Dekker Lect. Notes Pure Appl. Math. 205 (1999) 307-321.

Polynomial Closure in Essential Domains and Pullbacks

Marco Fontana *, Università degli Studi "Roma Tre", Italy Lahoucine Izelgue, Université de Marrakech, Morocco Salah-Eddine Kabbaj, King Fahd University, Saudi Arabia Francesca Tartarone, Università degli Studi "La Sapienza", Italy

ABSTRACT. Let D be a domain with quotient field K. Let $E \subseteq K$ be a subset; the ring of D-integer-valued polynomials over E is $Int(E, D) := \{f \in K[X]; f(E) \subseteq D\}$. The polynomial closure in D of a subset $E \subseteq K$ is the largest subset $F \subseteq K$ containing E such that Int(E, D) = Int(F, D), and it is denoted by $cl_D(E)$. We study the polynomial closure of ideals in several classes of domains, including essential domains and domains of strong Krull-type, and we relate it with the t-closure. For domains of Krull-type we also compute the Krull dimension of Int(D).

INTRODUCTION

Let D be any integral domain with quotient field K. For each subset $E \subseteq K$, Int $(E, D) := \{f \in K[X]; f(E) \subseteq D\}$ is called the ring of D-integer-valued polynomials over E. As usual, when E = D, we set Int(D) := Int(D, D). When E is "large enough", it may happen that Int(E, D) = D (for instance, Int $(S^{-1}\mathbb{Z}, \mathbb{Z}) = \mathbb{Z}$ for each nontrivial multiplicative subset S of Z, [CC2, Corollary I.1.10]). This does not happen if E is a D-fractional subset of K, i.e. if there exists $d \in D \setminus (0)$ such that $dE \subseteq D$. Indeed, in this case, $dX \in \text{Int}(E, D)$. It is well known that

1.17

^{*} Partially supported by a NATO Collaborative Research Grant No. 970140.

Int $(D) \subseteq \operatorname{Int}(E, D)$ if and only if $E \subseteq D$ [CC2, Corollary I.1.7]. Two subsets Eand F of K may be distinct while $\operatorname{Int}(E, D) = \operatorname{Int}(F, D)$. When this happens, we say that E and F are polynomially D-equivalent. For instance, N and Z are polynomially Z-equivalent [CC2, Corollary I.1.2]. In particular, if $\operatorname{Int}(E, D) = \operatorname{Int}(D)$ we say that E is a polynomially dense subset of D (so, N is a polynomially dense subset of Z). In [G1] Gilmer characterized the polynomially dense subsets of Z and, in [C2] and [C4], Cahen studied the polynomial density, with special emphasis to the Noetherian domains case. McQuillan, pursuing Gilmer's work, investigated the polynomially D-equivalent subsets of a Dedekind domain D [Mc]. Among other results, he proved that two fractional ideals I and J of a Dedekind domain D are polynomially equivalent if and only if I = J. After noticing that, Cahen introduced the notion of polynomial closure (in D) of a subset E of K as follows:

$$cl_D(E) := \{x \in K; f(x) \in D, \text{ for each } f \in \text{Int}(E, D)\},\$$

that is, $cl_D(E)$ is the largest subset $F \subseteq K$ such that Int(E, D) = Int(F, D). Obviously, E is said to be polynomially dense in D if $cl_D(E) = D$ and polynomially D-closed if $cl_D(E) = E$.

In the first section of this paper, we consider essential domains, that is, domains D such that

(1)

$$D=\cap_{P\in\mathcal{P}}D_P,$$

where \mathcal{P} is a subset of $\operatorname{Spec}(D)$ and D_P is a valuation domain. In particular, among these domains, we will focus our attention on the strong Krull-type domains, that is the essential domains D such that the intersection (1) is locally finite (i.e., each nonzero of D belongs to finitely many prime ideals $P \in \mathcal{P}$) and the valuation rings D_P are pairwise independent. Examples of strong Krull-type domains are Krull domains and generalized Krull domains [G1, p. 524]. We prove that if E is a fractional subset of a strong Krull-type domain D, then $cl_D(E) = \bigcap_{P \in \mathcal{P}} cl_{D_P}(E_P)$, where $cl_{D_P}(E_P)$ denotes the polynomial D_P -closure of $E_P := \{e/s; e \in E, s \in D \setminus P\}$. This yields a generalization of a result proved by Cahen for Krull domains, [C3] or [C4]. Moreover, we study the polynomial closure as a star-operation and we relate it to the t-operation. We find that if D is an essential domain, then $I_t \subseteq cl_D(I)$, for each fractional ideal I of D and, for some distinguished classes of domains, as Krull domains, Prüfer domains in which each nonzero ideal is divisorial, $I_t = cl_D(I)$.

In the second section we compute the Krull dimension of the ring of Int(D), when D is a domain with a locally finite representation. By using this result we show that if D is a domain of Krull-type then $\dim(Int(D)) = \dim(D[X])$, obtaining further evidence for the validity of the conjecture about the Krull dimension of Int(D) stating that $\dim(Int(D)) \leq \dim(D[X])$ for each integral domain D (cf. [Ch], [C1], and [FIKT]).

In Section 3, we study the quotient of the polynomial closure of a subset modulo a divided prime ideal, and we apply this result to some classes of domains defined by making use of pullback constructions.

Polynomial Closure in Essential Domains and Pullbacks

1. POLYNOMIAL CLOSURE IN STRONG KRULL-TYPE AND NOETHERIAN DOMAINS

We start this section by studying the polynomial closure of the ideals in a strong Krull-type domain, that is a domain D having the following representation:

 $(1.0.I) D = \cap_{P \in \mathcal{P}} D_P,$

where $\mathcal{P} \subseteq \text{Spec}(D)$, the intersection (1.0.I) is locally finite and the rings D_P are pairwise independent valuation domains.

We prove for this class of domains some results already proved by Cahen in case of Noetherian and Krull domains [C3, Proposition 1.3], [C4, Proposition 3.2, 3.5, 3.6, Corollaries 3.7 and 3.8].

THEOREM 1.1. With the notation above, let D be a strong Krull-type domain with quotient field K and let E be any D-fractional subset of K. Then:

(1) $\operatorname{Int}(E, D)_P = \operatorname{Int}(E, D_P)$, for each $P \in \mathcal{P}$;

(2) $cl_D(E) = \bigcap_{P \in \mathcal{P}} cl_{D_P}(E_P);$

(3) if $E \subseteq D$, then E is polynomially dense in D if and only if E is polynomially dense in D_P for each $P \in \mathcal{P}$.

Proof. (1) The argument of the proof runs parallel with the one used in [C4, Proposition 3.2] (cf. also [CC2, Proposition I.2.8 and IV.2.9]). We wish to prove that $Int(E, D_{\overline{P}}) \subseteq Int(E, D)_{\overline{P}}$, for each fixed ideal $\overline{P} \in \mathcal{P}$ (the opposite inclusion holds in general, [CC2, Lemma I.2.4]).

