Dekker Lect. Notes Pure Appl. Math. 185 (1997) 269-282.
n-Coherent Rings and Modules

DAVID E. DOBBS Department of Mathematics, University of Tennessee, Knoxville, Tennessee $37996-1300$, U.S.A.

SALAH-EDDINE KABBAJ Département de Mathématiques et Informatique, Faculté des Sciences Dhar Al-Mehraz, Université de Fès, Fès, Morocco.

NAJIB MAHDOU Département de Mathématiques et Informatique, Faculté des Sciences et Techniques Fès-Saïss, Université de Fès , Fès, Morocco.

ABSTRACT : For each positive integer n, the notions of an n-coherent module and an $n-$ ABSA eanings of "coherence" Results are developed for various pullback contexts (the context of reenberg and the classical $\mathrm{D}+\mathrm{M}$-constructions) in which coherence has been studied earlier.

1 INTRODUCTION

All rings considered below are commutative with unit, and all modules are unital. If n is a nonnegative integer, we say that an R-module M is n-presented if there is an exact sequence $F_{n} \rightarrow F_{n-1} \rightarrow \ldots \rightarrow F_{0} \rightarrow M \rightarrow 0$ of R-modules in which each F_{i} is finitely generated and free. (Our usage follows [4]; in [12], such M is said to "have a finite n-presentation".) In particular, " 0 -presented" means finitely
generated and "1-presented" means finitely presented. Following [1], we let $\lambda(M)=$ $\lambda_{R}(M)=\sup \{n / M$ is an n-presented R-module $\}$, so that $0 \leq \lambda(M) \leq \infty$; th properties of the function λ are recalled in Lemma2.2. Classically, the " n-presented concept allows both ideal-theoretic and module-theoretic approaches to coherent rings. Indeed (cf. [1], p.63, Exercise12), a ring R is cohen finitely generated ideal of R is finity, and only if each finitely presented R-module is 2-presented. Accordingly, as explained below, we use the λ-function to introduce both ideal and module theoretic approaches to " n-coherence" for any positive integer n. For background on coherence, we refer the reader to [8]. We also assume some familiarity with the studies of coherent rings in various pullback contexts $([7],[5],[3])$; as well as with studies of coheren introduced recently in [4].

Let n be a positive integer. We say that R is n-coherent (as a ring) if each $(n-1)$-presented ideal of R is n-presented; and that R is a strong n-coherent ring if each n-presented R-module is $(n+1)$-presented. (This terminology is not the same as that of [4], where Costa's " n-coherence" is our "strong n-coherence"; nor our usage that of " r-coherence" mentioned in ([12], p.90))

Thus, the 1 -coherent rings are just the coherent rings. Strong n-coherence arose naturally in Costa's study [4] of the (n, d)-properties. In general, any strong n-coherent ring is n-coherent (by, for instance, the version of Schanuel's Lemma in ([12], p.89). The converse holds if $n=1$ (by the result ([1], p.63, Exercise12) cited earlier), but it is an open question for $n \geq 2$. Notice that each Bezout (for instance, valuation) domain R is n-coherent for each $n \geq 1$; indeed, each ($n-1$)presented ideal of R is principal and hence infinitely-presented (in the obvious sense). Moreover, each Noetherian ring is n-coherent for any $n \geq 1$.

Section 2 begins, more generally, by defining n-coherent modules for each integer $n \geq 1$. As one might expect, the 1 -coherent modules are just the "coherent modules" in the sense of [1]; and a ring R is an n-coherent ring if and only if R is an n-coherent R-module. Several results on transfer of n-coherence are developed (and, more generally are used in section 3 to develop examples of n-coherent rings (and, more generally, to study associated properties) in the two pullback contexts
cited above.

2 N-COHERENCE

If R is a ring and n is a positive integer, we say that an R-module M is an n coherent module if M is n-presented and each (n-1)-presented submodule of M is n-presented. It follows from [1,p.62] that the 1-coherent modules are just the "coherent modules", in the sense of [1].

It will be helpful to isolate the following elementary result.

REMARK 2.1 Let R be a ring and let n be a positive integer. Then each $(n-1)$-presented submodule of an n-coherent R-module is itself an n-coherent R-module.

For reference purposes, we summarize some behavior of λ.

LEMMA 2.2([1, p.61, Exercise 6]) Let R be a ring and let $0 \rightarrow P \rightarrow N \rightarrow$ $M \rightarrow 0$ be an exact sequence of R modules. Then :
a) $\lambda(N) \geq \inf \{\lambda(P), \lambda(M)\}$.
b) $\lambda(M) \geq \inf \{\lambda(N), \lambda(P)+1\}$.
c) $\lambda(P) \geq \inf \{\lambda(N), \lambda(M)-1\}$.
d) If $N=P \oplus M$ then $\lambda(N)=\inf \{\lambda(M), \lambda(P)\}$.

