# The Dimension of Tensor Products of AF-Rings 

Samir Bouchiba
Département de Mathématiques et Informatique Faculté des Sciences "Dhar Al-Mehraz" Université de Fès, Fès - Morocco

Florida Girolami ${ }^{(*)}$
Dipartimento di Matematica
Università degli Studi di Roma Tre, Roma - Italy
e-mail: girolami@matrm3.mat.uniroma3.it
Salah-Eddine $\mathrm{KabBAJ}^{(* *)}$
Département de Mathématiques et Informatique
Faculté des Sciences "Dhar Al-Mehraz"
Université de Fès, Fès - Morocco

## 0. Introduction

All the rings and algebras considered in this paper will be commutative, with identity elements and ring-homomorphisms will be unital. If $A$ is a ring, then $\operatorname{dim} A$ will denote the (Krull) dimension of $A$, that is the supremum of lengths of chains of prime ideals of A. An integral domain $D$ is said to have valuative dimension $n$ (in short, $\operatorname{dim}_{v} D=n$ ) if each valuation overring of $D$ has dimension at most $n$ and there exists a valuation overring of $D$ of dimension $n$. If no such integer $n$ exists, then $D$ is said to have infinite overring of $D$ of dimension $n$. It must be remembered that for any ring $A, \operatorname{dim}_{v} A=$ valuative dimension (see $[\mathrm{G}])$. It must be remembered that for any ring $A, \operatorname{dim}_{v} A=$
$\sup \left\{\operatorname{dim}_{v}(A / P) \mid P \in \operatorname{Spec}(A)\right\}$. Furthermore, it must also be remembered by $[\mathrm{ABDFK}]$ that a finite-dimensional domain $D$ is a Jaffard domain if $\operatorname{dim} D=\operatorname{dim}_{v} D$. As the class of Jaffard domains is not stable under localization, an integral domain $D$ is defined to be
(*) Partially supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica ( $60 \%$ Fund).
(**) Supported by Consiglio Nazionale delle Ricerche and Università degli Studi di Roma Tre.
a locally Jaffard domain if $D_{P}$ is a Jaffard domain for each prime ideal $P$ of $D$. Analogous definitions are given in [C] for a finite-dimensional ring.
R.Y. Sharp proved in [S] that if $K_{1}$ and $K_{2}$ are extension fields of a field $k$, then

$$
\operatorname{dim}\left(K_{1} \otimes_{k} K_{2}\right)=\min \left\{\text { t.d. }\left(K_{1}: k\right), \text { t.d. }\left(K_{2}: k\right)\right\}
$$

A.R. Wadsworth extended this result to $A F$-domains. We wish to recall, at this point; that a $k$-algebra $A$ is an $A F$-ring (altitude formula) if

$$
\mathrm{ht} P+\mathrm{t} . \mathrm{d} .(A / P: k)=\mathrm{t} . \mathrm{d} .\left(A_{P}: k\right)
$$

for each prime ideal $P$ of $A$. He proved that if $D_{1}$ and $D_{2}$ are $A F$-domains, then

$$
\operatorname{dim}\left(D_{1} \otimes_{k} D_{2}\right)=\min \left\{\operatorname{dim} D_{1}+\text { t.d. }\left(D_{2}: k\right), \text { t.d. }\left(D_{1}: k\right)+\operatorname{dim} D_{2}\right\}
$$

He also provided a formula for $\operatorname{dim}\left(D \otimes_{k} R\right)$ applicable to an $A F$-domain $D$, with no restriction on the ring $R$. He also proved that for any prime ideal $P$ of an $A F$-ring $A$ and for any $n \geq 1$, ht $P=$ ht $P\left[X_{1}, \ldots, X_{n}\right]$. This latter property characterizes the class of locally Jaffard rings, meaning that an $A F$-ring is a locally Jaffard ring.

In [Gi] the class of $A F$-domains is examined with respect to the class of $k$-algebras which are stably strong $S$-domains, and the behaviour of the class of $A F$-domains with respect to certain pull-back type constructions. An upper bound for the valuative dimension of the tensor product, of two $k$-algebras is given, that is: if $A_{1}$ and $A_{2}$ are $k$-algebras with t.d. $\left(A_{1}: k\right)<\infty$ and t.d. $\left(A_{2}: k\right)<\infty$, then
$\operatorname{dim}_{v}\left(A_{1} \otimes_{k} A_{2}\right) \leq \min \left\{\operatorname{dim}_{v} A_{1}+\right.$ t.d. $\left(A_{2}: k\right)$, t.d. $\left.\left(A_{1}: k\right)+\operatorname{dim}_{v} A_{2}\right\}$.
We wish to point out that this work is a continuation of Wadsworth's paper [W]
In this first section we extend some known results concerning the class of $A F$ domains [ W ] to the class of $A F$-rings and we show that the results do not extend trivially from domains to rings with zero-divisors. In particular, we provided a formula for the dimension of the tensor product $A \otimes B$, where $A$ is an $A F$-ring and $B$ is any ring. Once we have provided a technical formula for the dimension of tensor products of $A F$-rings, then we can prove that if $A_{1}$ and $A_{2}$ are $A F$-rings, then

$$
\operatorname{dim}\left(A_{1} \otimes_{k} A_{2}\right)=\dot{\min }\left\{\operatorname{dim} A_{1}+\text { t.d. }\left(A_{2}: k\right), \text { t.d. }\left(A_{1}: k\right)+\operatorname{dim} A_{2}\right\}
$$

if and only if $m_{1} \in \operatorname{Max}\left(A_{1}\right)$ and $m_{2} \in \operatorname{Max}\left(A_{2}\right)$ exist such that cither ht $m_{1}=\operatorname{dim} A_{1}$ t.d. $\left(A_{2 m_{2}}: k\right)=$ t.d. $\left(A_{2}: k\right)$ and t.d. $\left(A_{2} / m_{2}\right) \leq$ t.d. $\left(A_{1} / m_{1}\right)$ or ht $m_{2}=\operatorname{dim} A_{2}$, t.d. $\left(A_{1_{m_{1}}}: k\right)=$ t.d. $\left(A_{1}: k\right)$ and t.d. $\left(A_{1} / m_{1}\right) \leq$ t.d. $\left(A_{2} / m_{2}\right)$. Finally we consider the special case in which $A_{1}=A_{2}$.