Since E is a fractional D-subset of K, with a standard argument we can easily assume, without loss of generality, that $E \subseteq D$. Let $f \in \text{Int}(E, D_{\overline{P}}), f \neq 0$. It is obvious that there exists $d \in D, d \neq 0$, such that $df \in D[X]$. Set

$$\mathcal{P}(d) := \{ Q \in \mathcal{P}; d \in Q \text{ and } Q \not\subseteq \overline{P} \}.$$

Since the given representation of D is locally finite, then $\mathcal{P}(d)$ is a finite set.

We claim that there exists $a \in D$ such that $a \in dD_Q \setminus \overline{P}$, for each $Q \in \mathcal{P}(d)$, that is, $\mathbf{v}_Q(a) \geq \mathbf{v}_Q(d)$, for each $Q \in \mathcal{P}(d)$, and $\mathbf{v}_{\overline{P}}(a) = 0$, where \mathbf{v}_P is the valuation associated to the ring D_P for each $P \in \mathcal{P}$.

The Approximation Theorem for valuations [B, Ch. VI § 7 n. 2, Corollaire 1, p. 135] states that there exists an element $b \in K$ such that $\mathbf{v}_{\overline{P}}(b) = 0$ and $\mathbf{v}_Q(b) \geq \mathbf{v}_Q(d)$, for each $Q \in \mathcal{P}(d)$. Now, there exist $a, c \in D$, $a \notin \overline{P}$, such that b = a/c. For each $P \in \mathcal{P}$, we have that $\mathbf{v}_P(a) = \mathbf{v}_P(b) + \mathbf{v}_P(c)$. Thus, if $Q \in \mathcal{P}(d)$, then $\mathbf{v}_Q(c) \geq 0$ (since $c \in D \subseteq D_Q$) and $\mathbf{v}_Q(a) \geq \mathbf{v}_Q(b) \geq \mathbf{v}_Q(d)$. Moreover, since $\mathbf{v}_{\overline{P}}(b) = \mathbf{v}_{\overline{P}}(c) = 0$, then also $\mathbf{v}_{\overline{P}}(a) = 0$.

Therefore $af \in D_P[X]$ for each $P \in \mathcal{P}(d)$ and $P \in \mathcal{P}$ such that $d \notin P$. As a matter of fact, for each $P \in \mathcal{P} \setminus \mathcal{P}(d)$, with $d \notin P$, we have that d is a unit in D_P . Thus, since $df \in D[X]$, we deduce that $f \in D_P[X]$ and $af \in D_P[X]$. If $Q \in \mathcal{P}(d)$, then $ad^{-1} \in D_Q$ and $af = (ad^{-1})(df) \in D_Q[X]$. In these cases, since $E \subseteq D$ and $af \in D_P[X]$, then $af(E) \subseteq D_P$, that is, $af \in \operatorname{Int}(E, D_P)$. On the other hand, $f \in \operatorname{Int}(E, D_{\overline{P}})$ and $a \in D$, whence $af(E) \subseteq D_{\overline{P}}$. If $d \in P$ and $P \subseteq \overline{P}$, then $D_P \supseteq D_{\overline{P}}$. Thus $f(E) \subseteq D_{\overline{P}} \subseteq D_P$ and $f \in \operatorname{Int}(E, D_P)$.

We conclude that $af(E) \subseteq \bigcap_{P \in \mathcal{P}} D_P = D$, that is $af \in \text{Int}(E, D)$. Hence $f \in \text{Int}(E, D)_{\overline{P}}$, because $a \in D \setminus \overline{P}$.

(2) follows from (1) and from [C4, Proposition 3.5].

(3) is a straightforward consequence of (2). \Box

In order to deepen the study of the polynomial closure of fractional ideals, we recall some properties about star-operations.

Let D be an integral domain with quotient field K, let $\mathfrak{F}(D)$ denote the set of nonzero fractional ideals of D and let $\mathfrak{F}_{ig}(D)$ denote the subset of $\mathfrak{F}(D)$ of nonzero finitely generated fractional ideals of D. A mapping $I \mapsto I^*$ of $\mathfrak{F}(D)$ into $\mathfrak{F}(D)$ is called a star-operation on D if the following conditions hold for all $a \in K \setminus \{0\}$ and

$$(*1) \ (aD)^* = aD$$

- $(*2) (aI)^* = aI^*;$
- (*3) $I \subseteq I^*$;
- $(*4) I \subseteq J \Rightarrow I^* \subseteq J^*;$
- $(*5) I^{**} = I^*.$

A fractional ideal $I \in \mathfrak{F}(D)$ is called a star-ideal if $I = I^*$. A star-operation * on Dis said to be of finite character if, for each $I \in \mathfrak{F}(D)$,

$$I^* = \bigcup \{J^*; J \subseteq I \text{ and } J \in \mathfrak{F}_{f_{\mathfrak{a}}}(D) \}.$$

Given a star-operation *, then the function $*_8$ defined as follows:

$$I \mapsto I^{*_{\mathfrak{s}}} = \cup \{J^*; J \subseteq I \text{ and } J \in \mathfrak{F}_{\mathrm{fg}}(D)\}$$

is a star-operation of finite character. The star-operation $*_8$ is called the staroperation of finite character associated to *. It is obvious that:

$$J^* = J^{**}$$
, for each $J \in \mathfrak{F}_{fg}(D)$,
 $I^{**} \subseteq I^*$, for each $I \in \mathfrak{F}(D)$.

The *v*-operation

$$I \mapsto I_v := (D; (D; I))$$

is a star-operation. The t-operation

$$I \mapsto I_t := \bigcup \{J_v; J \subseteq I \text{ and } J \in \mathfrak{F}_{fg}(D)\}$$

is the star-operation of finite character associated to the v-operation (cf. [G2,

The following result is implicitly proved by Cahen [C4, Lemma 1.2].

LEMMA 1.2. Let D be an integral domain, then the polynomial closure

$$cl_D: \mathfrak{F}(D) \to \mathfrak{F}(D), \quad I \mapsto cl_D(I),$$

is a star-operation.

Polynomial Closure in Essential Domains and Pullbacks

341

COROLLARY 1.3. Let D be an integral domain. Then, for all I, J in $\mathfrak{F}(D)$ and for each subset $\{I_{\alpha}; \alpha \in A\}$ of $\mathfrak{F}(D)$, we have:

(1) $cl_D(\sum_{\alpha} I_{\alpha}) = cl_D(\sum_{\alpha} cl_D(I_{\alpha})), \text{ if } \sum_{\alpha} I_{\alpha} \in \mathfrak{F}(D);$ (2) $\cap_{\alpha} cl_D(I_{\alpha}) = cl_D(\cap_{\alpha} cl_D(I_{\alpha})), \text{ if } \cap_{\alpha} I_{\alpha} \neq (0);$ (3) $cl_D(IJ) = cl_D(Icl_D(J)) = cl_D(cl_D(I)J) = cl_D(cl_D(J)cl_D(J));$ (4) $cl_D(I) \subseteq I_{v}$; (5) $cl_D(I_v) = I_v$.