THEOREM 2.3 Let R be a ring and let $0 \rightarrow P \xrightarrow{u} N \xrightarrow{v} M \rightarrow 0$ be an exact sequence of R-modules.

1) If $\lambda(P) \geq n-1$ and N is an n-coherent module, then M is an n-coherent module.
2) If $\lambda(M) \geq n$ and N is an n-coherent module, then P is an n-coherent module.

Proof :1) P is $(n-1)$-presented and N is n-presented; therefore, M is n-presented by Lemma 2.2(b). Let M_{1} be an $(n-1)$-presented submodule of M. Then the exact sequence : $0 \rightarrow P \xrightarrow{u} v^{-1}\left(M_{1}\right) \xrightarrow{v} M_{1} \rightarrow 0$ shows that $\lambda\left(v^{-1}\left(M_{1}\right)\right) \geq$ $\inf \left\{\lambda(P), \lambda\left(M_{1}\right)\right\} \geq n-1$ (Lemma 2.2(a)); therefore, $\lambda\left(v^{-1}\left(M_{1}\right)\right) \geq n$ since $v^{-1}\left(M_{1}\right) \subseteq N$ and \bar{N} is n-coherent. We conclude, by Lemma 2.2(b), that $\lambda\left(M_{1}\right) \geq$ $\inf \left\{\lambda\left(v^{-1}\left(M_{1}\right)\right), \lambda(P)+1\right\} \geq n$.
2) M and N are both n-presented; therefore, P is ($n-1$)-presented by Lemma 2.2(c). Every ($n-1$)-presented submodule of an n-coherent module is an n-coherent module by Remark 2.1 ; therefore, P is n-coherent.

THEOREM 2.4 Let $m \geq n$ be positive integers and let $M_{0} \xrightarrow{u_{3}} M_{1} \xrightarrow{u_{3}} M_{2} \rightarrow$ $\xrightarrow{u_{m}} M_{m}$ be an exact sequence of n-coherent R-modules. Then $\operatorname{Im}\left(u_{i}\right), \operatorname{Ker}\left(u_{i}\right)$ and Coker $\left(u_{i}\right)$ are n-coherent R-modules for each $i=1,2, \ldots, m$.

Proof: It suffices to prove the assertion for $m=n$. Let $M_{0} \xrightarrow{u_{1}} M_{1} \xrightarrow{u_{2}} M_{2} \rightarrow \ldots \xrightarrow{u_{n}}$ M_{n} be an exact sequence of n-coherent R-modules. We then have exact sequences : $0 \rightarrow \operatorname{Ker}\left(u_{1}\right) \rightarrow M_{0} \rightarrow \operatorname{Im}\left(u_{1}\right) \rightarrow 0$,
$0 \rightarrow \operatorname{Im}\left(u_{i}\right)=\operatorname{Ker}\left(u_{i+1}\right) \rightarrow M_{i} \rightarrow \operatorname{Im}\left(u_{i+1}\right) \rightarrow 0$, for each $i=1, \ldots, n-1$, and $0 \rightarrow \operatorname{Im}\left(u_{n}\right) \rightarrow M_{n} \rightarrow \operatorname{Coker}\left(u_{n}\right) \rightarrow 0$.
$\operatorname{Im}\left(u_{1}\right)$ is finitely generated since M_{0} is finitely generated (for M_{0} is n-coherent); therefore, $\operatorname{Im}\left(u_{2}\right)$ is 1-presented; and by induction, we conclude that $\operatorname{Im}\left(u_{n}\right)$ is
($n-1$)-presented. Thus $\operatorname{Im}\left(u_{n}\right)$ is an n-coherent module by Remark 2.1 since $\operatorname{Im}\left(u_{n}\right)$ is a submodule of the n-coherent module M_{n}. Therefore, $\operatorname{Im}\left(u_{i}\right)$ and $\operatorname{Ker}\left(u_{i}\right)$ are n-coherent modules by applying Theorem 2.3 to the above exact sequences. Finally, Theorem 2.3 and the exactness of the sequence $0 \rightarrow \operatorname{Im}\left(u_{i}\right) \rightarrow$ $M_{i} \rightarrow \operatorname{Coker}\left(u_{i}\right) \rightarrow 0$ show that $\operatorname{Coker}\left(u_{i}\right)$ are n-coherent modules.

THEOREM 2.5 Let $n \geq 1$, let the canonical ring homomorphism $R \rightarrow R / I$ satisfy $\lambda_{R}(R / I) \geq n$, and let M be an R-module such that $I M=0$. Then M is n-coherent as an R / I-module if and only if M is n-coherent as an R-module.

Before proving this theorem, we establish the following three Lemmas

LEMMA 2.6 Let $R \rightarrow S$ be a ring homomorphism such that $\lambda_{R}(S) \geq n$ and let M be an n-presented S-module. Then M is an n-presented R-module.

