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1 INTRODUCTION

Recall that an integral domain R satisfies the ascending chain condition for principal
ideals (ACCP) if any ascending chain of principal ideals of B terminates. Some classical
classes of domains satisfying ACCP are: Dedekind, Krull and Noetherian domains. These
domains are atomic, i.e. any nonzero nonunit element can be written as a {finite) product
of irreducible elements (cf. [C]). However, this is not always possible for any integral
domain R. For example, if R = Z4+X@Q{X], for any nonzero nonumit p € Z and any

nonzero n € Z, — = p(—) is not irreducible in R, and hence X cannot be factored into
0 n .

a product of irreducible elements of R.
For an atomic domain R, a nonzero nonunit of. B may have many factorizations
into irreducibles of R and two factorizations may have different lengths (the length of a
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factorization is the number of its irreducible factors). Thus, following [Zs1] we say that an
atomic domain R is a half-factorial domain (HFD), if two factorizations of each nonzero
nonunit of R have the same length. An atomic domain R is calied finite factorization
domain (FFD) [AAZ 2], if every nonzero nonunit of R has only a finite number of non-
associate irreducible factors.

Denoting with UFD a unique factorization domain, it is well known that the relations
among the above concepts are the following:

UFD = FFD

I 1
HFD = ACCP = Atomic

and no one of the arrows may be conversed. A proof that HFD implies ACCP can be
found as Theorem 2.2 in [Ch).

Let A C B be an extension of integral domains and let X be an indeterminate over B.
Consider R = A+ X B[X]. This type of construction is useful in order to get examples of
domains which satisfy or do not satisfy assigned factorization properties. For example,
it has been shown that R = R+X C[X] is a HFD such that the polynomial ring over B
is not a HFD (cf. [AAZ 1, Example 5.4)).

This paper deals with the transfer of the previously recalled factor{zation properties
among the domains 4, B and R = 4+ X B[X].

The same subject has been deeply studied in [AAZ 1] and [AAZ 2] and several of
our results are slight generalizations of results contained in these papers. We point out
however that with our results we get new examples of certain types of domains. Tor
example, from Theorem 3.4 we obtain that K + X K [X,Y], where K is a field, is a HFD.,

1 ACCP CONDITION

Recall that an integral domain R satisfies the ascending chain condition for principal
ideals (ACCP) if any ascending chain of principal ideals of R terminates. In this section,
we shall determine when the A+ X B[X] construction yields domains which satisfy ACCP.
Precisely, we establish a result that recovers [AAZ 1, Example 5.1].

PROPOSITION 1.1. Let A C B be any extension of domains and set R = A+
XB[X]. If A is a field, then R satisfies ACCP.

Proof. Let iR C fLRC -+ bean ‘ascending chain of principal ideals of R. Since for any
t, deg fi11 < deg fi, there exists n > 0 such that for ¢ > n, the f; have the same degree.
Thus, for any i > n, f; = a;f;,.1, where a; € A. Since 4 is a, field, the chain terminates.

PROPOSITION 1.2. Let A C B be any extension of domains and sel R = A +
X B[X]. Consider the following conditions:

(i) B satisfies ACCP and U(B)N A = U(A) ;

(it) R satisfies ACCOP ;

(i) A satisfies ACCP and U(B) N A = U(A).
hen (i) = (i) = (iid).

Proof. (i) = (¢4). Since B satisfies ACCP, B[X] satisfies ACCP [Gr, p.321]. Moreover,
U(B[X]) NR=U(BYNA=U(A) =U(R) and so the ACCP property descends to R by
[Gr, Proposition 2.1]. ‘

(#4) = (4iz). Since U{A) = U(R) , R satisfies ACCP implies that A satisfies ACQP.
Suppose that there exists an element a € U (BYN A with a ¢ U(A). Tlhen the ascending

éhgin of principal ideals R(ain)nzo shows that R does not satisfy ACCP, a contradiction.

COROLLARY 1.3. Let A C B be any extension of domains such that the quotient
field of A, noted qf(A), is contained in B. Then the following conditions are equivalent.

(i) A is a field ;
(1) R = A+ X B[X] satisfies ACCP.

Proof. By Proposition 1.1 we have (i) = (i1). By Proposition 1.2 (i) = (4it), we have
hat U(B) N A = U(A). Since ¢f(A) C B, A is necessarily a field.