Proof. It is a straightforward consequence of Lemma 1.2 and of [G2, Proposition 32.2 and Theorem 34.1(4)]. □

Note that, from Corollary 1.3(1) and (3), we recover for the fractional ideals some results proved by Cahen for subsets [C4, Lemma 2.4], in particular we obtain that $cl_D(I) + cl_D(J) \subseteq cl_D(I+J), cl_D(I)cl_D(J) \subseteq cl_D(IJ).$

We will need the following result, that is a consequence of [C4, Proposition 3.5(2)], in order to deepen the relation between the polynomial closure and the star-operations.

LEMMA 1.4. Let D be an integral domain and let \mathcal{P} be a subset of $\operatorname{Spec}(D)$ such that $D = \bigcap_{P \in \mathcal{P}} D_P$. For each $I \in \mathfrak{F}(D)$, we have:

$$\bigcap_{P \in \mathcal{P}} cl_{D_P}(ID_P) \subseteq cl_D(I). \quad \Box$$

It is well known from the theory of star-operations that, if $\{D_{\alpha}; \alpha \in A\}$ is a collection of overrings of an integral domain D such that $D = \bigcap_{\alpha \in A} D_{\alpha}$, and if $*_{\alpha}$ is a star-operation on D_{α} , for each $\alpha \in A$, then the mapping

 $I \mapsto I^{*_A} := \bigcap \{ (ID_{\alpha})^{*_{\alpha}}; \alpha \in A \}$

is a star-operation on D and $(I^{**}D_{\alpha})^{**} = (ID_{\alpha})^{**}$, for each $\alpha \in A$ [A, Theorem 2]. If $D = \bigcap_{P \in \mathcal{P}} D_P$, for some subset $\mathcal{P} \subseteq \operatorname{Spec}(D)$, we call the \mathcal{P} -polynomial closure of $I \in \mathfrak{F}(D)$, the following fractional ideal of D:

$$\mathcal{P}\text{-}cl_D(I) := \cap_{P \in \mathcal{P}} cl_{D_P}(ID_P).$$

PROPOSITION 1.5. Let D be an integral domain such that $D = \bigcap_{P \in \mathcal{P}} D_P$, for some subset \mathcal{P} of $\operatorname{Spec}(D)$.

(1) The mapping:

$$I \mapsto \mathcal{P}\text{-}cl_D(I)$$

defines a star-operation on D, with $\mathcal{P}\text{-}cl_D(I) \subseteq cl_D(I)$ for each $I \in \mathfrak{F}(D)$. (2) Let $I \in \mathfrak{F}(D)$. If $ID_P \neq D_P$ for finitely many $P \in \mathcal{P}$, then

$\mathcal{P}\text{-}cl_D(I)D_P = cl_{D_P}(ID_P).$

(3) If $cl_{D_P}(F \cap G) = cl_{D_P}(F) \cap cl_{D_P}(G)$, for each $P \in \mathcal{P}$ and for all $F, G \in \mathcal{P}$ $\mathfrak{F}(D_P)$, then

 $\mathcal{P}\text{-}cl_D(I \cap J) = \mathcal{P}\text{-}cl_D(I) \cap \mathcal{P}\text{-}cl_D(J), \text{ for all } I, J \in \mathfrak{F}(D).$

(4) If $cl_{D_P}((F;_{D_P}G)) = (cl_{D_P}(F);_{D_P}cl_{D_P}(G))$, for each $P \in \mathcal{P}$, $F \in \mathfrak{F}(D_P)$ and $G \in \mathfrak{F}_{\mathrm{fg}}(D_P)$, then

$$\mathcal{P}\text{-}cl_D((I:_DJ)) = (\mathcal{P}\text{-}cl_D(I):_D\mathcal{P}\text{-}cl_D(J)),$$

for each $I \in \mathfrak{F}(D)$ and $J \in \mathfrak{F}_{fg}(D)$.

(5) If $D = \bigcap_{P \in \mathcal{P}} D_P$ is locally finite and if, for each $P \in \mathcal{P}$, cl_{D_P} is a staroperation on D_P with finite character, then \mathcal{P} - cl_D is a star-operation on D with finite character.

Proof. These results are a straightforward consequence of Lemma 1.4, of the definition of the \mathcal{P} -polynomial closure and of [A, Theorem 2]. \Box

COROLLARY 1.6. If $D = \bigcap_{P \in \mathcal{P}} D_P$ is a strong Krull-type or a Noetherian domain, then, for each $I \in \mathfrak{F}(D)$, we have that

$$\mathcal{P}\text{-}cl_D(I) = cl_D(I).$$

Proof. If D is strong Krull-type, the thesis is a consequence of Theorem 1.1(2) and the definition of \mathcal{P} -polynomial closure. More precisely, if $\operatorname{Int}(ID_P, D_P) = \operatorname{Int}(I, D)_P$, then $cl_D(I) \subseteq cl_{D_P}(ID_P)$ [C4, Proposition 3.5(1)] and hence $cl_D(I) \subseteq \mathcal{P}$ - $cl_D(I)$. Therefore $cl_D(I) = \mathcal{P}$ - $cl_D(I)$ by Lemma 1.4.

If D is Noetherian, then S^{-1} Int(I, D) =Int $(S^{-1}I, S^{-1}D)$, for each multiplicative set S of D [CC2, Proposition I.2.7]. As shown above for strong Krull-type domains, also in the Noetherian domain case, for $\mathcal{P} = Max(D)$, we have that:

$$cl_D(I) = \bigcap_{P \in \mathcal{P}} cl_{D_P}(ID_P),$$

for each $I \in \mathfrak{F}(D)$, that is, $cl_D(I) = \mathcal{P} - cl_D(I)$, by definition of \mathcal{P} -polynomial closure. \Box

COROLLARY 1.7. Let D be a Noetherian domain.

(1) For each $M \in Max(D)$ and for each $I \in \mathfrak{F}(D)$, we have:

$$cl_D(I)D_M = cl_{D_M}(ID_M).$$

(2) If S is a multiplicative subset of D, for each $I \in \mathfrak{F}(D)$ we have:

$$S^{-1}cl_D(I) = cl_{S^{-1}D}(S^{-1}I)$$

In particular, if I is polynomially closed in D then $S^{-1}I$ is polynomially closed in $S^{-1}D$.

(3) For each $M \in Max(D)$,

$$cl_D(M) = (MD_M)_v \cap D = M_u.$$

In particular, M is polynomially closed (respectively, polynomially dense) in D if and only if $M = M_v$ (respectively, $M_v = D$) or, equivalently, if and only if MD_M is polynomially closed (respectively, polynomially dense) in D_M .