In the second section we first prove that if $A$ is an $A F$-ring and $B$ is a locally Jaffard ring, then $A \otimes_{k} B$ is a locally Jaffard ring; then we give some formulas for computing the valuative dimension of the tensor product of an $A F$-ring and any ring. We conclude this section by giving an example of a tensor product of an $A F$-ring and a Jaffard ring which is not a Jaffard ring.

1. Tensor products of $A F$-rings

Throughout this paper $k$ will indicate a field, $\mathrm{t}(A)$ will denote the transcendence degree of a $k$-algebra $A$ over $k$ and for $P \in \operatorname{Spec}(A) \mathrm{t}_{P}$ will denote the transcendence degree of $A_{P}$ over $k$. The tensor products, when not specifically indicated otherwise, will be taken as being relative to $k$.

In this section we will extend some of the properties of the dimension of the tensor product of $A F$-domains (see [W]) to the case of $A F$-rings.
Lemma 1.1. Let $A_{1}, \ldots, A_{n}$ be $A F$-rings and $T=A_{1} \otimes \cdots \otimes A_{n}$; for any $Q \in \operatorname{Spec}\left(A_{1} \otimes\right.$ $\left.\cdots \otimes A_{n}\right)$ let $P_{i}=Q \cap A_{i}$. Then

$$
\mathrm{t}\left(T_{Q}\right)=\mathrm{t}\left(A_{1 P_{1}}\right)+\mathrm{t}\left(A_{2 P_{2}}\right)+\cdots+\mathrm{t}\left(A_{n} \dot{P}_{\mathrm{n}}\right) .
$$

Proof. Since there is nothing to prove for $n=1$, we may assume that $n>1$ and, by induction, that $R=A_{2} \otimes \cdots \otimes A_{n}$ satisfies the given property. Let $P=Q \cap R$; since $T_{Q}$ is a localization of $A_{1 P_{1}} \otimes \cdots \otimes A_{n P_{n}}$, it results from [W, Corollary 2.4] that

$$
\mathrm{t}\left(T_{Q}\right) \leq \mathrm{t}\left(A_{1 P_{1}} \otimes \cdots \otimes A_{n P_{n}}\right)=\mathrm{t}\left(A_{1 P_{1}}\right)+\cdots+\mathrm{t}\left(A_{n P_{\mathrm{n}}}\right) .
$$

By the proof of [W, Proposition 3.1] we have

$$
\begin{aligned}
\mathrm{t}\left(T_{Q}\right) & =\mathrm{ht} Q+\mathrm{t}(T / Q) \geq \mathrm{ht} P_{1}+\mathrm{ht} P+\mathrm{t}\left(A_{1} / P_{1}\right)+\mathrm{t}(R / P)= \\
& =\mathrm{t}\left(A_{1 P_{1}}\right)+\mathrm{t}\left(R_{P}\right)=\mathrm{t}\left(A_{1 P_{1}}\right)+\cdots+\mathrm{t}\left(A_{n P_{n}}\right) .
\end{aligned}
$$

We can now obtain the following known result for $A F$-domains.
Corollary 1.2. Let $D_{1}, \ldots, D_{n}$ be AF-domains, and $Q \in \operatorname{Spec}\left(D_{1} \otimes \cdots \otimes D_{n}\right)$. Then $\mathrm{t}\left(\left(D_{1} \otimes \cdots \otimes D_{n}\right)_{Q}\right)=\mathrm{t}\left(D_{1} \otimes \cdots \otimes D_{n}\right)=\mathrm{t}\left(D_{1}\right)+\cdots+\mathrm{t}\left(D_{n}\right)$.

The following simple statement will have important consequences
Lemma 1.3. Let $A$ be an $A F$-ring. If $P \in \operatorname{Spec}(A)$ and $P_{0}$ is a minimal prime ideal of $A$ contained in $P$ such that ht $P=\operatorname{ht}\left(P / P_{0}\right)$, then $\mathrm{t} P=\mathrm{t}_{P_{0}}$.
Proof. $\mathrm{t}_{P}=\mathrm{ht} P+\mathrm{t}(A / P)=\mathrm{ht}\left(P / P_{0}\right)+\mathrm{t}\left(\left(A / P_{0}\right) /\left(P / P_{0}\right)\right) \leq \mathrm{t}\left(A / P_{0}\right) \leq \mathrm{t}\left(A_{P_{0}}\right)=\mathrm{t}_{P_{0}}$.
We recall by [W, p. 394-395] the following functions:
let $A_{1}$ and $A_{2}$ be rings, $P_{1} \in \operatorname{Spec}\left(A_{1}\right)$ and $P_{2} \in \operatorname{Spec}\left(A_{2}\right)$, then

$$
\delta\left(P_{1}, P_{2}\right)=\max \left\{\operatorname{ht} Q \mid Q \in \operatorname{Spec}\left(A_{1} \otimes A_{2}\right) \quad \text { and } Q \cap A_{1}=P_{1}, Q \cap A_{2}=P_{2}\right\} ;
$$

let $A$ be a ring, $P \in \operatorname{Spec}(A)$ and $d$ and $s$ integers with $0 \leq d \leq s$, then

$$
\begin{gathered}
\Delta(s, d, P)=\text { ht } P A\left[X_{1}, \ldots, X_{s}\right]+\min (s, d+\mathrm{t}(A / P)), \\
D(s, d, A)=\max \{\Delta(s, d, P) \mid P \in \operatorname{Spec}(A)\}
\end{gathered}
$$

