E, Dp). On the o~hp h::e~ 
I E Int(E, Dp) and a E D, whence al(E) ~ Dp. If d E P and P _ , 
Dp :J D-. Thus I(E) ~ Dp ~ Dp and I E Int(E,Dp~. . 

We c';nclude that al(E) ~ npEpDp = D, that IS at E Int(E,D). Hence 
I E Int(E, D)p, because a E D\P. 
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, (2):01l0ws from.{l) and from [C4, Proposition 3.5). 
(3) IS a straightforward consequence of (2). 0 . 
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In order to deepen the stud of h . 
recall some properties about st~r . t e ~olynomJaI closure of fractional ideals we 
LtD b -operatIons. ' 

e e an integral domain with uoti fi 
nonzero fractional ideals of D and I t

q ~t eld K, let ;reD) denote the set of 
finitely generated fractional ideals ~f ifg~ ) den~te the subset of ;reD) of nonzero 
called a star-operation on D if the £ II '. mapp.I~g 1'-7 I' of ;reD) into ;reD) is 
I, J E ;reD): 0 owmg condItIOns hold for all a E K\ {OJ and 

(d) (aD)' = aD; 

(02) (aI)' =aI'; 

(03)I~['; 

(04) I ~ J =? [' ~ J'; 
(05) In = I'. 

A fractional ideal I E ;reD) is called a star" • 
is said to be 01 finite character if £ I -I ,deal If I = I . A star-operation 0 on D 

, or eac I E ;reD), 

[' = UP'; J!; I and J E ;rfg(D)}. 

Given a star-operation 0, then the function *. defined as follows: 

1'-7 ['. = UP'; J ~ I and J E ;rfg(D)} 

is a star-operation of finite character Th . 
operation 01 finite character associat d' t eIst.ar-op?ratlOn o. is called the star-

The v-operation 

e 0 *. t IS obvIOus that: 

J' = J'., for each J E ;rfg(D), 

['. !; [', for each I E ;reD). 

1'-7 Iv := (D: (D: I» 

is a star-operation. The t-operation 

1'-7 It := Upv; J ~ I and J E ;rfg(D)} 

is the star-operation of finite charact . 
Sections 32 and 34)). . er assocIated to the v-operation (cf. [G2, 

The following result is implicitly proved by Cahen [C4 L 1 2) 
LEMMA . ' emma . . 

1.2. Let D be an mtegral domain, then the polynomial closure 

elD : ;reD) --f ;reD), 1'-7 elD(/), 

is a star-operation. 0 
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COROLLARY 1.3. Let Dbe an integral domain.· Then,/or all I, J in ;r(D).and 
lor each subset {la; C< E A} of ;reD), we have: 

(1) clD(La Ia) = clD(La clD(Ia», if La Ia E ;reD); 

(2) naclD(Ia) = clD(naclD(Ia», il nala i' (0); 

(3) clD(IJ) = clD(IclD(J» = clD(clD(I)J) = clD(clD(I)clD(J»; 

(4) clD(I) ~ Iv; 

(5) clD(Iv) = Iv· 

Proof. It· is a straightforward consequence of Lemma 1.2 and of [G2, Proposition 
32.2 and Theorem 34.1(4)]. 0 

Note that, from Corollary 1.3(1) and (3), we recover for the fractional ideals 
some results proved by Cahen for subsets [C4, Lemma 2.4], in particular we obtain 
that clD(I) + clD(J) ~ clD(I + J), clD(!)clD(J) ~ clD(I J). 

We will need the following result, that is a consequence of [C4, Proposition 
3.5(2)], in order to deepen the relation between the polynomial closure and the 
star-operations. 