? REMARK 1.4. (a) Notice that, by Proposition 1.1 if A is a field, the ring R =
, A+XB[X] satisfies ACCP. This is true even if B is very “bad”, i.e. if B is very far from

atislying ACCP. So the converse of the implication (¢) = (i) in Propositionl.2 does not

" hold in general,

" {b) By implication (i) = (u';)ln Proposition 1.2, we can construct easily examples

. of rings R that do not satisfy ACCP. Consider for example A = Z and B = Q. Sil.lce
c U(BYNA # U(A), the ring R = Z+XQ[X] does not satisfy ACCP (an infinite ascending

- chiain of principal ideals of R is for example (27)“20)' Applying again Proposition

1.2 (i) = (44) to A = By = Z + X1Q[X1] and B = Q[Xi] , we get that the ring
By = A+ XaB[X3] = Z+X1Q[X1] + X2Q[X1, Xz] does not satisfy ACCP either. After
n applications of Proposition 1.2 (i4) = (i44), we get that the ring R, = Z+X1Q[X1] +
XoQ[X1, Xof + -+ + X,Q[ X4, -+, X,,] does not satisfy ACCP. :
- - (c) Notice that the converse of the implication (i) = (4) in Proposition 1.2 does

" not hold even if we suppose that A and B have the same quotient field. Consider for

example A = Q+YR[Y], B = Q[r]+¥R[Y] and R = A+ XB[X] = Q+Y|R[Y]-I—XQ[11:] +
XYR[Y, X]. We have that A and B have the same quotient field and B does not satls‘fy
ACCP, since m € U(R)N Q[x], but 7 is not invertible in QJr}. Moreover, arguing as in
the proof of Proposition 1.1, where deg f for f € R is taken to mean “total degree of f
in X and ¥, we can easily show that R satisfies ACCP.

(d) Notice finally that the converse of the implication (i) => (%) in Proposi-
tion 1.2 does not hold. Consider A = Z, B = Z 4+YQ[Y] and R = A + XB[X] =
Z+X7+XYQ[X,Y]. We have that A satisfies ACCP and U(B)NA = U(A), but R does

not satisfy ACCP, as the infinite chain of principal ideals (z_n)n20 shows.

ttorization Properties of 4 + XB[X] Domains 71

e




” Barucci et al.

COROLLARY 1.5. Let AC B be ony extension of domains with B integral over A
and set R = A+ XB[X]. Consider the following conditions :

(i) B satisfies ACCP ;

(i) R satisfies ACCP ;

(i} A sotisfies ACCP.
Then (i) = (i) = (iii}. \

Proof. By Proposition 1.2, recall that if B is integral over A then UB)NA=UA).

REMARK 1.6. In [AAZ 1, Example 5.1, it is shown that if Z is the ring of all alge-
braic integers, then R = Z -+ XZ[X] satisfies ACCP. Since 7 is not even atomic, Z|X] = R
(the integral closure of R) does not satisfy ACCP. Hence, R is an example of an integral
domain R which satisfies ACCP, but whose integral closure does not satisfy ACCP. This
example shows also that the converse of the implication (4) = (i4) in Corollary 1.5 does

not hold.

PROPOSITION 1.7. Let A C B be any extension of integral domains with A o
Krull domain and B integral over A. Then R = A+ XB[X] satisfies ACCP.

Proof. Let (fnR)nzl be any ascending chain of principal ideals of R. Since the degrees
- of f, are nonincreasing, the degrees eventually stabilize. It follows that the chain of
principal ideals (bnB)p>1, where by are the leading coefficients of fr, (n > 1}, is an

. b
ascending chain of principal ideals hB C byB C .- where each 5 e A. Thus, for

n-+1
cach 4, b € qf(A)[b1]. Since B is integral over ‘A, ¢f (A)[b1] is a finite algebraic extension
field of gf(A). Consequently, the integral closure A of A in g F{A)[b1} is a Krull domain
(cf. [G, Theorem 43.13]) and hence satisfles ACCP. Tt follows that the ascending chain
. So bu c U(A) N A = U(A), for each
b‘i’l+1

(bpA)n>1 terminates, say b, A = bng11A ="

n = mo. Thus the chain ( FaR)n>1 terminates too.

