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ABSTRACT : For each positive integéi‘ n, the notions of an n-coherent module and an n-
coherent (commutative) ring are introduced, with the n=1 cases corresponding to the classical
meanings of “coherence”. “Results are developed for various pullback contexts (the context of
Greenberg and the classical D—I—M—éonsfructions) in which coherence has been studied earlier.

1 INTRODUCTION

All rings considered below are commutative with unit, and all modules are unital.
If » is a nonnegative integer, we say that an R-module M is n-presented if there
is an exact sequence Fy, — Frpo1 — .. — Fy —» M — 0 of R-modules in which
cach F, is finitely generated and free. (Our usage follows [4]; in [12], such M is
said to “have a finite n-presentation”.) In particular, “0-presented” means finitely
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generated and “l-presented” means finitely presented. Following [1], we let A\(Mf )=
Ar(M) = sup{n/ M is an n-presented R-module}, so that 0 < A(M) < co; the
properties of the function A are recalled in Lemma2.2, Classically, the “n-presented
concept allows both idea)-theoretic and module-theoretic approaches to coherent
rings. Indeed (cf. [1], p.63, Exercisel2), a ring R is coherent if and only if each
finitely generated ideal of R is finitely presented; equivalently, if and only if each
finitely presented R-module is 2-presented, Accordingly, as explained below, we
use the A-function to introduce both ideal and module theoretic approaches to
“n-coherence” for any positive integer n. For background on coherence, we refer
the reader to [8]. We also assume some familiarity with the studies of coherent
rings in various pullback contexts ([71,15),13]); as well as with the (n, d)-properties
introduced recently in [4]. “ o
Let n be a positive integer. We say that R is n~-coherent (as a ring) if each
(n —1)-presented ideal of R is n-presented; and that R is a strong n-coherent ring
if each n-presented R-module is (n + 1)-presented. (This terminology is not the

same as that of [4], where Costa’s “n-coherence” is our “strong n-coherence” ; nor

is our usage that of “r-coherence” mentioned in ({12], p.90)) :

Thus, the 1-coherent rings are just the coherent rings. Strong n-coherence
arose naturally in Costa’s study [4] of the (n, d)-properties. In general, any strong
n~coherent ring is n-coherent (by, for instance, the version of Schanuel’s Lemma
in ([12], p.89). The converse holds if 7, — 1 (by the result ([1], p.63, Exercisel2)
cited earlier), but it is-an open question for n > 2. Notice that each Bezout (for
instance, valuation) domain R is n-coherent for each n > 1; indeed, each (n — 1)-
presented ideal of R is principal and hence infinitely-presented (in the obvious
sense). Moreover, each Noetherian ring is n-coherent, for any n > 1.

Section 2 begins, more generally, by defining n-coherent modules for each
integer n > 1. As one might expect, the 1-coherent modules are just the “coherent
modules” in the sense of (1]; and a ring R is an n-coherent ring if and only if R is
an n-coherent R-module. Several results on transfer of n-coherence are developed
in section 2, and these are used in section 3 to develop examples of n-coherent rings

{(and, more generally, to study associated properties) in the two pullback contexts
cited above. ' : '

2 N-COHERENCE

If Ris aring and n is a positive integer, we say that an R-module M is an n-
coherent module if M is n-presented and each (n — 1)-presented submodule of A7
is n-presented. It follows from [1,0.62] that the I-coherent modules are just the
“coherent modules”, in the sense of f1].

It will be helpful to isolate the following elementary result.
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i be a positive integer. Then ead

2.1 Let R be a ring and let n ve t ach
](;:filvl{flif:ented submodule of an n—coherent R—module is itself an n-—coheren

R—module. .

For reference purposes, we summarize some behavior of A .

LEMMA. 2.2(t1, p.61, Exercise 6]) Let R be a ring and let 0 — P — N —
M — 0 be an exact sequence of R modules. Then : .
a) MN) z inf{MP),\(M)}.
b) MM) > mf{)\(f\)f),)\)(\g)) +11;
inf{MN), 1)
3)) ’}}IID\Q 5 ?GfB{MS then A(N) = inf{A(M), A(P}}.

let t
THEOREM 2.3 Let R be a ring and let 0 — P = N 55 M — 0 be an exac

- les. .
i(;q?n:f;)fi Zofule'jmd N is an n-coherent module, then M is an ﬂ—coherent

module.