Theorem 1.4. Let $A$ be an $A F$-ring and $B$ any ring; let $p \in \operatorname{Spec}(A)$ and $q \in \operatorname{Spec}(B)$ Then
$\delta(p, q)=\Delta\left(\mathrm{t}_{p}\right.$, ht $\left.p, q\right) \quad$ and $\quad \operatorname{dim}(A \otimes B)=\max \left\{D\left(\mathrm{t}_{P}\right.\right.$, ht $\left.\left.P, B\right) \mid P \in \operatorname{Spec}(A)\right\}$
Proof. Since $\delta(p, q)=\delta\left(p A_{p}, q A_{q}\right)$ and the class of $A F$-rings is stable under localizations, we may assume that $p$ and $q$ are maximal ideals in local rings. Let $\bar{B}=B / q$ and $\mathrm{t}=\mathrm{t}(\bar{B})$. By [W, Theorem 3.4]

$$
\delta(p, 0 \bar{B})=\Delta(\mathrm{t}, 0, p)=\mathrm{ht} p\left[X_{1}, \ldots, X_{t}\right]+\min (\mathrm{t}, \mathrm{t}(A / p))=\min \left(\mathrm{t}_{p}, \mathrm{ht} p+\mathrm{t}\right)
$$

Then

$$
\Delta\left(\mathrm{t}_{p}, \text { ht } p, q\right)=\operatorname{ht} q\left[X_{1}, \ldots, X_{\mathrm{t}_{p}}\right]+\delta(p, 0 \bar{B})
$$

Let $\bar{Q}_{0} \subsetneq \bar{Q}_{1} \subsetneq \cdots \subsetneq \bar{Q}_{h}$ be a chain of prime ideals of $A \otimes \bar{B}$ such that $h=\delta(p, 0 \bar{B})$, $\bar{Q}_{h} \cap A=p$ and $\bar{Q}_{h} \cap \bar{B}=0 \overleftarrow{B}$. Then $\bar{Q}_{0} \cap A=p_{0}$ is a minimal prime of $A$ and $\bar{Q}_{0} \cap \bar{B}=0 \bar{B}$. Let $Q_{0} \subsetneq Q_{1} \subsetneq \cdots \subsetneq Q_{h}$ be the chain of inverse images in $A \otimes B$. Let $\tilde{A}=A / p_{0}$ and $\tilde{Q}_{0} \subsetneq \tilde{Q}_{1} \subsetneq \cdots \subsetneq \tilde{Q}_{h}$ be the chain of images in $\tilde{A} \otimes B$; so that $\tilde{Q}_{0}$ survives in the localization $\tilde{K} \otimes B$ of $\tilde{A} \otimes B$, where $\tilde{K}$ is the quotient field of $\tilde{A}$. Therefore according to [W, Remark 1.(a) p.398] ht $\tilde{Q}_{0} \geq h t q\left[X_{1}, \ldots, X_{t_{p_{0}}}\right]$. Then we have

$$
\text { ht } Q_{h} \geq \text { ht } Q_{0}+\text { ht }\left(Q_{h} / Q_{0}\right) \geq \text { ht } q\left[X_{1}, \ldots, X_{\mathrm{t}_{p_{p}}}\right]+\delta(p, 0 \bar{B})
$$

Since $A \otimes \bar{B}$ is an $A F$-ring and ht $\bar{Q}_{h}=$ ht $\left(\bar{Q}_{h} / \bar{Q}_{0}\right)$, by Lemma 1.3 we have $\mathrm{t}\left((A \otimes \bar{B})_{\bar{Q}_{0}}\right)=$ $\mathrm{t}\left((A \otimes \bar{B})_{\bar{Q}}\right)$. Since $A \otimes \bar{B}$ is a tensor product of an $A F$-ring and a field, by Lemma 1.1 we have

$$
\mathrm{t}\left((A \otimes \bar{B})_{\bar{Q}_{0}}\right)=\mathrm{t}\left(A_{p_{0}}\right)+\mathrm{t}=\mathrm{t}\left((A \otimes \bar{B})_{\bar{Q}}\right)=\mathrm{t}\left(A_{p}\right)+\mathrm{t}
$$

So $\mathrm{t}_{p}=\mathrm{t}_{p_{0}}$. Therefore

$$
\text { ht } Q_{h} \geq \text { ht } q\left[X_{1}, \ldots, X_{t_{p}}\right]+\delta(p, 0 \bar{B})=\Delta\left(\mathrm{t}_{p}, \text { ht } p, q\right)
$$

Therefore, it follows that $\delta(p, q) \geq \Delta\left(\mathrm{t}_{p}\right.$, ht $\left.p, q\right)$
The reverse inequality is deduced from the demonstration of the same inequality given in [W, Theorem 3.7] for an $A F$-domain. So $\delta(p, q)=\Delta\left(\mathrm{t}_{p}\right.$, ht $\left.p, q\right)$

$$
\text { The result upon } \operatorname{dim}(A \otimes B) \text { derives directly from the definition of } \delta, \Delta \text { and } D \text {. }
$$

Corollary 1.5. Let $A_{1}$ and $A_{2}$ be $A F$-rings; then
(a) If $p_{1} \in \operatorname{Spec}\left(A_{1}\right)$ and $p_{2} \in \operatorname{Spec}\left(A_{2}\right)$, then

$$
\delta\left(p_{1}, p_{2}\right)=\min \left(\mathrm{ht} p_{1}+\mathrm{t}_{p_{2}}, \mathrm{t}_{p_{1}}+\text { ht } p_{2}\right) .
$$