‘Notice that Proposition 1.7 generalizes [AAZ 1, Example 5.1}, since any Dedekind
domain is a Krull domain.

2 ATOMIC DOMAINS

Recall that an integral domain I is atomic if each nonzero nonutit of K is a (finite} prod-
uct of irreducible elements of R. Dedekind, Noetherian, Krull domains and, in general,
domains satisfying the ACCP are atomic. However, an atomic domain need not satisfy

the ACCP [Gr, Example 2.1].
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PROPOSITION 2.1, Let A C
1. C B be any extension of int ;
af (A) C B.. Then the following conditions are equivalent: f integrat domatns such that
(i) A is o field ; |
(i) R = A+ X B[X] is atomic.

Pro(olfl. (%) = (7). By Proposition 1.1, E satisfies the ACCP. So R is atomic
(Pmm)o ;—: (&), T = qf{A) + XB[X] is always atomic , since 7" satisfies the ACCP
position 1.1). By [AAZ 2, Proposition 1.2 (a)], we have that 4 = ¢f(4) is a field

RE . ) ' . .

Acchgj\:ﬁlit:rﬁé ;Iﬂfe may \:ﬁ}lder whether Proposition 1.2 holds when we replace
. . However, this is not the case. For, let A C B be an tensi
domfa.lns and. set R = A+ XB[X]. Consider the following conditions ; y extension of
(1) B[X] is atomic and U(BYNA = U(A) ; : '

(ii) R is atomic ; ’
{iii} A is atomic and U{B)}n 4 = U(A).

. Then: a) (i) = (4#) holds. In fact, assume that R is atomic and let ¢ € A be a

nonzero nonunit. Then any factorization of a into irreducibles of R is also a factorization

inio dro ! : ‘ 1r ibles of R is al factorizati

into irreducibles of A (since U(4) = U(R)). It follows that A is atomic. Now llet
U U .

o € (U(B)N A)\ U(A). Then X = ~q i - irreduci
e ] —a is not a product of 11'1'edgc1b1e elements of R, a
Let A be a domain. If A[X] is atomi i
) 3 ic then so is A. The converse i
Example 5.1]). Consequently, the conveise of (i1) = (i44) is false. e is Tl (et

b) [AAZ 2, Example 6.1] and Propositi i i
repoetivaly, 43 ot el | roposition 1.1 show that (i) = (#) and (%) = (%),

3 HALF-FACTORIAL DOMAiNS

ecall that R is & half-factorial domain (HFD) if each nonzero nonunit = of R is a product

of irreducible elements of R and if ¢ =z, ---z, = y1-- -y, are two factorizations into

i‘ 5 . : S .
;1;1%1]13;1::;2};3111112 ; then n = r. Any unique factorization domain (UFD) is a HFD and
es ACCP. In [AAZ 1, Theorem 5.3|, it is shown that, if K C L are fields
= H

th . .
| lel‘.l K _+ XL[X] is a HFD. We give here a slightly stronger result {cf. Theorem 3.4).

'LEM = l
LBl MA 3.1. Let R= K + X B[X], where K C B, K s a field and B[X) a UFD. If

(XY = X (b A Xha(X) - (b + Xha (X))

Vi,urhere foreachi=1,---,n, 0#£b
; + » 7Yy . € B\ U(B), h{(X) € B[X db; ; )
| irreducible element of B[X], then f is an irreducz’b.;e element[ o} ;ﬂ i K o o

P S f . . . - - . .
IOOf- UPDOSG tha't 15 ]10_ t lIledLlCIbie 111 R. Then -

3 BINCE K 15 a ﬁeld, 1 +
4-( g(-;( )))(m(‘:() (W]lele g(;() ELIld m(}{) are Nonzero elelllelllis Of B[;( )- I lluS afIHOIlg( the
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irreducible factors of f(X) in B[X] ; there is a factor of type (1+X¢'(X)} (where ¢/ (X) €
B[X]), that is neither an associate of X nor of b; + X hs(X) for any 4, a contradiction.

REMARK 3.2. Notice that if R = A+ XB[X], and if f € B{X]\ R is irreducible
in B[X], then it is not necessarily the case that X f is irreducible in B. Consider for
example R = Z+X@[X] and f = X + § = 2(2X +1).

LEMMA 3.3. Let R = A+ XB[X], where A C B is an extension of integral domains
such that U(B)N A = U(A) and let f € R . If f is irreducible in B[X), then f is
irreducible in R.