2) If M(M) > n and N is an n-coherent module, then P is an n-coherent module.

Proof :1) P is (n— 1)-presented and N is n-presented; tlll)erefgrti, M; i;/{ m};ﬁ:inzle:;
: . Let My be an (n — 1)-presented submodule o -
by Ltem;nzerzllci(l?)olli plﬂ» v (M) 5 M; — 0 shows Elllat Al ;(Mlli)ncze
gz;?[A(SP(:)l,/\(Mlj} > n — 1 (Lemima 2.2(a)); therefore, )\(1; 2((}3]\)4'11;)})1&;)\?1\41) .
v~} (M;) € N and N is n-coherent. We conclude, by Lemma 2. (®), >
; -t MP)+1} = n. .
%nf{/;(; M'( ﬂfﬁ?i)’zv (a.r)e bO{h n-pregented ; therefore, P is (f:r;1 — 11—presde;1nli;ei l;i
' bmodule of an n-coherent mo
2.2(c). Every (n — 1)-presented su . ‘
ﬁ?éghme?ent (m)odule by Remark 2.1; therefore, P is n-coherent.

) ) 7 i u
iba } dletMOAM]_JMg—)
M 2.4 Let m > n be positive integers an . _
TITIL—’“]? (I::?Ebe an exact sequence of n-coherent R-modules. Then I m{u;), Ker(u;)
. (Mom

and Coker(u;) are n-coherent R-modules for eachi=1,2,...,m.

, : _ . N
i = .LetMoﬂM1iM2—i...
y : uffices to prove the assertion form =n :
i/ilfozfe aiii :xa,(:: sequence of n-coherent R~-modules. We then have exact sequences
n o
Ker{uy) = My — Im(u1) — 0, ‘ o 1 and
8 : Im(’fq)l): Ker(ug1) — My — Im(uiqq) — 0, foreach 2 =1,..,n
M, — Coker(uy,) — 0. . - N
(} —é('j TE: Tﬁ)rli;aly generated since My is finitely generated (for My lfl r:; (}(;1;((3;81"; )1 ;
tlf:r;ret}ore Imf(uy) is 1-presented; and by induction, we conclude tha n
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(n — 1)-presented. Thus I'm(u,) is an n-coherent madule by Remark 2.1 since
Im{uy,) is a submodule of the n-coherent module M,,. Therefore, I'm(u;) and
Ker(u;) are n-coherent modules by applying Theorem 2.3 to the above exact
sequences. Finally, Theorem 2.3 and the exactness of the sequence 0 — Im(u;) —
M; — Coker(u;) — 0 show that Coker(u;) are n-coherent modules.

THEOREM 2.5 Let n > 1, let the canonical ring homomorphism R — R/I
satisfy Ap(R/I) > n, and let M be an R-miodule such that IM = 0. Then M is
n-coherent as an R/I-module if and only if M is n-coherent as an R-module.

Before proving this theorem, we establish the following thiee Lemmas.

LEMMA 2.6 Let R — S be a ring homomorphism such that Ag(S) > n and let
M be an n-presented S-module. Then M is an n-presented R-module.

Proof : By induction on n.

"Casen = 0 : If M is a finitely generated S-module and S a finitely generated
HR-module, it is clear that M is a finitely generated R-module.

Assume the result is true for n. Let M be an (n+ 1)-presented S-module and
let Ap(S) > n + 1. We must show that Ap(M) > n-+ 1. Let By, ““' 1, %,
B % M - 0bea finite (n-+1)-presentation of M as an S-module. The exact
sequence of S-modules 0 — Ker(ug) — Fy — M — 0 shows that Ag(Ker(ug)) >
n; 50 by induction we have Ag(Ker(ug)) > n since Ag(S) > n+1 > n. Moreover,
Ar(Fo} = n+1since Ap(S) > n+1and Fyis a finitely generated free S-module.
Therefore Ap(M) = inf{Ap(Fy), Ar(Ker(uo))+1} 2 n+1 by Lemma 2.2(b) and
this completes the proof of Lemma, 2.6.