Proof : By induction on n.
Case $n=0:$ If M is a finitely generated S-module and S a finitely generated R-module, it is clear that M is a finitely generated R-module

Assume the result is true for n. Let M be an $(n+1)$-presented S-module and let $\lambda_{R}(S) \geq n+1$. We must show that $\lambda_{R}(M) \geq n+1$. Let $F_{n+1} \xrightarrow{u_{n+1}} F_{n} \xrightarrow{u_{n}} \ldots \rightarrow$ $F_{1} \xrightarrow{u_{1}} F_{0} \xrightarrow{u_{0}} M \rightarrow 0$ be a finite $(n+1)$-presentation of M as an S-module. The exact sequence of S-modules $0 \rightarrow \operatorname{Ker}\left(u_{0}\right) \rightarrow F_{0} \rightarrow M \rightarrow 0$ shows that $\lambda_{S}\left(\operatorname{Ker}\left(u_{0}\right)\right) \geq$ n; so by induction we have $\lambda_{R}\left(\operatorname{Ker}\left(u_{0}\right)\right) \geq n$ since $\lambda_{R}(S) \geq n+1 \geq n$. Moreover $\lambda_{R}\left(F_{0}\right) \geq n+1$ since $\lambda_{R}(S) \geq n+1$ and F_{0} is a finitely generated free S-module Therefore $\lambda_{R}(M) \geq \inf \left\{\lambda_{R}\left(F_{0}\right), \lambda_{R}\left(\operatorname{Ker}\left(u_{0}\right)\right)+1\right\} \geq n+1$ by Lemma 2.2(b) and this completes the proof of Lemma 2.6.

LEMMA 2.7 Let $R \rightarrow S$ be a ring homomorphism such that $\lambda_{R}(S) \geq n-1$ and let M be an S-module. If M is n-presented as an R-module, then it is n-presented as an S-module

Proof : By induction on n.
Case $n=0:$ If M is a finitely generated R-module, then M is also a finitely generated S-module.

We conclude the proof by induction on n. Let M be an S-module such that $\lambda_{R}(M) \geq n+1$ and $\lambda_{R}(S) \geq n$. We must show that $\lambda_{S}(M) \geq n+1$. By induction we have $\lambda_{S}(M) \geq n$. The exact sequence of S-modules $0 \rightarrow K \rightarrow \dot{F}_{0} \rightarrow M \rightarrow 0$ (in which F_{0} is a finitely generated free S-module), considered as an exact sequence of R-modules, shows that $\lambda_{R}(K) \geq \inf \left\{\lambda_{R}\left(F_{0}\right) ; \lambda_{R}(M)-1\right\} \geq n$ (Lemma 2.2(c)). Moreover, we have $\lambda_{R}(S) \geq n \geq n-1$; then by induction we have $\lambda_{S}(K) \geq n$;
therefore, $\lambda_{S}(M) \geq n+1$ by Lemma 2.2(b) and this completes the proof of Lemma 2.7 .

LEMMA 2.8 Let $R \rightarrow S$ be a ring homomorphism such that $\lambda_{R}(S) \geq n-1$ and let M be an S-module. If M is n-coherent as an R-module, then it is n-coherent as an S-module.

Proof : Let $R \rightarrow S$ be a ring homomorphism such that $\lambda_{R}(S) \geq n-1$ and let M be an S-module such that M is n-coherent as an R-module. Lemma 2.7 shows that $\lambda_{S}(M) \geq n$ since $\lambda_{R}(M) \geq n$ and $\lambda_{R}(S) \geq n-1$. Let N be a submodule of the S module M such that $\lambda_{S}(N) \geq n-1$. Then by Lemma 2.6, we have $\lambda_{R}(N) \geq n-1$. Thus, $\lambda_{R}(N) \geq n$ since M is an n-coherent R-module; therefore, $\lambda_{S}(N) \geq n$ by Lemma 2.7 and this completes the proof of Lemma 2.8.

Proof of Theorem 2.5 : Let $R \rightarrow R / I$ be the canonical homomorphism such that $\lambda_{R}(R / I) \geq n$ and let M be an R-module such that $I M=0$. If M is n-coherent as an R-module, then it is n-coherent as an R / I-module by Lemma 2.8 since $\lambda_{R}(R / I) \geq n \geq n-1$. Conversely, let M be an n-coherent R / I-module. By Lemma 2.6 , we have $\lambda_{R}(M) \geq n$ because $\lambda_{R}(R / I) \geq n$. Let N be a submodule of the R -module M such that $\lambda_{R}(N) \geq n-1$. By Lemma 2.7, we have $\lambda_{R / I}(N) \geq n-1$ since $\lambda_{R}(R / I) \geq n$. Thus $\lambda_{R / I}(N) \geq n$ since M is an n-coherent R / I-module and N is a submodule of M as an R / I-module. Therefore, $\lambda_{R}(N) \geq n$ by Lemma 2.6 $\left(\lambda_{R}(R / I) \geq n\right)$ and this completes the proof of Theorem 2.5.