LEMMA 1.4. Let D be an integral domain and let P be a subset 01 Spec(D) such 
that D = nPEpDp. For each I E ;reD), we have: 

It is well known from the theory of star-operations that, if {Da; C< E A} is a 
collection of overrings of an integral domain D such that D = naEADa , and if *a 
is a star-operation on Da, for each C< E A, then the mapping 

I'-7/,A := n{(IDa)··;c< E A} 

is a star-operation on D and (I'A Da)·· = (IDa)'·, for each C< E A [A, Theorem 2]. 
If D = npEpDp, for some subset P ~ Spec(D), we call the P-polynomial closure 
01 I E ;reD), the following fractional ideal of D: 

PROPOSITION 1.5. Let D be an integral domain such that D = npEpDp, for 
some subset P of Spec(D). 

(1) The mapping: 
1'-7 P-clD(!) 

defines a star-operation on D, withP-clD(!) ~ clD(I) for each I E ;reD). 

(2) Let I E ;reD). If IDp i' Dp for finitely many PEP, then 

P-clD(I)Dp = clDp(IDp). 

(3) II clDp(F n G) = clDp(F) n clDp(G), lor each PEP and lor all F,G E 
;r(Dp), then 

P-clD(I n J) = P-clD(I) n P-clD(J), lor aliI, J E ;reD). 

i 
! 

I 
I , 
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'(4) lfcln {(F-D G))' ~ (/ '(F)" I . 
and G E ~fiDp): then - c Dp :Dp c Dp(G)), for each PEP, F E ~(Dp) 

P-elD«I:D J)) = (P-cID(I):D P-elD(J)), 

for each I E ~(D) and J E ~fg(D). 

(5) If D = npEpDp is locally finite and if, for I P . 
operation on Dp with finite character th p' I .eac! E P, CIDp is a star-
finite character. ' en -c D is a star-operation on D with 

Proof. These results ar~ a st . ht£' d 
definition of the P-polynomial c~:~~re aOnrwdarf [AconTsehquence OJ f Lemma 1.4, of the 

o , eorem2.0 
COROLLARY 1.6. If D - n D . 
domain, then, for each I E ~(D), ~e:ha~e ~a~ strong Krull-type or a Noetherian 

P-CID(!) = elD(!). 

Proof. If D is strong Krull t th th . . 
and the definition of P-pol - yp~, I ~ eSlS IS a consequence of Theorem 1.1(2) 
Int(I D)p then el (I) c ynomta cosure. More precisely, if Int(IDp,Dp ) = 
P-el '(I) Th £ D I -(I)elDP(IDp) [C4, Proposition 3.5(1)J and hence clD(I) C 

D .' ere ?re c D = P-elD(I) by Lemma 1.4. -
If DIs Noethel'lan, then S-IInt(I D) - I t(S-1 I S-1 

set S of D [CC2 Proposition I 2 7J A h n b ' D), for each multiplicative 
also in the Noetherian domai; c'as~ f~ spo~nMa oV(De £)or strong Krull-type domains, 

, r - ax , we have that: 

elD(I) = npEpelDp(IDp), 

!~~s~:Z.h ~ E ~(D), that is, elD(I) = P-clD(I), by definition of P-polynomial 

COROLLARY 1.7. Let D be a Noetherian domain. 

(1) For each M E Max(D) and for each I E ~(D), we have: 

elD(I)DM = elDM(IDM). 

(2) IfS is a multiplicative subset of D, for each I E ~(D) we have: 

S-lclD(I) = CIS-ID(S-1 I). 

in ~n..f;.ticular, if I is polynomially closed in'D then S-1 I is polynomially closed 

(3) For each M E Max(D), 

clD(M) = (MDM)v n D = Mv. 

In particular M is polyno . II I d ( . 
and only .''1 M :... M ( t~,al YMc ose respectIVely, polynomially dense) in D ''1 

- v respec lVe y - D) . I I . 
is polynomially closed (respectivel~, p~l;;omi~~~ ie~;~ e;:, ~:!. and only if M D M 

(4) For each nonzero ideal I f D th . . 
I ~ P = cID(P). 0 ere eXISts a prime ideal P of D such that 
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(5) If dim(D) = 1, then every nonzero prime' ideal of D is polynomially closed. 