Proof. If f = gh with g, h € R, then g, h € B[X]. So one of the factors (for example g)
is irreducible in B[X]. But, since U(B[X]) N B = U(R), we get that h is invertible in
and hence f is irreducible in B, ' :

THEOREM 3.4, Let B = K + XB[X], where K C B, K is a field and B a UFD.
Then R is a HFD.

Proof. If f € R, then f(X) = X"(b+ Xh(X)), wherer > 0,0 # b € Band h(X) € B{X].
Iir =0, then b € K. Since K is a field, b is a unit of R and so f(X) is an associate of an
element of R of type 1+ Xk/'(X), where h'(X) € B[X]. In this case, the factorization of
f as a product of irreducible clements in B[X) is also a factorization of f as a product of

_irreducible elements in R. Indeed, any irreducible factor of f is of type 1+ Xh;(X) and
50 is an Irreducible element of R (c¢f. Lemma 3.3). Suppose r # 0 and b € UU(B), then
f=0GX)X"Y1 + XK (X)). Since bX and X are irreducible elements of R, decomposing
the factor (1+X /(X)) in B[X], we get also, in this case, that f is a product of irreducible
elements of R. Now, suppose r # 0 and b € B\U(B). Consider the (unique) factorization
of f into irreducible elements of B[X]:

FIX) = X7(b+ Xh(X)) = uX" (b1 + X1 (X)) (b + Xho(X)), where v € U(B),
b1, ++,bp € B (at least one non invertible) and k) (X), -, ko (X) € B[X]. Since the
factors b; + X hi(X) with by € U(B) are associates of elements of type (1 + Xh{(X)), we
get ‘ ‘

F(X) = 0X7 (by + XRa(X)) -~ (be + Xha(X))(1 + XEL(X)) -+ (1 + XH.(X)),
where v € U(B), b1, +-,b; € B\ U(B) and all the factors are irreducible elements in
B[X]. By Lemma 3.1, X(by + Xhi (X)) - - (b + Xhe(X)) is an irreducible element of R
and hence f is a product of r + s irreducible elements of R.
_ By Proposition 2.1, R is atomic, To prove that R is a HFD, we have just to show
that if f € R has the following factorization into irreducible elements of B{.X}:
FX) = uX" (b + X X))o+ (g + XFu(X)) (L + Xga(X)) - (1 + Xgo(X)),
where u € U(B), by, +,br € B—U(B) and f;(X), g;{X) € B[X], then any factorization
of f into irreducible elements of R has s+ 7 factors. '
Indeed, let f = (ay + Xh1 (X)) -« (@n + Xha{X)) be another factorization of f into
irreducible elements of R. Notice that if @; = 0, then'a; + X h;(X) is not divisible in B[X]
by any factor 1 + X g;(X). Furthermore, since B[X] is a UFD, each factor 1 + Xg,(X),
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where 1 S-'é < 8, Is an associate of an element a; + Xhi(X) with a; # 0. Thus, a; # 0
xactly s times. So the factorization of [ into irreducible elements of R is: 1
f=a(l+ Xy (X)) - (14 Xhe(X)HXRYX)) - (XI_, (X)),

. ! q
];;:1((3( (; E.K_ a.n(;l h%(X) €EBX]forj=1,---,n —s. Furthermore, since the factors
(A ) are irreducible elements of R, the polynomials h;(X) are not divisible by X.

ﬁnsequently, since X7 divides f and X™*! does not divide [, we get that n = s+ 7 and
he proof is complete.

XAMPLE 8.5. Let K be a field and X and Y two ind - ‘
i B 1, !
= K + XK[X, Y] is a HFD. mceherminates over K. Then

p € A. So by hypothesis, p is a unit of B, It follows that, for any n > 1, X = p"ﬁn and

h

ence R is not a,_HFD, a contradiction. The converse follows from Theorem 3.4.