REMARK 2.9 Let the canonical ring homomorphism $R \rightarrow \mathrm{R} /$ I satisfy $\lambda_{R}(R / I) \geq$ $n-1$, and let M be an R module such that $I M=0$. If M is n-coherent as R module, then it is n-coherent as an R / I-module by Lemma 2.8 .

APPLICATION 2.10 Let R be an n-coherent ring (i.e $: R$ is n-coherent as an R-module) and let I be an $(n-1)$-presented ideal of R. Since R is an n-coherent R-module, it follows from Theorem 2.3(1) that R / I is an n-coherent R-module; therefore, by Theorem 2.5, R / I is an n-coherent ring. The case $n=1$ recovers the known fact that if I is a finitely generated ideal of a coherent ring R, then R / I is a coherent ring.

THEOREM 2.11 Let $R \rightarrow S$ be a ring homomorphism making S a faithfully flat R-module and let M be an R-module. If $M \otimes S$ is an n-coherent S-module, then M is an n-coherent R-module.

Proof: We have $\lambda_{S}(M \otimes S) \geq n$ since $M \otimes S$ is an n-coherent \dot{S}-module; therefore, $\lambda_{R}(M) \geq n$ since S is a faithfully flat R-module. Let N be an $(n-1)$-presented submodule of M. Because S is a flat R-module, $\lambda_{S}(N \otimes S) \geq n-1$ and we may assume that $N \otimes S \subseteq M \otimes S$. Thus, $\lambda_{S}(N \otimes S) \geq n$ (since $M \otimes S$ is an n-coherent S-module); therefore, $\lambda_{R}(N) \geq n$ since S is a faithfully flat R-module.

Recall that a ring R is called n-coherent (as ring) if each ($n-1$)-presented ideal of R is n-presented. For example, each valuation domain and each Noetherian ring are n-coherent for each $n \geq 1$.

THEOREM 2.12 Let $R \rightarrow S$ be a ring homomorphism making S a faithfully flat R-module. If S is an n-coherent ring then R is an n-coherent ring.

Proof : Take $M=R$ in Theorem 2.11.

THEOREM 2.13 Let $\left(R_{i}\right)_{i=1,2, \ldots, m}$ be a family of rings. Then $\prod_{i=1}^{m} R_{i}$ is an n coherent ring if and only if R_{i} is an n-coherent ring, for each $i=1, \ldots, m$.

To prove this Theorem, we need the following Lemma.

LEMMA 2.14 Let R_{1} and R_{2} be two rings. Then R_{i} is an infinitely presented ideal of $R_{1} \times R_{2}$, for $i=1,2$.

Proof: The rings R_{1} and R_{2}, more acurately $R_{1} \times 0$ and $0 \times R_{2}$, are two finitely generated ideals of $R_{1} \times R_{2}$ because $0 \rightarrow R_{1} \rightarrow R_{1} \times R_{2} \rightarrow R_{2} \rightarrow 0$ and $0 \rightarrow$ $R_{2} \rightarrow R_{1} \times R_{2} \rightarrow R_{1} \rightarrow 0$ are exact sequences. We finish the proof of this Lemma by induction on the degrees of presentation of the R_{i} using the above two exact sequences.

Proof of Theorem 2.13 : Using induction on \dot{m}, it suffices to prove the assertion for $m=2$. Let R_{1} and R_{2} be two rings such that $R_{1} \times R_{2}$ is an n-coherent ring.. Since $R_{1} \cong\left(R_{1} \times R_{2}\right) / R_{2}, R_{2} \cong\left(R_{1} \times R_{2}\right) / R_{1}$, and the R_{i} are infinitely presented ideals of $R_{1} \times R_{2}$ (Lemma 2.14), then Application 2.10 shows that $R_{i}(i=1,2)$ are n coherent rings. Conversely, let R_{1} and R_{2} be two n-coherent rings and let $I=I_{1} \times I_{2}$ be an ($n-1$)-presented ideal of $R_{1} \times R_{2}$, where I_{i} is an ideal of R_{i}; then for each $i=$ $1,2: \lambda_{R_{1} \times R_{2}}\left(I_{i}\right) \geq \inf \left\{\lambda_{R_{1} \times R_{2}}\left(I_{1}\right), \lambda_{R_{1} \times R_{2}}\left(I_{2}\right)\right\}=\lambda_{R_{1} \times R_{2}}(I) \geq n-1$ (Lemma 2.2(d)). By Lemma 2.7, we have $\lambda_{R_{i}}\left(I_{i}\right) \geq n-1\left(\lambda_{R_{1} \times R_{2}}\left(R_{i}\right)=\infty\right.$ (Lemma
2.14)). Thus, $\lambda_{R_{i}}\left(I_{i}\right) \geq n$ since R_{i} is an n-coherent ring and by Lemma 2.6 , we have $\lambda_{R_{1} \times R_{2}}\left(I_{i}\right) \geq n$ because $\lambda_{R_{1} \times R_{2}}\left(R_{i}\right)=\infty$ (Lemma 2.14). Therefore : $\lambda_{R_{1} \times R_{2}}(I)=$ $\lambda_{R_{1} \times R_{2}}\left(I_{1} \times I_{2}\right)=\inf \left\{\lambda_{R_{1} \times R_{2}}\left(I_{1}\right), \lambda_{R_{1} \times R_{2}}\left(I_{2}\right)\right\} \geq n$ and this completes the proof of Theorem 2.13.