Proof. (1) is an easy consequence of Proposition 1.5(2) and Corollary 1.6, since D 
is Noetherian and D = nMEMax(D)DM' 

(2) Note that S-ID = n{DM;M E Max(D) and MnS = 0} is locally finite. 
Hence the conclusion follows from (1) and from Corollary 1.6, since 

S-lclD(I) = n{clD(I)DM; ME Max(D) and M n S = 0} = 

= n{clDM(IDM); ME Max(D) and M n S = 0} = 
= clS-ID(S-1 I). 

(3) By Corollary 1.6 we have 

clD(M) = nNEMax(D)clDN(MDN) = 

= clDM(MDM) n (n{DN;N E Max(D), N i' M}) = clDM(MDM) n D. 

Moreover, by the proof of [C4, Proposition 2.3J, we know that if (R, m) is a local 
Noetherian domain then clR(m) = mv' Finally, since D is Noetherian, by [G2, 
Theorem 4.4(4)], we have that (MDM)v = MvDM and by [G2, Theorem 4.1O(3)J 
we have 

Mv = (MDM)v n D. 

The conclusion is straightforward. 

(4) Since D is Noetherian, clD is a star-operation on D with finite character 
(Corollary 1.6). It is well known, in this situation, that each proper star-ideal of 
D is contained in a maximal proper star-ideal of D and that a maximal proper 
star-ideal of D is a prime ideal (cf. for example [J]). 

(5) follows immediately from (4). 0 

Note that Corollary 1.7(2) gives a positive answer to Question 3.10 in [C4J and 
Corollary 1.7(3) generalizes to the nonlocal case [C4, Proposition 2.3J. Note also 
that Cahen [C4, Example 3.9J has given an example of an ideal I of an integrally 
closed (non Noetherian) domain D such that I = clD(I) and S-1 Ii' clS-ID(S-1 I), 
for some multiplicative set S of D. 

The equality in Corollary 1.7(3) does not hold for the nonmaximal ideals, I.e. the 
inclusion clD(1) ~ Iv may bea proper inclusion even in the Noetherian local case. 
In fact, it is enough to consider a local, Noetherian, one-dimensional, analitically 
irreducible domain D with finite residue field and a nonzero nonmaximal ideal I 
of D (cf. [C4, Corollary 4.8J or [CC2, Theorem IV.1.15]). For instance, let.k be a 
finite field, D:= k[[X3,X4,x5JJ and I:= (X3,X4)D. In this case (D:I) = k[[X]J, 
hence Iv = (X3, X4, X5)D; but I = cID(I) [C4, Corollary 4.8J. 

We recall some definitions. An essential domain is an integral domain D such 
that D = nPEpDp, where Dp is a valuation domain for P belonging to a subset 
P of Spec(D). If D is an essential domain with the valuation rings Dp pairwise 
independent and D = npEpDp is locally finite (I.e. each nonzero element of D 
belongs to finitely many prime ideals P of P) theil D is a domain of strong Krull­
type. Obviously, each Priifer domain is an essential domain and each Krull domain 
is a domain of strong Krull-type. 
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A relevant case is when P is the set tm(D) or all t-maximal ideals of D (i.e. the 
maximal elements among the integral t-ideals of D). It is well known that each 
maximal t-ideal is a prime ideal and, for each ideal I of D, I = npEtm(D)IDp; in 
particular D = npEtm(D)Dp [Gr, Proposition 4]. A Priifer v-multiplication domain 
D is an integral domain such that Dp is a valuation domain for each P E tm(D). 
This class of domains was introduced by Griffin [Gr]. 

In order to study the polynomial closure of fractional ideals in an essential do­
main, we start by considering the local case, i.e. when D = V is a valuation 
domain. 

PROPOSITION 1.8. Let V be a valuation domain with maximal ideal M. 

(1) If M is principal, then, for each nonzero fractional ideal I of V, 1= clv(I) = Iv. 
(2) If M is not principal, then: 

a) clv(M) = Mv = V; 

b) for each nonzero ideal I of V, clv(!) = Iv; moreover, if I f. Iv, then clv(!) = 
Iv is a principal ideal of V. 