LEMMA 2.7 Let R — S be a ring homomorphism such that Ap(S) > n - 1 and
let M be an S-module. If M is n-presented as an R-module, then it is n-presented
as an S-module.’ '

Proof : By induction on 7. .

Case n = 0:If M is a finitely generated R-module, then M is also a finitely
generated S-module. :

We conclude the proof by induction on n. Let M be an S-module such that
Ar(M) > n+1 and Ap(S) > n. We must show that As(M) = n+1. By induction,
we have Ag(M) > n. The exact sequence of S-modules 0 — K —» Fy - M — 0(in
which Fj is a finitely generated free S-module), considered as an exact sequence
of R-modules, shows that Ag(K) > inf{Ap(Fy) AR(M) — 1} > n (Lemma 2.2(c)).
Moreover, we have Ar(S) > n > n — 1; then by induction we have As(K) > n;
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therefore, Ag(M) > n+1 by Lemma 2.2(b) and this completes the proof of Lemma.
2.7.

LEMMA 2.8 Let B — S be a ring homomorphism such that A R('S)_ >n—1 and
let M be an S-module. If M is n-coherent as an R-module, then it is n -coherent

as an S-module.

Proof : Let R — 8 be a ring homomorphism such that Ag(S) > n—1 and let M be
an S-module such that M is n-coherent as an R-module. Lemma 2.7 shows that
Ag{M) > n since Ap(M) > nand Ag(5) > n—1.Let N be a submodule of the .S'l—
module M such that Ag(N) > n— 1. Then by Lemma 2.6, we have Ar(N) > n—b .
Thus, Ag(N) > n since M is an n-coherent R-module; therefore, As(N) = n by
Lemme 2.7 and this completes the proof of Lemma 2.8,

| Proof of Theorem 2.5 : Let R — R/I be the canonical homomorphism such that

Mr(R/I) > n and let M be an R-module such that IM = 0. If M is n-cohe?ent
as an R-module, then it is n-coherent as an R/I -module by Lemma 2.8 since
Ar(R/I) = n > n—1. Conversely, let M be an n-coherent R/I-module. By ?erﬁlm;
2.6, we have Ag(M) > n because Ag(R/I) > n. Let N be a submodule of the
-module M such that Ag(N) > n — 1. By Lemma 2.7, we have Ag;;(N) 2 n—1
since Ag(R/I) > n. Thus Aps;(N) > n since M is an n-coherent R/7-module and
N is a submodule of M as an R/I-module. Therefore, Ag(N) > n by Lemma 2.6
(Ar(R/I) = n} and this comipletes the proof of Theorem 2.5.

REMARK 2.9 Let the canonical ring homomorphism R — R/'I satisfy Ar(R/T) >
n — 1, and let M be an R module such that /M = 0. If M is n-coherent as R-
module, then it is n-coherent as an R//-module by Lemma 2.8. .

APPLICA’I‘ION 2.10 Let R be an n-coherent ring (i.e : R is n_-coherent as on
R-module) and let I be an (n — 1)-presented ideal of R Since R is an n-coherf;m?
R-module, it follows from Theorem 2.3(1) that R/I is an n-coherent R-modu z ;
therefore, by Theorem 2.5, R/1 is an n-coherent ring. The case n= 1 recovers ;f e
known fact that if I is a finitely generated ideal of a coherent ring R, then R/Iis

a coherent ring.

THEQOREM 2.11 Let B — S be a ring homomorphism making S a faithfully
flat R-module and let M be an R-module. If M & S.is an n-coherent S-module,

then M is an n-coherent R-module.
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Proof : We have Ag{(M®5) > n since M ®9 is an n-coherent S—module; therefore,
Ar{M) > n since S is a faithfully flat R-module. Let N be an (n — 1)-presented
~ submodule of M. Because S is a flat R-module, Ag(N ® S) > n — 1 and we may

assume that N® 5 C M ® 5. Thus, As(N®S) > n (since M ® S is an n-coherent

S-module); therefore, Ap(N) > n since § is a faithfully flat R -module.

Recall that a ring R is called n-coherent (as ring) if each (n — 1)-presented
ideal of R is n-presented. For example, each valuation domain and each Noetherian
ring are n-coherent for each n > 1.