(4) For each nonzero ideal I of D there exists a prime ideal P of D such that $I \subseteq P = cl_D(P)$.

Polynomial Closure in Essential Domains and Pullbacks

(5) If dim(D) = 1, then every nonzero prime ideal of D is polynomially closed. **Proof.** (1) is an easy consequence of Proposition 1.5(2) and Corollary 1.6, since D is Noetherian and $D = \bigcap_{M \in Max(D)} D_M$.

(2) Note that $S^{-1}D = \cap \{D_M; M \in Max(D) \text{ and } M \cap S = \emptyset\}$ is locally finite. Hence the conclusion follows from (1) and from Corollary 1.6, since

$$S^{-1}cl_D(I) = \cap \{cl_D(I)D_M; M \in \operatorname{Max}(D) \text{ and } M \cap S = \emptyset\} =$$
$$= \cap \{cl_{D_M}(ID_M); M \in \operatorname{Max}(D) \text{ and } M \cap S = \emptyset\} =$$
$$= cl_{S^{-1}D}(S^{-1}I).$$

(3) By Corollary 1.6 we have

$$cl_D(M) = \bigcap_{N \in Max(D)} cl_{D_N}(MD_N) =$$

 $= cl_{D_M}(MD_M) \cap (\cap \{D_N; N \in \operatorname{Max}(D), N \neq M\}) = cl_{D_M}(MD_M) \cap D.$

Moreover, by the proof of [C4, Proposition 2.3], we know that if (R, \mathbf{m}) is a local Noetherian domain then $cl_R(\mathbf{m}) = \mathbf{m}_v$. Finally, since D is Noetherian, by [G2, Theorem 4.4(4)], we have that $(MD_M)_v = M_v D_M$ and by [G2, Theorem 4.10(3)] we have

$$M_v = (MD_M)_v \cap D.$$

The conclusion is straightforward.

(4) Since D is Noetherian, cl_D is a star-operation on D with finite character (Corollary 1.6). It is well known, in this situation, that each proper star-ideal of D is contained in a maximal proper star-ideal of D and that a maximal proper star-ideal of D is a prime ideal (cf. for example [J]).

(5) follows immediately from (4). \Box

Note that Corollary 1.7(2) gives a positive answer to Question 3.10 in [C4] and Corollary 1.7(3) generalizes to the nonlocal case [C4, Proposition 2.3]. Note also that Cahen [C4, Example 3.9] has given an example of an ideal I of an integrally closed (non Noetherian) domain D such that $I = cl_D(I)$ and $S^{-1}I \neq cl_{S^{-1}D}(S^{-1}I)$, for some multiplicative set S of D.

The equality in Corollary 1.7(3) does not hold for the nonmaximal ideals, i.e. the inclusion $cl_D(I) \subseteq I_v$ may be a proper inclusion even in the Noetherian local case. In fact, it is enough to consider a local, Noetherian, one-dimensional, analitically irreducible domain D with finite residue field and a nonzero nonmaximal ideal I of D (cf. [C4, Corollary 4.8] or [CC2, Theorem IV.1.15]). For instance, let k be a finite field, $D := k[[X^3, X^4, X^5]]$ and $I := (X^3, X^4)D$. In this case (D:I) = k[[X]], hence $I_v = (X^3, X^4, X^5)D$; but $I = cl_D(I)$ [C4, Corollary 4.8].

We recall some definitions. An essential domain is an integral domain D such that $D = \bigcap_{P \in \mathcal{P}} D_P$, where D_P is a valuation domain for P belonging to a subset \mathcal{P} of Spec(D). If D is an essential domain with the valuation rings D_P pairwise independent and $D = \bigcap_{P \in \mathcal{P}} D_P$ is locally finite (i.e. each nonzero element of D belongs to finitely many prime ideals P of \mathcal{P}) then D is a domain of strong Krull-type. Obviously, each Prüfer domain is an essential domain and each Krull domain is a domain of strong Krull-type.

A relevant case is when \mathcal{P} is the set $t_m(D)$ of all *t*-maximal ideals of D (i.e. the maximal elements among the integral *t*-ideals of D). It is well known that each maximal *t*-ideal is a prime ideal and, for each ideal I of D, $I = \bigcap_{P \in t_m(D)} ID_P$; in particular $D = \bigcap_{P \in t_m(D)} D_P$ [Gr, Proposition 4]. A Prüfer *v*-multiplication domain D is an integral domain such that D_P is a valuation domain for each $P \in t_m(D)$. This class of domains was introduced by Griffin [Gr].

In order to study the polynomial closure of fractional ideals in an essential domain, we start by considering the local case, i.e. when D = V is a valuation domain.

PROPOSITION 1.8. Let V be a valuation domain with maximal ideal M.

(1) If M is principal, then, for each nonzero fractional ideal I of V, $I = cl_V(I) = I_v$.

(2) If M is not principal, then:

a) $cl_V(M) = M_v = V;$

b) for each nonzero ideal I of V, $cl_V(I) = I_v$; moreover, if $I \neq I_v$, then $cl_V(I) = I_v$ is a principal ideal of V.

Proof. We recall that, in general, for each integral domain D and for each $I \in \mathfrak{F}(D)$ we have the following inclusions: $I \subseteq cl_D(I) \subseteq I_v$ (Corollary 1.3).

(1) If M is principal, then each nonzero fractional ideal of V is divisorial [G2, Exercise 12, p. 431]. The conclusion follows immediately from the previous tower of inclusions.

(2) If M is not principal, then $\{aM; a \in V, a \neq 0\}$ is the set of all nonzero nondivisorial (integral) ideals of V [G2, Exercise 12, p. 431]. Therefore, in this case, $M \neq M_v$, hence $M_v = V$.

(a) In order to prove that $cl_V(M) = V$, we will show that Int(V) = Int(V, V) = Int(M, V).

Since M is not principal, V[X] = Int(V) [CC2, Proposition I.3.16].

Let $f := c_0 + c_1 X + \dots + c_n X^n \in \operatorname{Int}(M, V)$ be a polynomial of degree *n*. By [CC2, Corollary I.3.3], if a_0, a_1, \dots, a_n are n+1 elements of *M* and if $d := \prod_{0 \le i < j \le n} (a_i - a_j)$, then $df \in V[X]$. Let **v** be the valuation associated to *V*. By using the assumption that *M* is not finitely generated, we can choose the elements a_i 's such that $0 < \mathbf{v}(d) < |\mathbf{v}(c_i)|$, for each c_i such that $\mathbf{v}(c_i) \neq 0$. On the other hand, $df \in V[X]$ hence $\mathbf{v}(dc_i) = \mathbf{v}(d) + \mathbf{v}(c_i) \ge 0$, for each $0 \le i \le n$. If $f \notin V[X]$, then $\mathbf{v}(c_i) < 0$ for some *i* with $0 \le i \le n$, hence we have a contradiction. Therefore, we can conclude that $V[X] = \operatorname{Int}(M, V)$ and thus a) holds.

b) It is obvious that, if $I = I_v$, then $cl_V(I) = cl_V(I_v) = I_v$ (Corollary 1.3(5)). If $I \neq I_v$ and $I \subseteq V$, then I = aM for some nonzero element $a \in V$, hence $cl_V(I) = cl_V(aM) = acl_V(M)$ (Lemma 1.2). By point a), we deduce that $cl_V(I) = aV$ is a principal (hence, divisorial) ideal and $cl_V(I) = I_v$. If $I \neq I_v$ and I is a fractional ideal of V, then $bI \subset V$ and $bI \neq bI_v$, for some nonzero element $b \in V$. The conclusion follows easily from the previous argument. \Box

THEOREM 1.9. Let $D = \bigcap_{P \in \mathcal{P}} D_P$ be an essential domain.