Proof. We recall that, in general, for each integral domain D and for each I E 3'(D) 
we have the following inclusions: IS;; CID(!) S;; Iv (Corollary 1.3). 

(1) If M is principal, then each nonzero fractional ideal of V is divisorial [G2, 
Exercise 12, p. 431]. The conclusion follows immediately from the previous tower 
of inclusions. 

(2) If M is not principal, then {aM; a E V, a f. O} is the set of all nonzero 
nondivisorial (integral) ideals of V [G2, Exercise 12, p. 431]. Therefore, in this 
case, M f. Mv, hence Mv = V. 

(a) In order to prove that clv(M) = V, we will show that Int(V) = Int(V, V) = 
Int(M, V). 

Since M is not principal, V[X] = Int(V) [CC2, Proposition 1.3.16]. 
Let f := Co + clX + ... + c"X" E Int(M, V) be a polynomial of degree n. By [CC2, 
Corollary 1.3.3], if aD, al," . ,an are n+ 1 elements of M and if d := nO~i<j~n (at­
aj), then df E V[X]. Let v be the valuation associated to V. By using the 
assumption that M is not finitely generated, we can choose the elements at'S such 
that 0 < v(d) < Iv(ctll, for each et such that v(e;) f. O. On the other hand, 
<if E V[X] hence v(detl = v(d) + v(et) ~ 0, for each 0 :5 i :5 n. If f (t V[XJ, then 
v(Ct) < 0 for some i with 0 :5i :5 n, hence we have a contradiction. Therefore, we 
can conclude that V[X] = Int(M, V) and thus a) holds. 

b) It is obvious that, if I = Iv, then clv(I) = Clv(Iv) = Iv (Corollary 1.3(5)). If 
I f. Iv and I S;; V, then 1= aM for some nonzero element a E V, hence elv(I) = 
clv(aM) = aclv(M) (Lemma 1.2). By point a), we deduce that clv(I) = aV is a 
principal (hence, divisorial) ideal and clv(I) = Iv. If I f. Iv and I is a fractional 
ideal of V, then bI C V and bI f. blv, for some nonzero element b E V. The 
conclusion follows easily from the previous argument. 0 

THEOREM 1.9. Let D = nPE'PDp be an essential domain. 

(1) For each J E 3"g(D), we have: 

P-clD(J) = clD(J) = Jv. 

---- ------- - - -- - -
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(2) For each IE lV(D); we have: 

It S;; P-clD(I) S;; clD(I) S;; Iv. 

Proof. (1) If J is finitely generated, then 

JvDp S;; (JDp)v, for each prime ideal P of D, 

[B, Ch. I § 2 n. 11 (11), p. 41]. On the other hand, by Proposition 1.8, 

Jv <;; npE'PJvDp <;; nPE'P(JDp)v = 

= npE'PclD(JDp) = P'clD(J). 

315 

The conclusion follows by recalling that, in general for each I E lV(D), we have: 

P-clD(I) <;; clD(I) <;; Iv· 

. {J . J C I and J E 3', (D)} then, by Proposition 1.5(1) and by (2) Smce It := U v, _. g 

(1), we have: 

It := U{P-clD(J); J <;; I and J E 3'rg(D)} <;; P-clD(!). 0 

COROLLARY 1.10. Let D = nPE'PD p be an essential domain. 

(1) For all J', J" E 3"g(D): 

clD(J' n J") = clD(J') n clD(J"). 

(2) For all I', I" E lV(D), then: 

P-clD(I' n I") = P-clD(I') n P-clD(I"). 

Proof. (1) follows from (2) and from Theorem 1.9(1). . h I'D C I" Dp 
. d . for each PEP then eJt er p _ 

(2) Since Dp is a valuatIOn ?mam, " _ I ('I'D) n clD (I" Dp). The 
or I"Dp C I'Dp, hence clDp(I Dp n I Dp) - e Dp p p 

conclusion follows from Proposition 1.5(3). 0 (D) d 

L t D n Dp and let I E 3'(D). In this case we set P = tm an e = PEtm(D) 

t-clD(I) := npEtm(D)clDp (I D p). 