3 N-COHERENCE IN PULLBACKS

Next we study n-coherent (and, to a lesser extent, strong n-coherent) rings for two pullback contexts where coherence has already been studied. First, we adopt the format and the assumptions of Greenberg [7], in considering :

where we assume that $A \rightarrow B$ is an injective flat ring homomorphism and Q is a flat ideal of A such that $Q B=Q$.

THEOREM 3.1 Under the above notation and hypotheses, let $n \geq 1$. If B is an n-coherent ring and A / Q is a strong $(n-1)$-coherent ring, then A is an n-coherent ring,

Before proving this theorem, we establish the following Lemma.

LEMMA 3.2 Let n be a nonnegative integer and M a submodule of a flat A-module. Then M is n-presented over A if and only if $B \otimes M$ and $(A / Q) \otimes M$ are n-presented over B and A / Q, respectively.

Proof : For $n=0$, see[8, p.150, Theorem 5.1.1(3)].
Now, using induction on n, suppose the Lemma is true for n and let M be any ($n+1$)-presented A-module. We have the exact sequence $0 \rightarrow K \rightarrow A^{m} \rightarrow$ $M \rightarrow 0$, where $\lambda_{A}(K) \geq n$ (by Lemma 2.2(c)). By the hypothesis, B is a flat A module. Moreover, $\operatorname{Tor}_{A}^{1}(M, A / Q)=0$: since $M \otimes Q \rightarrow M$ is an injection because
$M \otimes Q \rightarrow F \otimes Q \rightarrow F$ are injections, where F is a flat A-module containing M So tensoring with B and A / Q respectively, we get the following exact sequences:
$\left.{ }^{*}\right) \quad 0 \rightarrow B \otimes K \rightarrow B \otimes A^{m}\left(\cong B^{m}\right) \rightarrow B \otimes M \rightarrow 0$ and
$0 \rightarrow A / Q \otimes K \rightarrow A / Q \otimes A^{m}\left(\cong(A / Q)^{m}\right) \rightarrow A / Q \otimes M \rightarrow 0$
over B and A / Q-modules respectively. On the other hand, since $\lambda_{A}(K) \geq n$ and $K \subseteq A^{m}$, the induction hypothesis shows that $\lambda_{B}(B \otimes K) \geq n$ and $\lambda_{A / Q}(A / Q \otimes$ $K) \geq n$. Therefore, the exact sequences $\left({ }^{*}\right)$ and Lemma 2.2(b) allow us to conclude that $\lambda_{B}(B \otimes M) \geq n+1$ and $\lambda_{A / Q}(A / Q \otimes M) \geq n+1$. Conversely, let M be any A-module such that $\lambda_{B}(B \otimes M) \geq n+1$ and $\lambda_{A / Q}(A / Q \otimes M) \geq n+1$. Consider the exact sequence $0 \rightarrow K \rightarrow A^{m} \rightarrow M \rightarrow 0$ of A-modules. The exact sequences ${ }^{(*)}$ and Lemma 2.2(c) assert that $\lambda_{B}(B \otimes K) \geq n$ and $\lambda_{A / Q}(A / Q \otimes K) \geq n$. By the induction hypothesis, it follows that $\lambda_{A}(K) \geq n$ and the exactness of the sequence $0 \rightarrow K \rightarrow A^{m} \rightarrow M \rightarrow 0$ and Lemma 2.2(b) show that $\lambda_{A}(M) \geq n+1$.

Proof of Theorem 3.1 : Let J be any $(n-1)$-presented ideal of A. Since B is a flat A -module, $J \otimes B=J B$ is an $(n-1)$-presented ideal of B. Moreover, B is n-coherent and therefore $\lambda_{B}(J \otimes B) \geq n$. Since J is contained in the flat A-module A and $\lambda_{A}(J) \geq n-1$, we get $\lambda_{A / Q}(J / Q J)=\lambda_{A / Q}(J \otimes A / Q) \geq n-1$ (Lemma 3.2). From the fact that A / Q is strong $(n-1)$-coherent, we deduce that $\lambda_{A / Q}(J \otimes A / Q) \geq n$ and hence by Lemma 3.2 we have $\lambda_{A}(J) \geq n$.