THEOREM 2.12 Let R — S be a ring homomorphism making S a Sfaithfully
flat R-module. If S is an n-coherent ring then R is an n-coherent ring.

Proof : Take M = R in Theorem 2.11.

. m
THEOREM 2.13 Let (R;)i=1,3,...,m be ' family of rings. Then [ Ry is an n-
i=1
coherent ring if and only if R; is an n-coherent ring, for eachi = 1,..,m.

To prove this Theorem, we need the following Lemma.

LEMMA 2.14 Let Ry and Ry be two rings. Then R, is an infinitely presented
ideal of Ry X Ry , fori=1,2. :

Proof : The rings R; and Rs, more acurately H; x 0 and 0 x Ry, are two finitely
generated ideals of By x Ry because 0 — R; — Ry X Ry — Ry - 0and 0 —
Ry — By x By — Ry'— 0 are exact sequences. We finish the proof of this Lemma
by induction on the degrees of presentation of the R; using the above two exact
sequences. ) :

Proof of Theorem 2.13 : Using induction on m, it suffices to prove the assertion for
m = 2. Let R; and Rj be two rings such that By x Ry is an n-coherent ring..Since
Ri = (R x R3)/ Rz, Ry = (R4 x Rp)/Ry, and the R; are infinitely presented ideals
of By x Ry (Lemma 2.14), then Application 2.10 shows that R;i(i = 1,2) are n-
coherent rings. Conversely, let B, and Ry be two n-coherent ringsand let I = I; x Iy
be an (n—1)-presented ideal of Ry x Ry, where I, is an ideal of R;; then for each 1 =
1,2: Ag, sz()Ii) 2 Z'nf{/\l‘h)(Rz(Il)'l ’\R1XRz(I2)} = ’\31XR2(I) =2n-—1 (Lemma'
2.2(d}). By Lemma 2.7, we have Ap,(L) > n —1 ( Ap,xn,(Ri) = oo (Lemma
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2.14)). Thus, Ag,(I;) > nsince R; is an n-coherent ring and by Lemma 2.6, we have
AR, xR, (I;) = n because Ap, x r, (i) = co.(Lemma 2.14). Therefore : Ar, xr, (I} =
Arixry (1 X I2) = inf{Ar, xr, (11}, ARy x By (f2)} = n and this completes the proof
of Theorem 2.13. : :

3 N-COHERENCE IN PULLBACKS

Next we study n-coherent (and, to a lesser extent, strong n-coherent) rings for two
pullback contexts where coherence has already been studied. First, we adopt the
format and the assumptions of Greenberg [7], in considering :

A s B

o

- A/Q —— B/Q,

where we assumé that A — B is an injective flat ring homomorphism and ¢} is a
flat ideal of A such that @B = ¢}

THEOREM 3.1 Under the above notation and hyg)oth.eses_, letn > 1. If Bisan
n-coherent ring and A/Q is a strong (n— 1)-coherent ring, then A is an n-coherent

ring,

-

Before proving this theorem, we establish the following Lemma.

LEMMA 32 Let n be a nonnegative integer and M a submodule of a flat
A—module. Then M is n-presented over A if and only if B® M and (A/Q)®@ M
are n-presented over B and A/Q), respectively.

Proof : For n = 0, see[8, p.150, Theorem 5.1.1(3)]. _

Now, using induction on n, suppose the Lemma is true for n and let M be
any (n - 1)-presented A-module. We have the exact sequence 0 — K — A™ —
M — 0, where A 4(K) > n (by Lemma 2.2(c)). By the hypothesis, B is a flat A-
module. Moreover, Torly (M, A/Q) =0 : since M ® Q — M is an injection because
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M®Q - F®Q — F are injections, where I is a flat A-module containing M.
So tensoring with B and A/Q respectively, we get the following exact sequences
(*) 0-»B®K->B®Am(’£Bm)—>B®M—»0and
0= A/QOK — A/Q & A™(2 (A/Q)™) » AJQ& M — 0

over B and A/Q-modules respectively. On the other hand, since A A(K) > n and
K C A™, the induction hypothesis shows that AB(B® K) > n and A A/0(A/Q &
K) > n. Therefore, the exact sequences (*) and Lemma 2.2(b) allow us to conclude
that Ag(B@ M) > n+1 and Aar(A/Q & M) > n+ 1. Conversely, let M be any
A-module such that Ap(B ® M)>n+1and Aa/(A/Q & M) > n+ 1. Consider
the exact sequence 0 —» K = A™ — M — 0 of A-modules. The exact sequences
(*) and Lemma 2.2(c) assert that Ap(B® K) > n and Aaje{A/Q ® K) > n.
By the induction hypothesis, it follows that A A(K) > n and the exactness of the
sequence 0 — K — A™ — M — 0 and Lemina 2.2(b) show that Aa(M) > n + 1.