(b) $\operatorname{dim}\left(A_{1} \otimes A_{2}\right)=\max \left\{\min \left(\mathrm{ht} P_{1}+\mathrm{t}_{P_{2}}, \mathrm{t} P_{1}+\mathrm{ht} P_{2}\right) \mid P_{1} \in \operatorname{Spec}\left(A_{1}\right), P_{2} \in \operatorname{Spec}\left(A_{2}\right)\right\}$. Proof. (a) According to Theorem $1.4 \delta\left(p_{1}, p_{2}\right)=\Delta\left(t_{p_{1}}\right.$, ht $\left.p_{1}, p_{2}\right)$; furthermore

$$
\begin{aligned}
\Delta\left(\mathrm{t}_{p_{1}}, \mathrm{ht} p_{1}, p_{2}\right) & =\mathrm{ht} p_{2}\left[X_{1}, \ldots, X_{\mathrm{t}_{p_{1}}}\right]+\min \left(\mathrm{t}_{p_{1}}, \mathrm{ht} p_{1}+\mathrm{t}\left(A_{2} / p_{2}\right)\right) \\
& =\mathrm{ht} p_{2}+\min \left(\mathrm{t}_{p_{1}}, \mathrm{ht} p_{1}+\mathrm{t}\left(A_{2} / p_{2}\right)\right) \\
& =\min \left(\mathrm{ht} p_{1}+\mathrm{t}_{p_{2}}, \mathrm{t}_{p_{1}}+\mathrm{ht} p_{2}\right)
\end{aligned}
$$

(b) Follows from the definition of $\delta\left(p_{1}, p_{2}\right)$.

Lemma 1.6. Let $A_{1}, \ldots, A_{n}$ be AF-rings with $n \geq 2$. Then $\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=$ $\max \left\{\min \left(\mathrm{ht} P_{1}+\mathrm{t}_{P_{2}}+\cdots+\mathrm{t}_{P_{n}}, \mathrm{t}_{P_{1}}+\mathrm{ht} P_{2}+\mathrm{t}_{P_{3}}+\cdots+\mathrm{t}_{P_{n}}, \ldots, \mathrm{t}_{P_{1}}+\cdots+\mathrm{t}_{P_{n-1}}+\mathrm{ht} P_{n}\right) \mid P_{i} \in\right.$ $\operatorname{Spec}\left(A_{i}\right)$, for $\left.i=1, \ldots, n\right\}$.
Proof. We can define the following function for primes $P_{i}$ of $A_{i}$ with $i=1, \ldots, n$ :
$\delta\left(P_{1}, \ldots, P_{n}\right)=\max \left\{\mathrm{ht} Q \mid Q \in \operatorname{Spec}\left(A_{1} \otimes \cdots \otimes A_{n}\right)\right.$ and $\left.Q \cap A_{i}=P_{i}, i=1, \ldots, n\right\}$.
We prove by induction that

$$
\delta\left(P_{1}, \ldots, P_{n}\right)=\min \left(h t P_{1}+\mathrm{t}_{P_{2}}+\cdots+\mathrm{t}_{P_{n}}\right.
$$

$$
\left.\mathrm{t}_{P_{1}}+\mathrm{ht} P_{2}+\mathrm{t}_{P_{3}}+\cdots+\mathrm{t}_{P_{n}}, \ldots, \mathrm{t}_{P_{1}}+\cdots+\mathrm{t}_{P_{\mathrm{n}-1}}+\mathrm{ht} P_{n}\right) .
$$

For $n=2$, this is Corollary 1.5. Let $n>2$ and assume that $\delta\left(P_{2}, \ldots, P_{n}\right)$ satisfies the given formula. Of course,
$\dot{\delta}\left(P_{1}, \ldots, P_{n}\right)=\max \left\{\delta\left(P_{1}, Q^{\prime}\right) \mid Q^{\prime} \in \operatorname{Spec}\left(A_{2} \otimes \cdots \otimes A_{n}\right)\right.$ and $\left.Q^{\prime} \cap A_{j}=P_{j}, j=2, \ldots, n\right\}$; moreover $\delta\left(P_{1}, Q^{\prime}\right)=\min \left(\mathrm{ht} P_{1}+\mathrm{t}_{Q^{\prime}}, \mathrm{ht} Q^{\prime}+\mathrm{t}_{P_{1}}\right)$ and $\mathrm{t}_{Q^{\prime}}=\mathrm{t}_{P_{2}}+\cdots+\mathrm{t}_{P_{\mathrm{n}}}$ according to Lemma 1.1. So
$\delta\left(P_{1}, \ldots, P_{n}\right)=$
$=\max \left\{\min \left(\mathrm{ht} P_{1}+\mathrm{t}_{P_{2}}+\cdots+\mathrm{t}_{P_{\mathrm{n}}}\right.\right.$, ht $\left.Q^{\prime}+\mathrm{t}_{P_{1}}\right) \mid$
$Q^{\prime} \in \operatorname{Spec}\left(A_{2} \otimes \cdots \otimes A_{n}\right)$ and $\left.Q^{\prime} \cap A_{j}=P_{j}, j=2, \ldots, n\right\}=$
$=\min \left(\mathrm{ht} P_{1}+\mathrm{t}_{P_{2}}+\cdots+\mathrm{t}_{P_{n}}, \delta\left(P_{2}, \ldots, P_{n}\right)+\mathrm{t}_{P_{1}}\right)=$
$=\min \left(\mathrm{ht} P_{1}+\mathrm{t}_{P_{2}}+\cdots+\mathrm{t}_{P_{n}}, \mathrm{t}_{P_{1}}+\right.$ ht $\left.P_{2}+\mathrm{t}_{P_{3}}+\cdots+\mathrm{t}_{P_{n}}, \ldots, \mathrm{t}_{P_{1}}+\cdots+\mathrm{t}_{P_{n-1}}+\mathrm{ht} P_{n}\right)$. Then
$\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=$
$=\max \left\{\delta\left(P_{1}, \ldots, P_{n}\right) \mid P_{i} \in \operatorname{Spec}\left(A_{i}\right)\right.$, for $\left.i=1, \ldots, n\right\}=$
$=\max \left\{\min \left(\mathrm{ht} P_{1}+\mathrm{t}_{P_{2}}+\cdots+\mathrm{t}_{P_{n}}, \mathrm{t}_{P_{1}}+\mathrm{ht} P_{2}+\mathrm{t}_{P_{3}}+\cdots+\mathrm{t}_{P_{n}}, \ldots\right.\right.$,

$$
\left.\left.\mathrm{t}_{P_{1}}+\cdots+\mathrm{t}_{P_{\mathrm{n}-1}}+\text { ht } P_{n}\right) \mid P_{i} \in \operatorname{Spec}\left(A_{i}\right), \text { for } i=1, \ldots, n\right\}
$$