8. UFD” with “B[X] HFD”. Indeed, it is not even easy to get examples of HFD’s
B[X] that are not UFD’s and such that B contains a field, Notice that, even if A and
B X] are HFD, the domain A - X B[X] may not be a HFD. For exa,m’ple, let A =12
?pd B = ZI[/=3). Then A is a UFD, B is a Krull domain of class group Z/2Z (ci.
[y, E.xemple P.78 and Proposition 2.15 p.74] and [No, Corollaire 1.12 P-29]) and hence
gy is a HFD [Zs2]. However, R = Z+XZ[y/~5)[X] is not a HFD since X4HX%245)=
: .'(Xer—;S\/E_SR)X (X - V—5) are two factorizations of different lengths into irreducible
of B.

i e

o ot

S
ivh

We close the section with the following :’

I}{ESTIQN : Let A C B be an extension of integral domains such that {7 (A) = U(B)
‘: ach irreducible element of A is irreducible in B and B is s UFD. Is R= A+ XB[X] a’.

ecall‘ that a clloma,in R is a finite factorization domain (FFD) if R is z;l,tomic and any
2810 Nonunit of R has only a finite number of nonassociate irreducible factors in R.
ny UFD is a FFD. The converse is in general false (cf. [AAZ2)).

75

REMARK 3.7. We don’ know if Theorem 3.4 holds, if we replace the hypothesis -
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LEMMA 4.1. Let A C B be an extension of integral domains such that U(B) = U(A).
Then, B is o FFD = A is a FFD.

Proof. Let @ be a nonzero nonunit element of A. it is enough to show that a has only
finitely many nonassociate divisors in A. Let d be such a divisor, i.e. d divides @ in A.
So d divides @ in B. Since B is a FFI), a has only finitely many nonassociate divisors in
B, suppose that they are {by,---,b,}. Thus d = ub; for some i, with v € U(B). Since
U(B) = U(A), we get b; = u~1d € A. Thus the set of nonassociate divisors of ¢ in A is
a subset of the set of nonassociate divisors of a in B and hence it is also finite.

PROPOSITION 4.2, Let A C B be an extension of integral domains and set
R = A+ XB[X]. Consider The following conditions :

(i} Bis a FFD and U(B) = U(A) ;

(ii) R is a FFD ;

(ii) A is a FFD and U(B)N A = U(A).
Then (i) = (i) = (iig) .

Proof. (i) = (ii) follows from Lemma 4.1 and from the fact that B is a FFD iff B{X] is
a FFD (cf. [AAZ 2, Proposition 5.3]). _ :

(i) = (iit). It is easy to see that A is a FFD. Moreover, since FFD implies ACCP
(cf. [AAZ2]) we get by Proposition 1.2 that U{B) N A = U(A).

REMARK 4.3. (a) The converse of Lemma 4.1 is false. For example, the extension
7 C Z+ XQ[X] is such that Z is a FFD (since a UFD) and U{(Z+XQ[X]) = U(Z) .
However Z+X@Q[X] is not even atomic (cf. Proposition 2.3).

(b) The converse of (ii) = (#4i) in Proposition 4.2 is not frue in general. For, let R
=R + XC[X], we have U{C)N R = U(R), R is a FFD (since it is a field}. However, R is
not a FFD, since {(r + i) X,r € R} is an infinite set of nonassociate irreducible divisors
of X% in R [AAZ 2, Example 4.1). Notice that the converse of (i) = (izi) fails to be true
even when A C B is integral.

(c) Let K1 C K be any extension of finite fields and set R = K + X K3[X]. Then
R is both a FFD and a HFD [AAZ 2, p. 15]. However, U(K;) C U(Kz}. Therefore the
converse of (£) = () in Proposition 4.2 is false.

5 GCD DOMAINS

A domain R is said to be a GCD-domain if each palr of nonzerc nonunits of R has -

a greatest common divisor. Such a domain is sometimes called HCF-domain (for high
common factor} [C]. PID’s, Bezout domains and, in general, UFD’s are GCD-domains.
[CMZ, Theorem 1.1] states that for an integral domaind D and a multiplicatively
closed subset § of I, the domain D) = D 4+ XDg[X] is a GCD-domain if and only
if D is a GCD-domain and GCD(X,d) exists in D) for each nonzero nonunit d € D,
Therefore, D -+ Xqf(D)[X] is a GCD-domain if and only if D is a GCD-domain (See also
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[MS, E}xample 4.10]). However, this is not the case if we replace ¢f (D) with any field
extension of ¢f(D). Precisely we have:

" THEOREM 5.1. Let AC B be any extension of integral domains with qf(A) C B
and let R = A+ XB[X]| . Then R is.a GCD-domain if and only if B = qf(A) and A is
a GCD-domain. ‘