Notice that for $n=1$, Theorem 3.1 recovers [7, Theorem 2.4 (iii)]; and for $n=2$ we obtain

COROLLARY 3.3 Under the notation and hypotheses of the beginning of this section, if A / Q is a coherent ring and B is $a 2$-coherent ring, then A is a 2 -coherent ring.

Proof : Recall that strong 1-coherence is equivalent to 1-coherence.

REMARK 3.4 a) In Lemma 3.2, the hypothesis " B is a flat A-module" is not necessary. We need only to assume that $\operatorname{wdim}_{A}(B) \leq 1$: indeed, we need only the equality $\operatorname{Tor}_{A}^{1}(B, M)=0$, which is always true if $\operatorname{wdim}_{A}(B) \leq 1[8, \mathrm{p} .155$, Theorem 5.1.2 (Proof)].
b) Notice that D. Costa [4] has given another definition for " n-coherence". Thus, a ring R is n-coherent (according to Costa) if any n-presented R-module is $(n+1)$ presented. This is what we call a strong n-coherent ring. So a ring that is n coherent according to Costa is also n-coherent in our sense, with equivalence of the two definitions for $n=1$ [8, p.45, Theorem 2.3.2].

QUESTION : is strong n-coherence equivalent to n-coherence for $n \geq 2$?

REMARK 3.5 Let $n \geq 1$ and let R be a.ring. Then the answer to the above question is affirmative if and only if $R n$-coherent (in our sense) implies R^{m} is n-coherent as R-module, for each nonnegative integer m. Indeed, let R be a strong n-coherent ring and let $m \geq 0$. Our aim is to show that R^{m} is an n-coherent R-module. R^{m} is a k-presented R-module for each k, since it is free. Let M be an ($n-1$)-presented submodule of R^{m}; then the exact sequence $0 \rightarrow M \rightarrow R^{m} \rightarrow$ $R^{m} / M \rightarrow 0$ shows that $\lambda_{R}\left(R^{m} / M\right) \geq n$ (Lemma 2.2(b)). Thus, $\lambda_{R}\left(R^{m} / M\right) \geq$ $n+1$ since R is a strongly n-coherent ring by hypothesis; therefore, $\lambda_{R}(M) \geq n$. Conversely, let R be an n-coherent ring, we must show that R is a strong n coherent ring. Let M be an n-presented R-module. There exists an exact sequence $0 \rightarrow P \rightarrow R^{m} \rightarrow M \rightarrow 0$; and $\lambda_{R}(P) \geq n-1$ (Lemma 2.2(c)). Thus $\lambda_{R}(P) \geq n$ since $P \subseteq R^{m}$ and R^{m} is an n-coherent R-module; therefore, $\lambda_{R}(M) \geq n+1$ (Lemma 2.2(b)) and so R is a strong n-coherent ring.

Next, motived by the work in [5] on coherence (the case $n=1$), we consider n-coherent rings for the classical (pullback) $D+M$-construction.

THEOREM 3.6 Let $V=K+M$ be a valuation domain which is not a field, and let $R=D+M$, where D is a subring of the field K. Denote by qf(D) the field of quotients of D.

1) If $q f(D)=K$, then R is n-coherent if and only if D is n-coherent.
2) If $q f(D) \neq K, M$ is a flat R-module and $n \geq 2$, then :
$R n$-coherent implies that D is n-coherent, and
D strong n-coherent implies that R is n-coherent.

The proof of this Theorem is based on Lemma 3.2 and the following Lemma :

LEMMA 3.7 [2, Theorem 2.1, (n)] Let $V=K+M$ be a valuation domain and $R=D+M$ be a subring of V, where D is a subring of the field K. If I is an ideal of R contained in M, then either I is an ideal of V or $I V$ is a principal ideal of V. Moreover, if I is not an ideal of V and if $I V=a V$, where $a \in I$, then $I=W a+M a$, for some D-submodule W of K such that $D \subseteq W \subset K$.

Proof of Theorem $3.6: 1$) Since $q f(D)=K$, by [5, Theorem 7] we deduce that M is a flat R-module. Moreover, for $S=D-\{0\}$, we have that $V=K+M=$ $S^{-1}(D+M)=S^{-1} R$ is a flat R-module and then Lemma 3.2 may be applied to
the pullback :

Now, assume that R is n-coherent and let J_{0} be any nonzero ($n-1$)-presented ideal of D. Set $J=J_{0}+M ; J$ is an ideal of R. Since V is a flat R-module, we have : $V \otimes_{R} J=V J=\left(J_{0}+M\right)(K+M)=\left(J_{0} K\right)+\left(J_{0} M+K M+M^{2}\right)=K+M=V$ which is an $(n-1)$-presented V-module. On the other hand, $J \otimes R / M=\left(J_{0}+M\right) \otimes$ $R / M=\left(J_{0}+M\right) /\left(J_{0}+M\right) M=\left(J_{0}+M\right) / M \cong J_{0}$, and J_{0} is an $(n-1)$-presented $R / M(=D)$-module. Hence by Lemma $3.2, \lambda_{R}(J) \geq n-1$. But R is n-coherent, so $\lambda_{R}(J) \geq n$. Thus by Lemma 3.2, $\lambda_{D}\left(J_{0}\right)=\lambda_{R / M}(J \otimes R / M) \geq n$ and so D is n-coherent. Conversely, assume that D is n-coherent. As valuation domains are n-coherent, we may assume without loss of generality that D is not a field. Now, let J be any $(n-1)$-presented ideal of R. Two cases are possible