Remark 1.7. (a) Since $D(s, d, A)$ is a nondecreasing function of the first two arguments, then in Theorem 1.4 it suffices to consider the maximal ideals of $A$ for $\operatorname{dim}(A \otimes B)$ only and in Corollary 1.5 it suffices to consider the maximal ideals of $A_{1}$ and $A_{2}$ for $\operatorname{dim}\left(A_{1} \otimes A_{2}\right)$ only.
(b) With the notation as in Lemma 1.6, it is very easy to prove :
(i) $\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\max \left\{\min \left(\mathrm{ht} M_{1}+\mathrm{t}_{M_{2}}+\cdots+\mathrm{t}_{M_{n}}, \mathrm{t}_{M_{1}}+\mathrm{ht} M_{2}+\mathrm{t}_{M_{3}}+\right.\right.$ $\cdots+\mathrm{t}_{M_{n}}, \ldots, \mathrm{t}_{M_{1}}+\cdots+\mathrm{t}_{M_{n-1}}+$ ht $\left.M_{n}\right) \mid M_{i} \in \operatorname{Max}\left(A_{i}\right)$, for $\left.i=1, \ldots, n\right\}$.
(ii) $\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right) \leq \mathrm{t}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n}-\max \left\{\mathrm{t}_{i}-\mathrm{d}_{i}, 1 \leq i \leq n\right\}$, where $\mathrm{d}_{i}=\operatorname{dim} A_{i}$.

In the following result, we determine a necessary and sufficient condition under which the dimension of the tensor product of the $A F$-rings $A_{1}, \ldots, A_{n}$ satisfies the formula of Wadsworth's Theorem 3.8, that is
$\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\mathrm{t}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n}-\max \left\{\mathrm{t}_{i}-\mathrm{d}_{i}, 1 \leq i \leq n\right\}$.

Theorem 1.8. Let $A_{1}, \ldots, A_{n}$ be $A F$-rings, with $\mathrm{t}_{i}=\mathrm{t}\left(A_{i}\right)$ and $\mathrm{d}_{i}=\operatorname{dim} A_{i}$. Then $\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\mathrm{t}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n}-\max \left\{\mathrm{t}_{i}-\mathrm{d}_{i}, 1 \leq i \leq n\right\}$ if and only if for any $i=1, \ldots, n$ there is $m_{i} \in \operatorname{Max}\left(A_{i}\right)$ and there is $r \in\{1,2, \ldots, n\}$ such that ht $m_{r}=\mathrm{d}_{r}$ and for any $j \in\{1,2, \ldots, n\}-\{r\}, \mathrm{t}_{m_{j}}=\mathrm{t}_{j}$ and $\mathrm{t}\left(A_{j} / m_{j}\right) \leq \mathrm{t}\left(A_{r} / m_{r}\right)$.
Proof. $(\Longrightarrow)$ We may assume that

$$
\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\mathrm{d}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n} ;
$$

on the basis of Remark 1.7 (b) for $i=1,2, \ldots, n$ let $m_{i} \in \operatorname{Max}\left(A_{i}\right)$ such that $\operatorname{dim}\left(A_{1} \otimes \cdots \otimes\right.$ $\left.A_{n}\right)=\min \left(h t m_{1}+\mathrm{t}_{m_{2}}+\cdots+\mathrm{t}_{m_{n}}, \mathrm{t}_{m_{1}}+\right.$ ht $\left.m_{2}+\mathrm{t}_{m_{3}}+\cdots+\mathrm{t}_{m_{n}}, \ldots, \mathrm{t}_{m_{1}}+\cdots+\mathrm{t}_{m_{n-1}}+\mathrm{ht} m_{n}\right)$ Then $\mathrm{d}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n} \leq \mathrm{ht} m_{1}+\mathrm{t}_{m_{2}}+\cdots+\mathrm{t}_{m_{n}}$. So

$$
0 \leq \mathrm{d}_{1}-\mathrm{ht} m_{1} \leq\left(\mathrm{t}_{m_{2}}-\dot{\mathrm{t}}_{2}\right)+\cdots+\left(\mathrm{t}_{m_{n}}-\mathrm{t}_{n}\right) .
$$

Then ht $m_{1}=\mathrm{d}_{1}$ and $\mathrm{t}_{m_{j}}=\mathrm{t}_{j}$ for any $j=2, \ldots, n$. Furthermore for any $j=2, \ldots, n$, being $\mathrm{d}_{1}+\mathrm{t}_{m_{2}}+\cdots+\mathrm{t}_{m_{n}} \leq \mathrm{t}_{m_{1}}+\cdots+\mathrm{t}_{m_{j-1}}+\mathrm{ht} m_{j}+\mathrm{t}_{m_{j+1}}+\cdots+\mathrm{t}_{m_{n}}$, it follows that

$$
\text { ht } m_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n} \leq \mathrm{t}_{m_{1}}+\cdots+\mathrm{t}_{j-1}+\mathrm{ht} m_{j}+\mathrm{t}_{j}+\cdots+\mathrm{t}_{n}
$$

so

$$
\mathrm{t}\left(A_{j} / m_{j}\right)=\mathrm{t}_{j}-\mathrm{ht} m_{j} \leq \mathrm{t}_{m_{1}}-\mathrm{ht} m_{1}=\mathrm{t}\left(A_{1} / m_{1}\right)
$$