Proof. If A is a GCD-domain with B = af(A), the result follows from [MS. E
! m ; 1
4.10] or [CMZ, Theorem 1.1]. : . [ xample

Conversely, assume that R is & GCD-domain. Clearly, A is also a GCD-domain. Now
if A is a field, then R is atomic (Proposition 2.1). Since an atomic GCD-domain is a:,
UFD [G, Proposition 16.4], necessarily B = ¢f (A) = A (see Remark 5.3 (c) below).
Suppose 4 is not a field and ¢f(4) C B. Let b € B\ ¢f(A), it is clear that bX and X are

Moreover, the 70n1_y common divisors of bX and X are nonzero nonunits of 4. It follows
that GCD(bX, X) does not exist in R, a contradiction.

As an immediate consequence of Theorem 5.1 we have:

COROLLARY 6.2, let K C L be any field extension. The domain K + X L[X] is
8 GCD-domain if and only if K = L. ' .

REMARK 53 (a) From Theovem 5.1, it follows that Z + XQ[X] is a GCD-domain.
II.O\.nrever, this is not the case for Z + (X, Y)Q[X, Y], since each nonzero nonunit of Z
| divides both X and ¥ (see also [MS, Example 4.10]).

. (b_) For a GCD-domain 4, the polynomial extension AlY1, -, Y,] is also a GCD-

- domain for any set of indeterminates {¥1,---,¥,} [MS, section 4, p.393]. Thus, one

~ can ask whether the domain R = A+ X Afy;, .- y ¥2][X] is a GCD-domain. The ai;swer
s negative. For, let P = X*(X +Y1)(1+ Y1) and Q = X2(X + Y,)¥3. So, X(X + Y1)
and X are the only common nonassociate irreducible factors of £ and ). However

‘ G’CQD(X, X{X+Y1)}) =1 (in R) and their product X2(X + Y1) does not divide either P:
or .

(c)_ Let A C B be any extension of integral domains. Then R = A + XB[X] is a
UFD if andl only if A = B and B is & UFD. This follows from the fact that a UFD is
completely integrally closed and [AAZ 1, Theorem 2.7 (2)].

{d) _If _R = A+ X B[X] is a GCD-domain , then it is integrally closed [C]. Tt follows
that B is integrally closed and A is integrally closed in B [AAZ1, Theorem 2.7 (1)]. Thus,
even when A C B is an extension of GCD-domains, R may not be a GCD-domain. For
example, Ry = Z + XQ[iv?2][X] and Ry = Z + XZ[X] are not G:CD-domains, since Z

is integrally closed neither in Q[iv/2] nor in Z.

nonassociate elements of R and that any nonzero nonunit of A divides both bX and X.
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;. 1INTRODUCTION

1.1 Spectral sets

L. Kaplansky [5] states the following problem * Under what conditions a partially ordered .
setis isomorphic to the pn'nie spectrum of a ring ordered by inclusion ?". W.J. Lewis and
. 1. Ohm called a partially ordered set spectral if it is order isomorphic to Spec(R) for
- "some ring K. Althotigh there are partial results about this subject [2], {31, [6] and [7], the
: problem of characterizing the spectral sets remains open. However the corresponding
" topological problem was completely answered by M. Hochster in his re

[4]. Let (X, <) bea partially ordered set, a topolo

with the ordering < if the closure of {x} is cl{
* which is equivalent io the following two conditions:
i}[x, = [isa closed subset of (X, ©),forall xEX.
ii) every closed subset F. of X, D
forall x € F).

markable paper
gyY T on X issaid to be compatible

ri=lx, > ={yEXiz<y),

is closed under specialization (i.e: [ x, — 1€ F

Obviously (X, <) is spectral if and only if there exists an order c

ompatible spectral
topology. '

1. 2 Binary relation,

Let X be a set equipped with a binﬁry relation R. Let fe

of R. defined by: x te(R) y if and onl
elements Xp- o %, of X such that x, =,

(R) be the transitive closure
yif x=y orthere exist finitely many
%, =y and . Rx, forall i<n.

The relation te(R) is a quasi-oider. Consider the equival

1 ence relation 7(R) induced by
the quasi

-order ¢e(R) defined by : x TYR) Yy ifand only if % te(R)y and yite(R) x.
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