Proof of Theorem 3.1 : Let J be any (n— 1)-presented ideal of A. Since B is a flat A
-module, J®B = JB is an {n— 1)-presented ideal of B. Moreover, B is n-coherent,
and therefore Ag(J ® B) > n. Since J is contained in the flat A-module A and
Aa(J) 2 n—1, we get A q(J/QJ) = Aa@(J®A/Q) > n—1 (Lemma 3.2). From
the fact that A/Q is strong (n - 1)-coherent, we deduce that A4 /0(J ® A/Q) > n
and hence by Lemma 3.2 we have A 4(J) > n.

Notice that for n = 1, Theorem 3.1 recovers [7, Theorem 2.4 (iii)]; and for
n = 2 we obtain : :

COROLLARY 3.3 Under the notation and hypotheses of the beginning of this
section, if A/Q is a coherent ring and B is a 2-coherent ring, then A is a 2-coherent
T, '

Proof : Recall that strong 1-coherence is equivalent to 1-coherence.

REMARK 3.4 a) In Lemma 3.2, the hypothesis “B is a flat A-module” is not
necessary. We need only to assume that wdima(B) < 1: indeed, we need only
the equality Tory (B, M) = 0, which is always true if wdim(B) < 1 [8, p.1565,
Theorem 5.1.2 (Proof)]. - '

b} Notice that D. Costa (4] has given another definition for “n-coherence”. Thus, a
ring R is n-coherent {according to Costa) if any n-presented R-module is (n+1)-
presented. This is what we call a strong n-coherent ring. So a ring that is n-
coherent according to Costa is also n-coherent in our sense, with equivalence of
the two definitions for n = 1 [8, p.45, Theorem 2.3.2). '
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QUESTION : is strong n-coherence equivalent to n-coherence form > 27

REMARK 3.5 Let n > 1 and let R be a ring. Then the answer to the above
question is affirmative if and only if B n-coherent (in our sense) implies B™ is
n-coherent as R-module, for each nonnegative integer m. Indeed, let £ be a strong
n-coherent ring and let m > 0. OQur aim is to show that B™ is an n-coherent
R-module. R™ is a k-presented R-moduie for each &, since it is free. Let M be an
(n — 1)-presented submodule of B™; then the exact sequence 0 — M — R™ —
R™ /M-~ 0 shows that Ag(R™/M) > n (Lemma 2.2(b)). Thus, Agr(R™/M) >
n + 1 since R is a strongly n-coherent ring by hypothesis; therefore, Ag(M) > n.
Conversely, let R be an n-coherent ring, we must show that R is a strong n-
coherent ring, Let M be an n-presented R-module. There exists an exact sequence
0P —R"™— M -0, and Ag(P) > n — 1 (Lemma 2.2(c)). Thus Ar(P) > n
since P C R™ and R™ is an n-coherent R-module; therefore, Ag(M) > n + 1
(Lemma 2.2(b)} and so R is a strong n-coherent ring.

Next, motived by the work in [5] on coherence (the case n = 1), we consider
n-coherent rings for the classical (pullbac]_t) D+ M -construction.

THEOREM 3.6 Let V = K + M be a valuation domain which is not a field, and
let R = D+ M, where D is o subring of the field K. Denote by gf(D) the field of
guotients of D.

‘1) If qf(D) = K, then R is n-coherent if and only if D is n-coherent.