D be a Prii.fer v-multiplication domain. 
COROLLARY 1.11. LetDl--tndPEtr}F~/; PDp is a principal ideal. Then, for 
Assume that, for each maXima -i ea " . 
each I E 3'(D), we have: 

It = t-clD(!)' 

D is locally finite and the valuation rings D pare 
If, moreover, D = np~tm(D) . p. I d . of strong Krull-type) then, for 
pairwise independent (i.e. D is an mtegra omam 
each I E 3'(D), we have 

It = t-clD(I) = clD(I). 

Proof. In a Priifer v-multiplication domain 
n I D p (cf. for instance [A, Theorem 6]). 

PEtm(D) 't' 18(1) On the other hand, by Proposl IOn. , 

D, for each I E lV(D), It = 

ID c t-clD(I) = npEt (D)clDp(lDp) = npEtm(D)IDp, npEtm (D) P _ m 

I t I (I) The last statement is a consequence of Corollary 1.6. 0 hence t = -c D • 
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COROLLARY 1.12. Let D = npEt,;,(D)Dp be an integral domain of strong 
Krull-type. Assume that, for each P E tm(D}, there exists a finitely generated 
ideal J of D such that J ~ P and r l = p-I and that each prime t-ideal of D is 
contained in a unique maximal t-ideal. Then, for each I E ~(D), we have: 

It = t-elD(I) = elD(I} = Iv' 

Proof. These assumptions characterize the Priifer v-multiplication domains such 
that each t-ideal is divisorial [HZ, Theorem 3.1]. The conclusion is a straightforward 
consequence of Theorem 1.9(2}. 0 

Examples of integral domains satisfying the assumptions of Corollary 1.12 are 
Krull domains and the Priifer domains in which each nonzero ideal is divisorial (cf. 
[H, Theorem 5.1] and [K, 127]). 

REMARK 1.13, For each nonzero fractional ideal I of an integral domain D, 
since I-I is divisorial, I ~ eID(I) ~ Iv and I-I = 1;1, we have: 

(1.13.1) elD(rl } = eID(I}-1 = rl. 

Since Iv = (I-I }-I, then the previous identity generalizes the fact that clD(Iv) = 
Iv (Corollary 1.3(5)}. From (1.13.1) , we deduce that if D f. I-I, then I is not 
polynomially dense in D. In particuiar, for a maximal ideal M of D, we obtain 
that D f. M- I implies that M = clD(M}. This statement could be obtained also 
as a consequence of Corollary 1.3(5), since M = Mv if and only if D f. M-I. 

2. KRULL DIMENSION OF INT(D} WHEN D IS OF KRULL-TYPE 

. This section is devoted to the study of the Krull dimension of the ring Int(D} 
for the integral domains D having a locally finite representation. If a domain D 
has a representation 

D =nPEpDp 

where 'P ~ Spec(D}, -the ring Dp are valuation domains for each P E 'P and the 
intersection is locally finite, then D is called a Krull-type domain. Strong Krull-type 
domains studied in Section 1, are a particular Case of Krull-type domains. 

As a consequence of our main result we prove that, for each domain of Krull-type 
D, dim(Int(D)) = dim(D[X]). This improves the knowledge of the Krull dimension 
of the ring of integer-valued polynomials giving further evidence for the conjecture 
stating that dim(lnt(D}) $ dim(D[X]), for each integral domain D. 

THEOREM 2.1. Let D be an integral domain and'P a subset of Spec(D). As­
sume that D = npEpDp is a locally finite representation of D. Set 'Po := {P E 
'P n Max(D); Card(D/P} < co} and M := Max(D} \ 'Po. Then 

dim(lnt(D}) = Max( {dim(DM[X]); ME M}, {dim(lnt(Dp)); P E 'Po}}. 