(1) For each $J \in \mathfrak{F}_{fg}(D)$, we have:

$$\mathcal{P}\text{-}cl_D(J) = cl_D(J) = J_v.$$

Polynomial Closure in Essential Domains and Pullbacks

(2) For each $I \in \mathfrak{F}(D)$, we have: $(A \in \mathcal{A} \cup \mathcal{A}) \to (A \cap \mathcal{A})$ is the factor of A

$I_t \subseteq \mathcal{P}\text{-}cl_D(I) \subseteq cl_D(I) \subseteq I_v.$

Proof. (1) If J is finitely generated, then

 $J_v D_P \subseteq (JD_P)_v$, for each prime ideal P of D,

[B, Ch. I § 2 n. 11 (11), p. 41]. On the other hand, by Proposition 1.8,

 $J_v \subseteq \cap_{P \in \mathcal{P}} J_v D_P \subseteq \cap_{P \in \mathcal{P}} (JD_P)_v =$

$= \bigcap_{P \in \mathcal{P}} cl_D(JD_P) = \mathcal{P} \cdot cl_D(J).$

The conclusion follows by recalling that, in general for each $I \in \mathfrak{F}(D)$, we have:

$\mathcal{P}\text{-}cl_D(I) \subseteq cl_D(I) \subseteq I_v.$

(2) Since $I_t := \bigcup \{J_v; J \subseteq I \text{ and } J \in \mathfrak{F}_{fg}(D)\}$ then, by Proposition 1.5(1) and by (1), we have:

 $I_t := \cup \{ \mathcal{P}\text{-}cl_D(J); J \subseteq I \text{ and } J \in \mathfrak{F}_{\mathrm{fg}}(D) \} \subseteq \mathcal{P}\text{-}cl_D(I). \quad \Box$

COROLLARY 1.10. Let $D = \bigcap_{P \in \mathcal{P}} D_P$ be an essential domain. (1) For all $J', J'' \in \mathfrak{F}_{fg}(D)$:

 $cl_D(J' \cap J'') = cl_D(J') \cap cl_D(J'').$

(2) For all $I', I'' \in \mathfrak{F}(D)$, then:

 $\mathcal{P}\text{-}cl_D(I' \cap I'') = \mathcal{P}\text{-}cl_D(I') \cap \mathcal{P}\text{-}cl_D(I'').$

Proof. (1) follows from (2) and from Theorem 1.9(1).

(2) Since D_P is a valuation domain, for each $P \in \mathcal{P}$, then either $I'D_P \subseteq I''D_P$ or $I''D_P \subset I'D_P$, hence $cl_{D_P}(I'D_P \cap I''D_P) = cl_{D_P}(I'D_P) \cap cl_{D_P}(I''D_P)$. The conclusion follows from Proposition 1.5(3). \Box

Let $D = \bigcap_{P \in t_m(D)} D_P$ and let $I \in \mathfrak{F}(D)$. In this case we set $\mathcal{P} = t_m(D)$ and

 $t - cl_D(I) := \bigcap_{P \in t_m(D)} cl_{D_P}(ID_P).$

COROLLARY 1.11. Let $D = \bigcap_{P \in t_m(D)} D_P$ be a Prüfer v-multiplication domain. Assume that, for each maximal t-ideal P of D, PD_P is a principal ideal. Then, for each $I \in \mathfrak{F}(D)$, we have:

$$I_t = t - cl_D(I).$$

If, moreover, $D = \bigcap_{P \in t_m(D)} D_P$ is locally finite and the valuation rings D_P are pairwise independent (i.e. D is an integral domain of strong Krull-type) then, for each $I \in \mathfrak{F}(D)$, we have

$$I_t = t - cl_D(I) = cl_D(I).$$

Proof. In a Prüfer *v*-multiplication domain D, for each $I \in \mathfrak{F}(D)$, $I_t = \bigcap_{P \in t_m(D)} ID_P$ (cf. for instance [A, Theorem 6]).

On the other hand, by Proposition 1.8(1),

 $\bigcap_{P \in t_m(D)} ID_P \subseteq t \cdot cl_D(I) = \bigcap_{P \in t_m(D)} cl_{D_P}(ID_P) = \bigcap_{P \in t_m(D)} ID_P,$

hence $I_t = t - cl_D(I)$. The last statement is a consequence of Corollary 1.6. \Box

314

Polynomial Closure in Essential Domains and Pullbacks

(2.1.II)

Fontana et al.

COROLLARY 1.12. Let $D = \bigcap_{P \in t_m(D)} D_P$ be an integral domain of strong Krull-type. Assume that, for each $P \in t_m(D)$, there exists a finitely generated ideal J of D such that $J \subseteq P$ and $J^{-1} = P^{-1}$ and that each prime t-ideal of D is contained in a unique maximal t-ideal. Then, for each $I \in \mathfrak{F}(D)$, we have:

$$I_t = t - cl_D(I) = cl_D(I) = I_v.$$

Proof. These assumptions characterize the Prüfer v-multiplication domains such that each t-ideal is divisorial [HZ, Theorem 3.1]. The conclusion is a straightforward consequence of Theorem 1.9(2). \Box

Examples of integral domains satisfying the assumptions of Corollary 1.12 are Krull domains and the Prüfer domains in which each nonzero ideal is divisorial (cf. [H, Theorem 5.1] and [K, 127]).

REMARK 1.13. For each nonzero fractional ideal I of an integral domain D, since I^{-1} is divisorial, $I \subseteq cl_D(I) \subseteq I_v$ and $I^{-1} = I_v^{-1}$, we have:

(1.13.I)
$$cl_D(I^{-1}) = cl_D(I)^{-1} = I^{-1}.$$

Since $I_v = (I^{-1})^{-1}$, then the previous identity generalizes the fact that $cl_D(I_v) = I_v$ (Corollary 1.3(5)). From (1.13.I), we deduce that if $D \neq I^{-1}$, then I is not polynomially dense in D. In particular, for a maximal ideal M of D, we obtain that $D \neq M^{-1}$ implies that $M = cl_D(M)$. This statement could be obtained also as a consequence of Corollary 1.3(5), since $M = M_v$ if and only if $D \neq M^{-1}$.