Case 1: $\mathrm{J}=J_{0}+M$ with J_{0} a nonzero ideal of $D:$ Since $\lambda_{R}(J) \geq n-1$, Lemma 3.2 shows that $\lambda_{D}\left(J_{0}\right)=\lambda_{R / M}(J \otimes R / M) \geq n-1$. It follows that $\lambda_{D}\left(J_{0}\right)=$ $\lambda_{R / M}(J \otimes R / M) \geq n$ (since D is n-coherent). On the other hand, because V is a flat R-module, we have $J \otimes V=J V=\left(J_{0}+M\right)(K+M)=V$ which is an n-presented V-module. By Lemma 3.2 we obtain $\lambda_{R}(J) \geq n$.

Case 2 : $J \subseteq M$. In this case we need to show that J is n-presented. It suffices, by Lemma 3.2, to prove that $\lambda_{V}(J \otimes V) \geq n$ and $\lambda_{R / M}(J \otimes R / M) \geq n$. Since $\lambda_{R}(J) \geq n-1$, Lemma 3.2 shows that $\lambda_{V}(J \otimes V) \geq n-1$. As V is a flat . R-module, $J \otimes V=J V$ is an ideal of V, which is, in particular, finitely generated, and without loss of generality, we may take $J \neq 0$. Therefore, since V is a valuation domain, there exists $0 \neq a \in J$ such that $J \otimes V=J V=a V \cong V$ (as V-modules). Thus $\lambda_{V}(J \otimes V)=\infty \geq n$.

For the remaining inequality, Lemma 3.7 asserts that J is either an ideal of V or of the form $J=W a+M a$ with $a \in J$ and W a D-submodule of K such that
$D \subseteq W \subset K$ $D \subseteq W \subset K$.

If J is an ideal of V, it is a finitely generated R-module and so it is a cyclic V-module (V is a valuation domain). We may assume $J \neq 0$ and so $J \cong V$ (as V-modules). Hence, $J / J M=J \otimes R / M \cong V \otimes R / M \cong V / M$ (as V / M-modules); that is $J / J M \cong K$ as K-modules, and so as D-modules. Therefore, $K \cong J / J M$ is a finitely generated D-module and since K is thus integral over D, D is a field, a contradiction.

If J is not an ideal of V then $J=W a+M a$ for some $a \in J$ and $D \subseteq W \subset K$. We have $J \otimes R / M=J / J M$ is an $(n-1)$-presented $R / M(=D)$-module and
$J M=(W a+M a) M=M W a+M^{2} a=M a+M^{2} a=M a$. Since $J \neq 0$, we may assume $a \neq 0$ and then $J \otimes R / M=J / J M=(W a+M a) / W a \cong W a \cong W$ as D-modules. It follows that $\lambda_{R / M}(J \otimes R / M)=\lambda_{D}(W) \geq n-1$. Because W is also a finitely generated D-module with $D \subseteq W \subset K=\mathrm{qf}(\mathrm{D})$, there exists an ideal I of D and a nonzero $d \in D$ such that $\bar{W}=(1 / d) I \cong I$ (as D-modules). Hence $\lambda_{D}(I)=\lambda_{D}(W) \geq n-1$ and so $\lambda_{D}(I) \geq n$ (since D is n-coherent). Therefore, $\lambda_{R / M}(J \otimes R / M)=\lambda_{D}(W)=\lambda_{D}(I) \geq n$. Thus we proved that $\lambda_{V}(J \otimes V) \geq n$ and $\lambda_{R / M}(J \otimes R / M) \geq n$. Hence Lemma 3.2 shows that $\lambda_{R}(J) \geq n$ and thus R is n-coherent.
2) Set $k=q f(D)$ and $V_{0}=k+M ; V_{0}$ is a strong 2-coherent ring [4, p.12, Corollary 5.2]. As $V_{0}=S^{-1} R$ is a flat R-module (where $S=D-\{0\}$), we may apply Lemma 3.2 to the pullback :

Now, assume that R is n-coherent. Then, if we replace \dot{V} with V_{0} in part 1), the above argument allows us to conclude that D is n-coherent.

Now, let D be a strong n-coherent ring. We will show that R is n-coherent. Let J be any $(n-1)$-presented ideal of R. Two cases are possible :

Case $1: J=J_{0}+M$ with J_{0} a nonzero ideal of D. If we replace V with \dot{V}_{0} in part 1), the same argument shows that J is n-presented.