Proof. We note that, for each maximal ideal M of D, 
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P 'f 43 5] Since ,D· ,= is a locally finite representation of DM [G2,· roposl Ion .. 

n DM then by [CCl, Corollaire 3, p. 303], MEMax(D) , , 

Int(D} = nMEMax(D)lnt(DM}' 

Since Int(D} ~ Int(D}M ~ Int(DM}, for each M E Max(D}, it follows that 

(2.1.II) Int(D} = nMEMax(D)Int(D}M' 

Now, we will. show that for each M E M£, Int(DhMp} E='PlntW~;; ~i~Xi~ 
f f t 'f M E Max(D} \ 'P or eac , , 

As a matter 0 ac, I ] f p' . 'P 'th p g; M then clearly the 
infinite and then Int(Dp} = Dp[X ~t I \xin:'lprime ideals ofD. Therefore, 
maxlmalideals of (Dp}(D\M) contrac 0 nonm . } (D) [X] 
(D ) has infinite residue fields and whence Int«DphD\M) = ] P (D~M~ 
[C~2~Dd~jollary 1.3.7]. From (2.1.1) and [CCl, Corollaire 3, p. 303, we e uce 

that, if M E Max(D) \ 'P, 

Int(DM} = nPEplnt«DphD\M)} = 

= (nPEP.pI:;Mlnt(Dp)) n (nPEP,p\1:Mlnt«DphD\M)}} = 
= (nPEP pCMDP(X]) n (nPEP,p\1:M(Dp}(D\M)[X]) = DM[X], . 

' - } 'P}\''P th I teD }-DM[X] since D/M IS 
It is obvious that if M E (Max(D n (Do) en nh ~h~ D M[X]' = Int(D}M = 
infinite. Since DM[X] ~ Int(D}M ~ Int M, we ave 

Int(DM}. II} d d that· From the previous claim and from (2.1. ,we e uce . 

(2.1.III) Int(D) = (nMEMDM[X]) n (nMEPolnt(D}M). 

(I (D}) h that ht(N) = dim(Int(D)) 
We know that there exists N E Max nt suc. I . . deal of D then 

. I (I f t 'f NnD - p is a nonmaxlma prime I , 
and NnD maxima. n ac ,I - h (N) _ d' (D [X]) < dim(D[X]) - 1 $ 
I teD} = Int(Dp} = Dp[X] and hence t - I~ P }- d' (D[X]) _ 1. 
d~ (I feD)) [CC2 Proposition V.1.6]. Therefore dlm(Int(D} = I~ C f . 
l:ui:g as in the ~roof of [CC2, Proposition V .. 1.6], we can find' a cham 0 prime 
ideals of DP(X] of length n = dim(Dp[X]) = dlm(Int(D)), 

C : (O) C QI C ... C Qn-I C Qn, 

such that (QlnDp}[X] E C, for each i = ~,,,. ,no Therefore, Qn-I = PDp[X]. 
When we contract C to Int(D) we get a cham 

C' : (O) C Q~ c ... C Q~_I C Q~, 

Q' _ P D [X] n Int(D}. If M is a maximal ideal of D containing P 
where n-I - P hQ, C P C M where Q. := {f E 
and a E D, then it is easy to see t a~ '!;~ maxlm;;:l id:~l of Int(D} aboveM 

Int(D}; f(a} E ~l ~r ~h;r!io~~le ~:~ch ~ ~ontradiction: dim(lnt(D}} ~ n + ~. 
[CC2, Lemma .. . (D) S· N n (D \ M) = 0, then Nlnt(D}M IS a 

Let M := (N n D) E Max . mce . d' I b 'ining the 
maximal ideal ofInt(D}M. The conclusion follows Imme !ate y yexam . 

two possible cases:' '. [] h ht(N} _ 
Case 1. ME M. In this case, Int(D}M = Int(DM} = DM X, ence -

dim(DM[X]), 
Case 2. M E 'Po. 

dim(Int(D M))' 0 

In this case, Int(D)M = Int(DM) and ht(N) = 
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COROLLARY 2.2. With the s· . 
dim(Int(Dp» < dim(D [X]) . ame notatzon and hypotheses 01 Theorem 2.1 il 
particular, the previous ~nequ!t~;ye;;~ p. E t'Rho , jll!len ~im(Int(D» S; dim(D[X]).' In 