2. KRULL DIMENSION OF INT(D) WHEN D IS OF KRULL-TYPE

This section is devoted to the study of the Krull dimension of the ring Int(D) for the integral domains D having a locally finite representation. If a domain D has a representation

$$D = \bigcap_{P \in \mathcal{P}} D_P$$

where $\mathcal{P} \subseteq \operatorname{Spec}(D)$, the ring D_P are valuation domains for each $P \in \mathcal{P}$ and the intersection is locally finite, then D is called a *Krull-type domain*. Strong Krull-type domains studied in Section 1, are a particular case of Krull-type domains.

As a consequence of our main result we prove that, for each domain of Krull-type D, dim $(Int(D)) = \dim(D[X])$. This improves the knowledge of the Krull dimension of the ring of integer-valued polynomials giving further evidence for the conjecture stating that dim $(Int(D)) \leq \dim(D[X])$, for each integral domain D.

THEOREM 2.1. Let D be an integral domain and \mathcal{P} a subset of Spec(D). Assume that $D = \bigcap_{P \in \mathcal{P}} D_P$ is a locally finite representation of D. Set $\mathcal{P}_0 := \{P \in \mathcal{P} \cap \operatorname{Max}(D); \operatorname{Card}(D/P) < \infty\}$ and $\mathcal{M} := \operatorname{Max}(D) \setminus \mathcal{P}_0$. Then

 $\dim(\operatorname{Int}(D)) = \operatorname{Max}(\{\dim(D_M[X]); M \in \mathcal{M}\}, \{\dim(\operatorname{Int}(D_P)); P \in \mathcal{P}_0\}).$

Proof. We note that, for each maximal ideal M of D,

(2.1.I) $D_M = \bigcap_{P \in \mathcal{P}} (D_P)_{(D \setminus M)} = (\bigcap_{P \in \mathcal{P}, P \subseteq M} D_P) \cap (\bigcap_{P \in \mathcal{P}, P \subseteq M} (D_P)_{(D \setminus M)})$

is a locally finite representation of D_M [G2, Proposition 43.5]. Since $D = \bigcap_{M \in Max(D)} D_M$, then, by [CC1, Corollaire 3, p. 303],

$$\operatorname{Int}(D) = \bigcap_{M \in \operatorname{Max}(D)} \operatorname{Int}(D_M).$$

Since $\operatorname{Int}(D) \subseteq \operatorname{Int}(D)_M \subseteq \operatorname{Int}(D_M)$, for each $M \in \operatorname{Max}(D)$, it follows that

$\operatorname{Int}(D) = \bigcap_{M \in \operatorname{Max}(D)} \operatorname{Int}(D)_M.$

Now, we will show that for each $M \in \mathcal{M}$, $\operatorname{Int}(D_M) = \operatorname{Int}(D)_M = D_M[X]$. As a matter of fact, if $M \in \operatorname{Max}(D) \setminus \mathcal{P}$, for each $P \in \mathcal{P}$, $P \subset M$, D/P is infinite and then $\operatorname{Int}(D_P) = D_P[X]$. If $P \in \mathcal{P}$ with $P \not\subseteq M$, then clearly the maximal ideals of $(D_P)_{(D\setminus M)}$ contract to nonmaximal prime ideals of D. Therefore, $(D_P)_{(D\setminus M)}$ has infinite residue fields and whence $\operatorname{Int}((D_P)_{(D\setminus M)}) = (D_P)_{(D\setminus M)}[X]$ [CC2, Corollary I.3.7]. From (2.1.I) and [CC1, Corollaire 3, p. 303], we deduce that, if $M \in \operatorname{Max}(D) \setminus \mathcal{P}$,

$\operatorname{Int}(D_M) = \bigcap_{P \in \mathcal{P}} \operatorname{Int}((D_P)_{(D \setminus M)}) =$

 $= (\cap_{P \in \mathcal{P}, P \subseteq M} \operatorname{Int}(D_P)) \cap (\cap_{P \in \mathcal{P}, P \not\subseteq M} \operatorname{Int}((D_P)_{(D \setminus M)})) =$

 $= (\cap_{P \in \mathcal{P}, P \subseteq M} D_P[X]) \cap (\cap_{P \in \mathcal{P}, P \not\subseteq M} (D_P)_{(D \setminus M)}[X]) = D_M[X].$

It is obvious that if $M \in (\operatorname{Max}(D) \cap \mathcal{P}) \setminus \mathcal{P}_0$ then $\operatorname{Int}(D_M) = D_M[X]$, since D/M is infinite. Since $D_M[X] \subseteq \operatorname{Int}(D)_M \subseteq \operatorname{Int}(D_M)$, we have that $D_M[X] = \operatorname{Int}(D)_M = \operatorname{Int}(D_M)$.

From the previous claim and from (2.1.II), we deduce that:

(2.1.III) $\operatorname{Int}(D) = (\bigcap_{M \in \mathcal{M}} D_M[X]) \cap (\bigcap_{M \in \mathcal{P}_0} \operatorname{Int}(D)_M).$

We know that there exists $N \in Max(Int(D))$ such that $ht(N) = \dim(Int(D))$ and $N \cap D$ maximal. (In fact, if $N \cap D = P$ is a nonmaximal prime ideal of D, then $Int(D)_P = Int(D_P) = D_P[X]$ and hence $ht(N) = \dim(D_P[X]) \leq \dim(D[X]) - 1 \leq \dim(Int(D))$ [CC2, Proposition V.1.6]. Therefore $\dim(Int(D)) = \dim(D[X]) - 1$. Arguing as in the proof of [CC2, Proposition V.1.6], we can find a chain C of prime ideals of $D_P[X]$ of length $n = \dim(D_P[X]) = \dim(Int(D))$,

 $\mathcal{C}:\qquad (0)\subset Q_1\subset\cdots\subset Q_{n-1}\subset Q_n,$

such that $(Q_i \cap D_P)[X] \in C$, for each $i = 1, \dots, n$. Therefore, $Q_{n-1} = PD_P[X]$. When we contract C to Int(D) we get a chain

 $\mathcal{C}': \qquad (0) \subset Q_1' \subset \cdots \subset Q_{n-1}' \subset Q_n',$

where $Q'_{n-1} = PD_P[X] \cap Int(D)$. If M is a maximal ideal of D containing P and $a \in D$, then it is easy to see that $Q'_{n-1} \subset P_a \subseteq M_a$, where $Q_a := \{f \in Int(D); f(a) \in Q\}$ for $Q \in \{P, M\}$ and M_a is a maximal ideal of Int(D) above M [CC2, Lemma V.1.3]. Therefore we reach a contradiction: $\dim(Int(D)) \ge n+1$.