$(\Longleftarrow)$ We may assume that for any $i=1, \ldots, n$ an $m_{i} \in \operatorname{Max}\left(A_{i}\right)$ exists so that ht $m_{1}=$ $\mathrm{d}_{1}$ and for any $j=2, \ldots, n \mathrm{t}_{m_{j}}=\mathrm{t}_{j}$ and $\mathrm{t}\left(A_{j} / m_{j}\right) \leq \mathrm{t}\left(A_{1} / m_{1}\right)$. Therefore, for any $j=2, \ldots, n$ it follows that

$$
\text { ht } m_{1}+\mathrm{t}_{m_{j}} \leq \mathrm{t}_{m_{1}}+\mathrm{ht} m_{j}
$$

$$
\text { ht } m_{1}+\mathrm{t}_{m_{2}}+\cdots+\mathrm{t}_{m_{n}} \leq \mathrm{t}_{m_{1}}+\cdots+\mathrm{t}_{m_{j-1}}+\mathrm{ht} m_{j}+\mathrm{t}_{m_{j+1}}+\cdots+\mathrm{t}_{m_{n}}
$$

Therefore, being ht $m_{1}=\mathrm{d}_{1}$ and $\mathrm{t}_{m_{j}}=\mathrm{t}_{j}$ for any $j=2, \ldots, n$, on the basis of Remark 1.7 (b) then

$$
\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right) \geq \mathrm{d}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n}
$$

According to Remark 1.7 (b) it follows $\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\mathrm{d}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n}$.
Example 1.9. Let us now give an example of two $A F$-rings $A_{1}$ and $A_{2}$ where $\operatorname{dim}\left(A_{1} \otimes A_{2}\right)$ does not satisfy the formula of Wadsworth's Theorem

Let $X_{1}, X_{2}, X_{3}$ be three indeterminates over $k$. Let $R_{1}=k\left[X_{1}, X_{2}, X_{3}\right]_{\left(X_{1}\right)}$ and $R_{2}=k\left[X_{1}, X_{2}\right]$. We consider $A_{1}=R_{1} \times R_{2}$ and $A_{2}=k\left[X_{1}, X_{2}\right]_{\left(X_{1}\right)} . A_{1}$ is an $A F$-ring so that $\operatorname{dim} A_{1}=2$ and $t\left(A_{1}\right)=3 ; A_{2}$ is an $A F$-ring so that $\operatorname{dim} A_{2}=1$ and $t\left(A_{2}\right)=2$. According to Corollary 1.5, knowing $\operatorname{Max}\left(R_{1} \times R_{2}\right)$ and $\operatorname{Max}\left(A_{2}\right)$, it is very easy to calculate that $\operatorname{dim}\left(A_{1} \otimes A_{2}\right)=3$. So $\operatorname{dim}\left(A_{1} \otimes A_{2}\right)<\mathrm{t}\left(A_{1}\right)+\mathrm{t}\left(A_{2}\right)-1=4$.

We will now illustrate a number of applications of Theorem 1.8; we note in particular that we arrive at Wadsworth's Theorem 3.8 regarding $A F$-domains (see Corollary 1.12).

Corollary 1.10. Let $A_{1}, \ldots, A_{n}$ be $A F$-rings, with $\mathrm{t}_{i}=\mathrm{t}\left(A_{i}\right)$ and $\mathrm{d}_{i}=\operatorname{dim} A_{i}$ such that for any $i=1, \ldots, n$ an $m_{i} \in \operatorname{Max}\left(A_{i}\right)$ with ht $m_{i}=\mathrm{d}_{i}$ and $\mathrm{t}_{m_{i}}=\mathrm{t}_{i}$ exists. Then

$$
\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\mathrm{t}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n}-\max \left\{\mathrm{t}_{i}-\mathrm{d}_{i}, 1 \leq i \leq n\right\}
$$

Proof. Let $r \in\{1,2, \ldots, n\}$ such that $\mathrm{t}\left(A_{r} / m_{r}\right)=\max \left\{\mathrm{t}\left(A_{i} / m_{i}\right), 1 \leq i \leq n\right\}$; then ht $m_{r}=\mathrm{d}_{r}$ and for any $j \in\{1,2, \ldots, n\}-\{r\}, \mathrm{t}_{m_{j}}=\mathrm{t}_{j}$ and $\mathrm{t}\left(A_{j} / m_{j}\right) \leq \mathrm{t}\left(A_{r} / m_{r}\right)$. Thus obtaining the result according to Theorem 1.8 .

Corollary 1.11. Let $A_{1}, \ldots, A_{n}$ be $A F$-rings, with $\mathrm{t}_{i}=\mathrm{t}\left(A_{i}\right)$ and $\mathrm{d}_{i}=\operatorname{dim} A_{i}$ such that for any $i=1, \ldots, n$ and for any $M_{i} \in \operatorname{Max}\left(A_{i}\right), \mathrm{t}_{M_{i}}=\mathrm{t}_{i}$. Then

$$
\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\mathrm{t}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n}-\max \left\{\mathrm{t}_{i}-\mathrm{d}_{i}, 1 \leq i \leq n\right\} .
$$

Proof. For any $i=1, \ldots, n$ let $m_{i} \in \operatorname{Max}\left(A_{i}\right)$ such that ht $m_{i}=\mathrm{d}_{i}$; so ht $m_{i}=\mathrm{d}_{i}$ and $t_{m_{i}}=t_{i}$. Then Corollary 1.10 completes the proof.
Corollary 1.12. Let $A_{1}, \ldots, A_{n}$ be $A F$-domains, with $\mathrm{t}_{i}=\mathrm{t}\left(A_{i}\right)$ and $\mathrm{d}_{i}=\operatorname{dim} A_{i}$. Then

$$
\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\mathrm{t}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n}-\max \left\{\mathrm{t}_{i}-\mathrm{d}_{i}, 1 \leq i \leq n\right\}
$$