Case $2: J \subseteq M$: From Lemma 3.2, $\lambda_{V_{0}}\left(J \otimes V_{0}\right) \geq n-1$ (since $\lambda_{R}(J) \geq n-1$). Since V_{0} is a flat R-module, we have that $J \otimes V_{0}=J V_{0}$ is an ideal of V_{0} which is finitely presented (since $n \geq 2$). As V_{0} is strong 2-coherent, $J \otimes V_{0}=J V_{0}$ is an infinitely presented V-module, that is, $\lambda_{V_{0}}\left(J \otimes V_{0}\right)=\infty \geq n$.

By Lemma 3.7, J is either an ideal of V or of the form $J=W a+M a$ where $a \in J$ and W is a D-submodule of K such that $D \subseteq W \subset K$. If J is an ideal of V, then after replacing V with V_{0} in part 1), the same arguments hold : because V_{0} is strong 2-coherent [4, Corollary 5.2], V_{0} is also strong n-coherent and therefore n-coherent (for $n \geq 2$). If $J=W a+M a$ (with $a \in J$ and $D \subseteq W \subset$ K), by replacing V with V_{0} in part 1), the above reasoning applies and we get $\lambda_{R / M}(J \otimes R / M)=\lambda_{D}(W) \geq n-1$. Since W is a finitely generated D-module with $D \subseteq W \subset K$, then $k \otimes W=k W$ is a k-vector space of finite dimension and therefore there exists an integer m such that $W \subseteq k W \cong k^{m}$. Therefore, there exists $0 \neq d \in D$ so that $(1 / d) W \subseteq D^{m}$. It follows that $\lambda_{D}\left(D^{m} /(1 / d) W\right) \geq n$. So $\lambda_{D}\left(D^{m} /(1 / d) W\right)=\infty \geq n+1$ (since D is strong n-coherent) and we have
$\lambda_{D}((1 / d) W) \geq n$. We proved that $\lambda_{V_{0}}\left(J \otimes V_{0}\right) \geq n$ and $\lambda_{R / M}(J \otimes R / M) \geq n$, and so Lemma 3.2 allows us to complete the proof.

REMARK 3.8 a) It follows by $[5$, Theorem 3] that if $q f(D)=K$, then $R=$ $D+M$ is coherent if and only if D is coherent. This assertion is generalized to " n-coherence" in Theorem 3.6(1),
b) In regard to Theorem 3.6(2), note via [5, Theorem 7] that if $q f(D) \neq K$, then M is a flat R-module if and only if $M=M^{2}$. Also, by [5, p.51], if D is a field, then the 1 -coherence of R implies that M is not a flat R-module.
c) For $n=2$, Application 2.10 shows that if R is a 2 -coherent ring and I is a 1 presented ideal of R, then R / I is a 2 -coherent ring. For $R=D+M \subseteq V=K+M$ in which $V=K+M$ is a domain, but not necessarily valuation (cf.[3]), we have a special result in which $I(=M)$ need only be assumed finitely generated over R. It addresses a context not covered by Theorem 3.6.

REMARK 3.9 Let $T=K+M$ be any domain with D a subring of K. If $R=D+M$ is a 2 -coherent ring and M a finitely generated R-module, then $D=R / M$ is a 2 -coherent ring. Indeed, since M is finitely generated, by [3, Lemma $1], D$ is a field and thus is a 2 -coherent ring.

REFERENCES

[1] N. Bourbaki. "Algèbre Commutative". chapitres 1-4, Masson, Paris, 1985
[2] E. Bastida and R. Gilmer. "Overrings and divisorial ideals of rings of the form D+M", Michigan Math. J. 20 (1973) 79-95.
[3] J. Brewer and E. Rutter. "D+M constructions with general overrings", Michigan Math. J. 23 (1976) 33-42.
[4] D.L. Costa. "Parametrizing families of non-noetherian rings", Comm. Algebra 22 (1994) 3997-4011.
[5] D.E. Dobbs and I.J. Papick. "When is D+M coherent", Proc. Amer. Math. Soc. 56 (1976) 51-54.
[6] D. Ferrand. "Descente de la platitude par un homomorphisme fini", C. R. Acad. Sc. Paris 269 (1969) 946-949.
[7] B. Greenberg. "Coherence in cartesian squares", J. Algebra 50 (1978) 12-25
[8] S. Glaz. "Commutative Coherent Rings", Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989
[9] I. Kaplansky. "Commutative Rings", Univ. Chicago Press, Chicago, 1974.
[10] J.J. Rotman. "An Introduction to Homological Algebra", Academic Press, New York, 1979.
[11] W.V. Vasconcelos. "Conductor, Projectivity and Injectivity", Pacific J. Math. 46 (1973) 603-608.
[12] W.V. Vasconcelos. "The Rings of Dimension Two", Marcel Dekker, New York, 1976.