Let $M := (N \cap D) \in \operatorname{Max}(D)$. Since $N \cap (D \setminus M) = \emptyset$, then $N\operatorname{Int}(D)_M$ is a maximal ideal of $\operatorname{Int}(D)_M$. The conclusion follows immediately by examining the two possible cases:

Case 1. $M \in \mathcal{M}$. In this case, $\operatorname{Int}(D)_M = \operatorname{Int}(D_M) = D_M[X]$, hence $\operatorname{ht}(N) = \dim(D_M[X])$.

Case 2. $M \in \mathcal{P}_0$. In this case, $\operatorname{Int}(D)_M = \operatorname{Int}(D_M)$ and $\operatorname{ht}(N) = \operatorname{dim}(\operatorname{Int}(D_M))$. \Box

316

317

COROLLARY 2.2. With the same notation and hypotheses of Theorem 2.1, if $\dim(\operatorname{Int}(D_P)) \leq \dim(D_P[X])$ for each $P \in \mathcal{P}_0$, then $\dim(\operatorname{Int}(D)) \leq \dim(D[X])$. In particular, the previous inequality holds in the following cases:

Fontana et al.

(a) $D_P[X]$ is a Jaffard domain, for each $P \in \mathcal{P}_0$ (e.g. when D is a locally Jaffard

domain [ABDFK]);

(b) D_P is a $P^n VD$, with $n \ge 0$, for each $P \in \mathcal{P}_0$ (e.g. when D is a locally PVD domain, [F] or [DF]).

Proof. The first inequality is a straightforward consequence of Theorem 2.1. As concerns the particular cases, we proceed as follows. (a) We note that, for each $P \in \mathcal{P}_0$, we have:

 $\dim(\operatorname{Int}(D_P)) \leq \dim_v(\operatorname{Int}(D_P)) \leq \dim_v(D_P[X]) = \dim(D_P[X]).$

(b) follows from [FIKT, Lemma 3.1].

COROLLARY 2.3. If D is a domain of Krull-type (e.g. a generalized Krull domain [G2, p.524]), then $\dim(\operatorname{Int}(D)) = \dim(D[X])$.

Proof. In this case, $\mathcal{P} = t_m(D)$, $\mathcal{P}_0 = \{P \in \mathcal{P} \cap \operatorname{Max}(D); \operatorname{Card}(D/P) < \infty\}$ and D_P is a valuation domain, for each $P \in \mathcal{P}$. In particular dim $(Int(D_P)) =$ $\dim(D_P)+1 = \dim(D_P[X])$ for each $P \in \mathcal{P}_0$. The conclusion follows from Theorem

3. POLYNOMIAL CLOSURE IN PULLBACK DOMAINS

Let D be any domain and let P be a prime ideal of D with $Card(D/P) = \infty$. Let I be an ideal of D such that $P \subset I$, thus $I_P = ID_P = D_P$. From [C4, Lemma

 $\operatorname{Int}(I, D_P) = \operatorname{Int}(I_P, D_P) = \operatorname{Int}(D_P) = D_P[X],$

hence $Int(I, D) \subseteq D_P[X]$. Therefore, we can consider the canonical map

 $\varphi: \operatorname{Int}(I, D) \to \operatorname{Int}(I/P, D/P), \quad f \mapsto \overline{f} := f + PD_P[X],$

where it is easily seen that $\overline{f} \in \text{Int}(I/P, D/P)$.

We start this section with an observation about Int(I, D) and Int(I/P, D/P)when P is a divided prime ideal, i.e. $P = PD_P$.

LEMMA 3.1. Let D be an integral domain, P a divided prime ideal of D with $Card(D/P) = \infty$ and I an ideal of D with $P \subseteq I$. Then, (1) the canonical map $\varphi : \operatorname{Int}(I,D) \to \operatorname{Int}(I/P,D/P)$ is a surjective homomor-

phism:

(2) $ker(\varphi) = P[X];$

(3) $\operatorname{Int}(I,D)/P[X] \cong \operatorname{Int}(I/P,D/P).$

Proof. (1) Let $g \in (D_P/PD_P)[X]$ such that $g(I/P) \subseteq D/P$. Then it is easy to see that $g = G + PD_P[X] = G + P[X]$, where $G \in D_P[X]$ and $G(i) + P \in D/P$, for each $i \in I$. Therefore $G \in Int(I, D)$.

(2) It is obvious that $ker(\varphi) = PD_P[X] \cap Int(I, D) = P[X].$ (3) is a straightforward consequence of (1) and (2). \Box

PROPOSITION 3.2. Let D, P and I as in Lemma 3.1. Then, the canonical homomorphism φ defines the following isomorphism:

 $cl_D(I)/P \cong cl_{D/P}(I/P).$

Proof. Let $x \in cl_D(I)$, then $f(x) \in D$ for each $f \in Int(I, D)$. Hence, $\overline{f}(\overline{x}) =$ $\overline{f(x)} \in D/P$ for each $f \in Int(I, D)$. Since the map $\varphi: f \mapsto \overline{f}$ is surjective (Lemma 3.1(1)), then $g(\overline{x}) \in D/P$ for each $g \in \text{Int}(I/P, D/P)$, i.e. $\overline{x} \in cl_{D/P}(I/P)$. Therefore $cl_D(I)/P \subseteq cl_{D/P}(I/P)$. Conversely, if $y = x + P \in cl_{D/P}(I/P)$ then for each $g \in \text{Int}(I/P, D/P)$, $g(y) \in D/P$. Since φ is surjective, $g = \overline{f} = f + P[X]$ for some $f \in Int(I, D)$. By the fact that $g(y) \in D/P$, for each $g \in Int(I/P, D/P)$, we deduce that $f(x) \in D$, for each $f \in Int(I, D)$, i.e. $x \in cl_D(I)$. \Box

COROLLARY 3.3. Let D be a domain with a divided prime ideal P. Suppose that D/P is a valuation domain V with nonzero principal maximal ideal. Then, each ideal of D containing P is polynomially closed.

Proof. If I is an ideal of D and $P \subset I$, then from Propositon 3.2 $cl_D(I)/P \cong$ $cl_{D/P}(I/P)$. But D/P = V is a valuation domain with principal maximal ideal and, by Proposition 1.8, $cl_{D/P}(I/P) = I/P$. Therefore $cl_D(I)/P = I/P$ and $cl_D(I) = I$, since they both contain P. \Box

Relevant examples of divided domains are the pseudo-valuation domains (PVD) or, more generally, the pseudo-valuation domains of type n (PⁿVD). We recall that a PVD, D, is defined by a pullback of the following type:

 $D := \alpha^{-1}(k) \longrightarrow k$

(3.I)

 $\xrightarrow{\alpha} V/M$

where (V, M) is a valuation domain (called the valuation overring associated to D), $\alpha : V \twoheadrightarrow V/M$ is the canonical projection and k is a subfield of the residue field of V. From [HH, Theorem 2.13], every prime ideal of D is divisorial, hence it is polynomially closed. Moreover, if I is any nonprincipal integral ideal of D, then $I_v = IV$ [HH, Corollary 2.14]. It follows immediately that $cl_D(I) \subseteq IV$. Moreover, for a nonvaluation PVD, the t-operation and the v-operation coincide [HZ, Proposition 4.3] so that $cl_D(I) \subseteq I_t$. If D = V is a valuation domain, then it is known that the t-operation and the v-operation coincide if and only if the maximal ideal M of V is principal [HZ, Remark 1.5]; in fact, in this situation, every nonzero ideal of V is divisorial.