Corollary 1.13. Let $A_{1}, \ldots, A_{n}$ be $A F$-rings, with $\mathrm{t}_{i}=\mathrm{t}\left(A_{i}\right)$ and $\mathrm{d}_{i}=\operatorname{dim} A_{i}$ such that for any $i=1, \ldots, n$ and for any $P_{i} \in \operatorname{Min}\left(A_{i}\right), \mathrm{t}\left(A_{i} / P_{i}\right)=\mathrm{t}_{i}$. Then

$$
\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\mathrm{t}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n}-\max \left\{t_{i}-\mathrm{d}_{i}, 1 \leq i \leq n\right\}
$$

Proof. For any $i=1, \ldots, n$ let $M_{i} \in \operatorname{Max}\left(A_{i}\right)$; therefore a $P_{i} \in \operatorname{Min}\left(A_{i}\right)$ such that ht $M_{i}=$ ht $\left(M_{i} / P_{i}\right)$ exists. Since every $A_{i}$ is an $A F$-ring, according to Lemma 1.3

$$
\mathrm{t}_{M_{i}}=\mathrm{t}_{P_{i}}=\mathrm{t}\left(A_{i} / P_{i}\right)=\mathrm{t}_{i} .
$$

So the result follows from Corollary 1.10.
Corollary 1.14. Let $A_{1}, \ldots, A_{n}$ be equicodimensional $A F$-rings, with $\mathrm{t}_{i}=\mathrm{t}\left(A_{i}\right)$ and $\mathrm{d}_{i}=\operatorname{dim} A_{i}$. Then

$$
\operatorname{dim}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\mathrm{t}_{1}+\mathrm{t}_{2}+\cdots+\mathrm{t}_{n}-\max \left\{\mathrm{t}_{i}-\mathrm{d}_{i}, 1 \leq i \leq n\right\} .
$$

Proof. For any $i=1, \ldots, n$ let $m_{i} \in \operatorname{Max}\left(A_{i}\right)$ such that $\mathrm{t}_{m_{i}}=\mathrm{t}_{i}$; let $r \in\{1,2, \ldots, n\}$ such that $\mathrm{t}\left(A_{r} / m_{r}\right)=\max \left\{\mathrm{t}\left(A_{i} / m_{i}\right), 1 \leq i \leq n\right\}$. Then ht $m_{r}=\mathrm{d}_{r}, \mathrm{t}_{m_{j}}=\mathrm{t}_{j}$ and $\mathrm{t}\left(A_{j} / m_{j}\right) \leq \mathrm{t}\left(A_{r} / m_{r}\right)$ for any $j \neq r$. Thus the conditions of Theorem 1.8 are satisfied and the result obtained.

It is known [Gi, Corollary 3.3] that if $A$ is an $A F$-ring, then

$$
\operatorname{dim}(A \otimes A)=\operatorname{dim}_{v}(A \otimes A) \leq \operatorname{dim} A+\mathrm{t}(A)=\operatorname{dim}_{v} A+\mathrm{t}(A) .
$$

The same result is also obtained in the case of Corollary 1.5. By applying Theorem 1.8 to $A \otimes A$ we obtain

Corollary 1.15. Let $A$ be an $A F$-ring. Then $\operatorname{dim}(A \otimes A)=\operatorname{dim} A+\mathrm{t}(A)$ if and only if there exist two maximal ideals $m$ and $n$ of $A$ such that $\operatorname{ht} m=\operatorname{dim} A, t_{n}=t(A)$ and if there exist two
$\mathrm{t}(A / n) \leq \mathrm{t}(A / m)$.
Example 1.16. Let us now offer an example of an $A F$-ring $A$ such that

$$
\operatorname{dim}(A \otimes A)<\operatorname{dim} A+\mathrm{t}(A)
$$

Let $K$ be an extension field of $k$ such that $\mathrm{t}(K)=2$. Let $A=K \times k[X]$, where $X$ is an indeterminate over $k$. The $A F$-ring $A$ is such that $\operatorname{dim} A=1$ and $\mathrm{t}(A)=2$. The maximal ideals of $A$ are ( 0$) \times k[X]$ and $K \times N$ with $N \in \operatorname{Max}(k[X])$; besides ht $((0) \times k[X])=0$ and $t_{(0) \times k[X]}=2$, ht $(K \times N)=1$ and $t_{K \times N}=1$. It follows, therefore, on the basis of Corollary 1.5 that

$$
\operatorname{dim}(A \otimes A)=2<\operatorname{dim} A+\mathrm{t}(A)=3
$$

We will conclude this section by giving an example which requires the following technical result.

Lemma 1.17. Let $A$ be an AF-ring such that two prime ideals $p$ and $q$ with $\mathrm{t}_{p} \neq \mathrm{t}_{q}$ exist. Then for any $A F$-ring $B, A \otimes B$ is not the tensor product of a finite number of $A F$-domains.
Proof. Suppose that $A \otimes B=D_{1} \otimes \cdots \otimes D_{n}$, where $D_{i}$ is an $A F$-domain for $i=1, \ldots, n$. Then $P, Q \in \operatorname{Spec}(A \otimes B)$ such that $P \cap A=p$ and $Q \cap A=q$ exist. Therefore, on the basis of Lemma 1.1, it follows that

$$
\text { ht } P+t(A \otimes B / P)=\mathrm{t}_{p}+\mathrm{t}_{p^{\prime}}
$$

where $p^{\prime}=P \cap B$; besides, according to Corollary 1.2

$$
\text { ht } P+\mathrm{t}\left(D_{1} \otimes \cdots \otimes D_{n} / P\right)=\mathrm{t}\left(D_{1} \otimes \cdots \otimes D_{n}\right)=\mathrm{t}(A)+\mathrm{t}(B)
$$