. s zn e .J 0 owzng cases' 
(a) Dp[X1 i3 a Jaffard domain lor h P . 

domain [ABDFK]); ,eac E Po (e.g. when D is a locally Jaffard 

(b) D p is a pn VD, with n > 0 lor ea h P 
domain, [F] or [DF]). -, c E Po (e.g. when D is a locally PVD 

Proof. The first inequality is a strai ht£ d 
concerns the particular cases we PI' g d or~arl consequence of Theorem 2.1. As 

, ocee as LO IOWB. 

(a) We note that, for each PEon we h 
'-0, ave: 

dim(Int(Dp» S; dimv(Int(Dp » S; dimv(Dp[X]) = dim(Dp[X]). 

(b) follows from [FIKT, Lemma 3.1]. 0 

COROLLARY 2.3. II D i8 a domain >/ 
domain [G2, p.524]), then dim(Int(D)) = d~mfn[~j;~pe (e.g. a generalized Krull 

Proof. In this case P - t (D) 'R P 
and Dp is a valuati~n d~a~ £' ° = { E PnMax(D);Card(D/p) < co} 
dim(Dp)+l = dim(Dp[X]) £ ' o~ ;ach PEP. In particular dim(Int(Dp )) = 
2.1. 0 or eac E Po. The conclusion follows from Theorem 

3. POLYNOMIAL CLOSURE IN PULLBACK DOMAINS 
Let D be any domain and let P b " 

Let I be an ideal of D such that P c ~ a ~l'Ime Ideal of D with Card(D / P) = co. 
3.41 we have ' t us Ip = IDp = Dp. From [C4, Lemma 

. . Int(I,Dp ) = Int(Ip,Dp ) = Int(Dp) = Dp[X1, 

hence Int(I, D) ~ Dp[X]. Therefore, we can consider the canonical map 

tp: Int(I,D) -+ Int(I/p,D/P), I I-
f-> := I + PDp[X], 

where it is easi.lY se~n that IE Int(I/ P, D / P). 
We start thIS section with an ob . 

when P is a divided prime ideal, Le. s';;:~~p~bout Int(I,D) and Int(I/p,D/P) 

LEMMA 3.1. Let D be an inte ral d' . . . 
Card(D / P) = 00 and I an ideal .~ D ~tmhapm, P a dIVided przme ideal 01 D with 

• . OJ WI ~ I. Then, 
(1) the canomcal map tp • Int(I D) I . 

phism; . .... , -+ nt(I / P, D / P) i8 a surjective homomor_ 

(2) ker(tp) = PiX]; 

(3) Int(I,D)/P[X] S! Int(I/p,D/P). 

Proof. (1) Let g E (Dp/PD ) [X] h h 
see that g = a + PDp [X] = ~ + P ~c t at g(I/P) S; D/P. Then it is easy to 
for each i E I. Therefore a E Int(I,1/ where a E Dp[X] and a(i) +P E D/P, 

(2) It is obvious that ker(tp) = PD [X1 nI t(I D) 
(3) . .. p J n, = P[X1 

IS a straightforward consequence of (1) and (2). 0 . 
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PROPOSITION 3.2. Let D .. P and I a8 in Lemma 3.1. Then, the canonical 
homomorphism tp defines the following isomorphism: 

elD(!)/P S! elD/P(I/P). 

Proof. Let x E cID(I), then I(x) E D for each f E Int(I, D). Hence, I(x) = 
I(x) E D/P for each I E Int(I, D). Since the map <p: I f-> I is surjective (Lemma 
3.1(1)), then g(x) E D/P for each 9 E Int(I/P,D/P), i.e. x E elD/p(I/P). 
Therefore cID(I)/P S; elD/p(I/P). Conversely, if y = x + P E elD/p(I/P) then 
for each 9 E Int(I/P,D/P), g(y) E D/P. Since tp is surjective, 9 = I = 1+ P[X1 
for some I E Int(I,D). By the fact that g(y) E D/P, for each 9 E Int(I/P,D/P), 
we deduce that I(x) ED, for each I E Int(I,D), i.e. x E clD(I). 0 

COROLLARY 3.3. Let D be a domain with a divided prime ideal P. Suppose 
that D / P is a valuation domain V with nonzero principal maximal ideal. Then, 
each ideal 01 D containing P is polynomially closed. 