2) If qf (D) # K, M is a flat R -module and n > 2, then :
R n-coherent implies that D is n-coherent, and
D strong n-coherent implies that R is n-coherent,

The proof of this Theorem is based on Lemma 3.2 and the following Lemma, :

LEMMA 3.7 [2, Theorem 2.1, (n)] Let V = K + M be a valuation domain
and R = D + M be a subring of V, where D is a subring of the field K. If I is
an ideal of R contained in M, then either I is an ideal of V or IV is a principal
ideal of V.. Moveover, if I is not an ideal of V and if IV = aV, where ¢ € I, then
I=Wa+ Ma, for some D-submodule W of K such that D C W C K.

Proof of Theorem 3.6 : 1) Since ¢f(D)} = K, by [5, Theorem 7] we deduce that
M is a flat R-module. Moreover, for § = D — {0}, we have that V = K +'M =
S7YD + M) = SR is a flat R-module and then Lemma 3.2 may be applied to

E!
|
|

i
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the pullback :

R=D4+M —— V=K+M

D=R/M —— K=V/M.

Now, assume that R is n-coherent and let Jy be any nonzero (n—1)-presented
ideal of D. Set J = Jo+M ; J is an ideal of R. Since V is & flat R-module, we have :
VOrJ=VI=(Jo+M)(K+M)= (oK) + (oM +EMAMN =K+ M=V
which is an (n-1)-presented V-module. On the other hand, .J RR/M = (Jp+ M)®
RIM = (Jo+M)/(Jo+M)M = (Jy+M)/M = Jy, and Jy is an {(n—1)-presented
R/M(= D)-module. Hence by Lemma 3.2, Ar(J) > n — 1. But R is n~coherent,
50 Ag(J) > n. Thus by Lemma 3.2, Ap(Jp) = Arsm(J ® R/M) > n and so D
is n-coherent. Conversely, assume that D is n-coherent. As valuation ‘domains are
n-coherent, we may assume without loss of generality that D is not a field. Now,
let J be any (n — 1)-presented ideal of R. Two cases are possible :

Case 1 : J = Jp + M with Jy a nonzero ideal of D : Since Ar(J)y > n—1,
Lemma 3.2 shows that Ap(Jp) = Arsa(JOR/M) > n—1. Tt follows that An(Jo) =
Aryu(J ® R/M) > n (since D is n-coherent). On the other hand, because V is
a flat R-module, we have J @ V = JV = (Jy + M)(K + M) =V which is an
n-presented V-module. By Temma 3.2 we obtain Ag(J) > n.

Case 2 : J C M. In this case we need to show that J is n-presented. It
suffices, by Lemma 3.2, to prove that Ay (J ® V) > n and Agar(J ® R/M) > n.
Since Ag(J) > n — 1, Lemma 3.2 shows that AW QV)>n—1. As V is a flat

-R-module, J®V = JV is an ideal of V, which is, in particular, finitely generated,
and without loss of generality, we may take J # 0. Therefore, since V is a valuation
domain, there exists 0 # a € Jsuch that JQV = JV =qV 2 V (as V-modules).
Thus Ay (J @ V) =00 > n.

For the remaining inequality, Lemma 3.7 asserts that J is etther an ideal of
V or of the form J = Wa + Ma witha € J and W a D-submodule of K such that
DCWCK. ‘ _ S

If J is an ideal of V, it is a finitely generated R-module and so it is a cyclic
V-module (V is a valuation domain). We may assume J #0and so J 2V (as
V-modules). Hence, J/JM = J @ R/M =V ® R/M = V/M (as V/M-modules);
that is J/JM = K as K-modules, and so as D-modules. Therefore, K 22 J/JM

is a finitely generated D-module and since K is thus integral over D, IJ is a field,

& contradiction.
If J is not an ideal of V then J = Wa+Maforsomea e Jand DC W C K.
We have J ® R/M = J/JM is an (n — 1)-presented R/M{= D)-module and

%
:

JM = (Wa+ Ma)M = MWa + M?a = Ma+ M?a = Ma. Since J # O’LW may
assume @ # 0 and then J® R/M = J/JM = (Wa + Ma)/Wa = Wa :.W as
D-modules. It follows that Ag/m(J® B/M) = Ap(W)>n—1 Becau.se w is also
a finitely generated D—module with D C W C K=qf(D), there exists an ideal
I of D and a nonzero d € D such that W = (1/d)] 22 I (as D-modules). Hence
Ap() = Ap(W) > n—1 and so.Ap({) > n (since D is n-coherent). Therefore,
Ara(J @ R/M) = Ap(W) = Ap(I) > n. Thus we proved that Ay(J ® V) = n
and Ap/p(J ® R/M) > n. Hence Lemma 3.2 shows that Ar(J) > n and thus R is
n-coherent, , ‘ :