In $[C4, \S 4]$ the author establishes some relations between the polynomial closure of a fractional subset and its 21-adic closure, where 21 is an ideal of a Zariski domain D (i.e. a Noetherian domain, equipped with the \mathfrak{A} -adic topology, in which every ideal is 21-adic closed). Next goal is to obtain a link between the polynomial closure and the adic closure for a special class of PVD's.

PROPOSITION 3.4. Let D be a PVD. Assume that D possesses a height-one prime ideal P such that $P \neq P^2$. Then, the polynomial closure of each D-fractional subset E of K contains the P-adic closure of E.

Proof. We start by proving that all ideals of D are closed in the P-adic topology. If I is any ideal of D, then its P-adic closure is given by $\overline{I} := \bigcap_{n \ge 0} (I + P^n)$. If

 $I \supseteq P$, it is obvious that $\overline{I} = I$. If $I \subset P$, then $P^2 \subseteq \sqrt{I} = P$ and I contains a power of P by [HH, Corollary 2.5]. Therefore, $\overline{I} = \overline{I}$. Since each ideal of D is closed in the P-adic topology, we can use the same argument of [C4, Theorem 4.1] in order to conclude. \Box

and the second second second second second

Recall that a $P^n VD$, D, is defined by induction on n in the following way. A P^0VD is a PVD and a P^nVD is obtained by a pullback diagram of the following type:

where W_{n-1} is a Pⁿ⁻¹VD with maximal ideal \mathcal{M} , F is its residue field, $\alpha: W_{n-1} \to \mathbb{C}$ F is the canonical projection and A_{n-1} is a PVD with quotient field F. For details about $P^n VD$ the reader is referred to [F].

In the next proposition, we will show that also in a P^nVD all prime ideals are polynomially closed.

PROPOSITION 3.5. Let D be a $P^n VD$, then all nonzero prime ideals of D are polynomially closed.

Proof. Since in a PⁿVD every prime ideal is divided [F, Theorem 1.9], then if Q is a prime ideal of D, then D_Q is a $P^m VD$, with $m \leq n$, and $Q = (D; D_Q)$, since $QD_Q = Q$. Then, if $Q \neq 0$, Q is a divisorial ideal, whence it is polynomially closed.

References

- [A] D.F. Anderson, Star-operations induced by overrings, Comm. Algebra 16, (1988), 2535-2553.
- [ABDFK] D.F. Anderson A. Bouvier D.E. Dobbs M. Fontana S. Kabbaj, On Jaffard domains, Expo. Math. 6 (1988), 145-175.
- N. Bourbaki, Algèbre Commutative, Hermann, Paris (1961-1965). (B)
- [CC1] P.-J. Cahen - J.L. Chabert, Coefficients et valeurs d'un polynôme, Bull. Sci. Math. 95 (1971), 295 - 304,
- [CC2] P.-J. Cahen - J.L. Chabert, Integer-Valued Polynomials, Math. Surveys and Monographs (AMS) 48 (1997).
- [C1] P.-J. Cahen, Dimension de l'anneau des polynômes à valeurs entières, Manuscripta Math. 67 (1990), 333-343.
- P.-J. Cahen, Parties pleines d'un anneau noethérien, J. Algebra 157 (1993), 192-212. [C2]
- [C3] P.-J. Cahen, Integer-valued polynomials on a subset, Proc. Amer. Math. Soc. 117 (1993), 919-929.
- [C4] P.-J. Cahen, Polynomial closure, J. Number Theory 61 (1996), 226-247.
- [Ch] J.L. Chabert, Les idéaux premiers de l'anneau des polynômes à valeurs entières, J. reine angew. Math. 293/294 (1977), 275-283.
- (DF) D.E. Dobbs - M. Fontana, Locally pseudo-valuation domains, Ann. Mat. Pura Appl. 134 (1983), 147-168.
- [F] M. Fontana, Sur quelques classes d'anneaux divisés, Rend. Sem. Mat. Fis. Milano 51 (1981), 179-200.
- [FIKT] M. Fontana - L. Izelgue - S.E. Kabbaj - F. Tartarone, On the Krull dimension of domains of integer-valued polynomials, Expo. Math. 15 (1997), 433-465.

Polynomial Closure in Essential Domains and Pullbacks

- R. Gilmer, Sets that determine integer-valued polynomials, J. Number Theory 33 [G1] (1989), 95-100.
- R. Gilmer, Multiplicative Ideal Theory, Marcel-Dekker, New York (1972). [G2]
- M. Griffin, Some Results on v-multiplication Rings, Canad. J. Math. 10 (1967), 710-[Gr] 722.
- J.R. Hedstrom E.G. Houston, Pseudo-valuation domains, Pac. J. Math. 75 (1978), [HH] 137-147.
- W. Heinzer, Integral domains in which each nonzero ideal is divisorial, Mathematika [H] 15 (1968), 164-170.
- E.G. Houston M. Zafrullah, Integral domains in which each t-ideal is divisorial, Michl-[HZ] gan Math. J. 35 (1988), 291-300.
- P. Jaffard, Les Systèmes d'Idéaux, Dunod, Paris (1960). [J]
- W. Krull, Idealtheorie, Springer-Verlag, Berlin (1935). [K]
- D.L. McQuillan, On a Theorem of R. Gilmer, J. Number Theory 39 (1991), 245-250. [Mc]

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI "ROMA TRE", 00146 ROMA, ITALY, E-MAIL: FONTANA@MAT.UNIROMA3.IT;

Département de Mathématiques, Faculté des Sciences "Semlalia", Université de MARRAKECH, MARRAKECH, MOROCCO, E-MAIL: FSSM.MATH@CYBERNET.NET.MA;

DEPARTMENT OF MATHEMATICAL SCIENCES KFUPM, P.O.Box 849 DHAHRAN 31261, SAUDI ARABIA, E-MAIL: KABBAJ@KFUPM.EDU.SA;

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ "LA SAPIENZA", 00185 ROMA, ITALY, E-MAIL: TARTARON@MAT.UNIROMA1.IT.

FACULTÉ DES SCIENCES DE SAINT-JÉRÔME, UNIVERSITÉ D'AIX-MARSEILLE III, 13397 MAR-SEILLE, FRANCE, E-MAIL: FRANCESCA.TARTARONE@VMESA12.U-3MRS.FR.

320