Proof. If I is an ideal of D and Pel, then from Propositon 3.2 cID(I)/ P S! 

elD/p(I/P). But D/P = V is a valuation domain with principal maximal ideal 
and, by Proposition 1.8, elD/p(I/P) = I/P. Therefore cID(!)/P = I/P and 
elD(I) = I, since they both contain P. 0 

Relevant examples of divided domains are the pseudo-valuation domains (PVD) 
or, more generally, the pseudo-valuation domains of type n (pnVD). We recall that 
a PVD, D, is defined by a pullback of the following type: 

D:= o-l(k) ~ k 

(3.1) 1 1 
V ~V/M 

where (V, M) is a valuation domain (called the valuation overring associated to 
D), 0 : V ..... VIM is the canonical projection and k is a subfield of the residue 
field of V. From [HH, Theorem 2.13], every prime ideal of D is divisorial, hence 
it is polynomially closed. Moreover, if I is any nonprincipal integral ideal of D, 
then Iv = IV [HH, Corollary 2.141. It follows immediately that clD(I) S; IV. 
Moreover, for a nonvaluation PVD, the t-operation and the v-operation coincide 
[HZ, Proposition 4.3] so that elD(I) S; ft. If D = V is a valuation domain, then it is 
known that the t-operation and the v-operation coincide if and only if the maximal 
ideal M of V is principal [HZ, Remark 1.51; in fact, in this situation, every nonzero 
ideal of V is divlsorial. 

In [C4, § 4] the author establishes some relations between the polynomial closure 
of a fractional subset and its QI-adic closure, where QI is an ideal of a Zariski domain 
D (i.e. a Noetherian domain, equipped with the QI-adic topology, in which every 
ideal is QI-adic closed). Next goal is to obtain a link between the polynomial closure 
and the adic closure for a special class of PVD's. 

PROPOSITION 3.4. Let D be a PVD. Assume that D possesses a height-one 
prime ideal P such that P f. p2. Then, the polynomial closure of each D-fractional 
subset E ol/( contains the P-adic closure of E. 

Proof. We start by proving that all ideals of D are closed in the P-adic topology. 
If I is any ideal of D, then itsP-adic closure is·givenby 1:= nn2:o(I + pn). If 
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I 2 P, it is obvious that I = I. If! c P, then p2 .!; ..jj = P and. I contains 
a power of P by [HH, Corollary 2.5]. Therefore, I = I. Since each ideal of D is 
closed In the P-adlc topology, we can use the same argument of [C4, Theorem 4.1] 
in order to conclude. 0 

Recall that a pnVD, D, is defined by induction on n in the following way. A 
pOVD is a PVD and a pnVD is obtained by a pullback diagram of the following 
type: 

D := a-1(An_d ----t An- 1 

1 1 
Wn- 1 ~ F= Wn-J/M 

where Wn-l is a pn-l VD with maximal ideal M, F is its residue field, a : W,,-l --t 
F is the canonical projection and A,,_l is a PVD with quotient field F. For details 
about pnVD the reader is referred to [F]. 

In the next proposition, we will show that also in a P"VD all prime ideals are 
polynomially closed. 

PROPOSITION 3.5. Let D be a pn VD, then all nonzero prime ideals of D are 
pqlynomially closed. 

Proof. Since in a P"VD every prime ideal is divided [F, Theorem 1.9], then if 
Q is a prime ideal of D, then DQ is a pmVD, with m :5 n, and Q = (D: DQ), 
since QDQ = Q. Then, if Q ~ 0, Q is a divlsorial ideal, whence it is polynomiaily 
closed. 0 
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