2) Set k = qf(D) and Vo = k+ M; V; is a strong 2-coherent ring (4, p.12,
Corollary 5.2]. As V = SR is a-flat R-module (where S = D) — {0}), we may
apply Lemma 3.2 to the pullback :

BR=D+M «—— Vo
D=R/M —— k=W/M.

Now, agsume that R is n-coherent. Then, if we replace V with V} in part 1).,
the above argument allows us to conclude that D is n-coherent.

Now, let D be a strong n-coherent ring. We will show that R is n-coherent.
Let J be any (n — 1)-presented ideal of R. Two cases are possible : L

Case 1 : J = Jy + M with Jy a nonzero ideal of D, If we replace V with Vg
in part 1), the same argument shows that J is n-presented.

Case 2 :J C M : From Lemma 3.2, Ay, (J&Vp) > n~1 (since Ag(J) > nx—ll).
Since Vj is a flat R-module, we have that J @ V5 = JV is an ideal of ¥ W:hlch
is finitely presented (since n > 2). As V; is strong 2-coherent, J ® Vp = JW is an
infinitely presented V-module, that is, Ay, (J @ Vo) =c0o > n.

By Lemma, 3.7, J is either an ideal of V or of the form J = Wa + M a
where a € J and W is a D-submodule of K such that D C W C K. If J is an
ideal of V, then after replacing V with V4 in part 1), the same arguments hold :
because Vj is strong 2-coherent [4, Corollary 5.2], V; is also strong n-coherent and
therefore n-coherent (forn >2). I J=Wa+ Ma (witha € J ez,nd DCWC
K), by replacing V with V4 in part 1), the above reasoning applies and we get
Apip(J @ RIM) = Ap(W) = n— 1. Since W_.is a finitely gegeratgd D—.module
with D C W C K, then k® W = kW is a k-vector space of finite dimension and
therefore there exists an integer m such that W C kW £ k™. Therefore, there
exists 0 # d € D so that (1/d)W C D™. It follows that Ap(D™/(1/d)W) > n.
So Ap(D™/(1/d)W) = co > n + 1 (since D is strong n-coherent) and we have
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[10] J.J. Rotman. “An Introduction to Homological Algebra”, Academic Press,
New York, 1979.

[11] W.V. Vasconcelos. “Conductor, Projectivity and Injectivity”, Pacific J. Math.
46 (1973) 603-608.

[12] W.V. Vasconcelos. “The Rings of Dimension Two”, Marcel Dekker, New York,
1976.

Ap((1/d)W) > n. We proved that Ay, (J ® V5) > n and Arsm(J @ R/M) > n, and
so Lemma 3.2 allows us to complete the proof. :

REMARK 3.8 a) Tt follows by (5, Theorem 3| that if ¢f (D) = K, then R =
D + M is coherent if and only if D is coherent. This assertion is generalized to
“n-coherence” in Theorem 3.6(1). :

b} In regard to Theorem 3.6(2), note via [5, Theorem 7] that if qf (D) # K, then
M is a flat R-module if and only if M = M?. Also, by [5, p.51], if D is a field,
then the 1-coherence of R implies that M is not a flat R-module.

c) For n = 2, Application 2.10 shows that if R is a 2-coherent ring and [ is a 1-
presented ideal of R, then R/I is a 2-coherent ring For R=D4+MCV=K+M
in which V' = K -+ M is a domain, but not necessarily valuation (cf.[3]), we have
a special result in which I(= M) need only be assumed finitely generated over R.
It addresses a context not covered by Theorem 3.6.

REMARK 3.9 Let T = K + M be any domain with D a subring of K. If
R = D+ M is a 2 -coherent ring and M a finitely generated H-module, then
D = R/M is a 2-coherent ring. Indeed, since M is finitely generated, by [3, Lemma
1], D is a field and thus is a 2-coherent ring. '
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