Therefore, $\mathrm{t}_{p}=\mathrm{t}(A)$; in the same way it follows that $\mathrm{t}_{q}=\mathrm{t}(A)$, which is impossible.
Example 1.18. For each positive integer $n$, two $A F$-rings $A_{1}$ and $A_{2}$ exists such that
a) $\operatorname{dim}\left(A_{1} \otimes A_{2}\right)=n$;
b) $A_{1} \otimes A_{2}$ is not the tensor-product of a finite number of $A F$-domains;
c) if a not finitely generated separable extension of $k$ exists, then neither $A_{1}$ nor $A_{2}$ is a finite direct product of $A F$-domains.
a) and b). Let $K$ be a separable extension of $k$. Consider

$$
V_{1}=K(X)[Y]_{(Y)}=K(X)+M_{1}\left(\text { with } M_{1}=Y V_{1}\right)
$$

$V_{1}$ is a one-dimensional valuation domain of $K(X, Y)$; consider $V=K(Y)[X]_{(X)}=K(Y)+$
$M$ and $M$ and

$$
V_{2}=K[Y]_{(Y)}+M=K+M_{2}
$$

$V_{2}$ is a two-dimensional valuation domain of $\mathrm{K}(\mathrm{X}, \mathrm{Y})$. Since $V_{1}$ and $V_{2}$ are incomparable, by [ N , Theorem 11.11] $T=V_{1} \cap V_{2}$ is a two-dimensional Prüfer domain with only two maximal
ideals, $m_{1}$ and $m_{2}$, such that $T_{m_{1}}=V_{1}$ and $T_{m_{2}}=V_{2}$. Let $I=m_{1} m_{2}$ and $R=T / I$. $R$ is a zero-dimensional ring with only two prime ideals, $p_{1}=m_{1} / I$ and $p_{2}=m_{2} / I$. Furthermore, $\mathrm{t}\left(R / p_{1}\right)=1$ and $\mathrm{t}\left(R / p_{2}\right)=0$. Now according to Corollary 1.6,
$\operatorname{dim}\left(R \otimes R\left[X_{1}, \ldots, X_{n}\right]\right)=\operatorname{dim}\left((R \otimes R)\left[X_{1}, \otimes, X_{n}\right]\right)=\operatorname{dim}(R \otimes R)+n=\mathrm{t}(R)+n=1+n$.
Besides, according to Lemma $1.17, R \otimes R\left[X_{1}, \otimes, X_{n}\right]$ is not the tensor product of a finite number of $A F$-domains; so it suffices to consider $A_{1}=R$ and $A_{2}=R\left[X_{1}, \ldots, X_{n-1}\right]$.
c) Now assume $K$ as not being finitely generated over $k$. Therefore, $K \otimes K$ is reduced [ZS, Theorem 39], zero-dimensional [ S , Theorem 3.1] and is not Noetherian [V, Theorem 11]. Therefore, $\operatorname{Spec}(K \otimes K)$ is infinite [ $V$, Lemma 0 ]. Now let us consider $A=K \otimes R$; since $A$ is an integral extension of $R$, it is zero-dimensional. Furthermore, two prime ideals of $A, P_{1}$ and $P_{2}$ such that $P_{1} \cap R=p_{1}$ and $P_{2} \cap R=p_{2}$ with $\mathrm{t}\left(A / P_{1}\right)=1$ and $\mathrm{t}\left(A / P_{2}\right)=0$ exist. Since $K$ is the quotient field of $R / p_{2}$ and $\operatorname{Spec}(K \otimes K)$ is infinite, by [W, Proposition 3.2] $\operatorname{Spec}(A)=\operatorname{Min}(A)$ is infinite. Thus $A$ is not a finite direct product [W, Proposition 3.2] $\operatorname{Spec}(A)=\operatorname{Min}(A)$ is infinite. Thus $A$ is not a finite direct product
of $A F$-domains and the same holds for $A\left[X_{1}, \ldots, X_{n}\right]$. Now, according to Corollary 1.6, $\operatorname{dim}\left(A \otimes A\left[X_{1}, \ldots, X_{n}\right]\right)=\operatorname{dim}\left((A \otimes A)\left[X_{1} \ldots, X_{n}\right]\right)=\operatorname{dim}(A \otimes A)+n=\mathrm{t}(A)+n=1+n$.
Furthermore, according to Lemma $1.17, A \otimes A\left[X_{1}, \otimes, X_{n}\right]$ is not the tensor product of a finite number of $A F$-domains; therefore, it suffices to consider $A_{1}=A$ and $A_{2}=$ $A\left[X_{1}, \ldots, X_{n-1}\right]$.

## 2. Tensor products of $A F$-rings and locally Jaffard rings

We will now present this section's main theorem.
Theorem 2.1. Let $A$ be an $A F$-ring and $B$ a locally Jaffard ring. Then $A \otimes B$ is a locally Jaffard ring.

> In order to prove this theorem the following premise is necessary.

Lemma 2.2. Let $A$ be an $A F$-ring and $B$ any ring; let $Q$ be any prime ideal of $T=A \otimes B$, and let $p=Q \cap A, q=Q \cap B$. Then

$$
\mathrm{ht} Q+\mathrm{t}(T / Q)=\mathrm{t}_{p}+\mathrm{ht} q\left[X_{1}, \ldots, X_{\mathrm{t}_{p}}\right]+\mathrm{t}(B / q)
$$

Proof. By localizing, we may assume that $p$ and $q$ are maximal ideals in local rings. Let $\bar{B}=B / q$ and let $\bar{Q}$ be the image of $Q$ in $A \otimes \bar{B} ;$ let $\bar{Q}_{0} \subsetneq \bar{Q}_{1} \subsetneq \ldots \subsetneq \bar{Q}_{h}=\bar{Q}$ be a chain of prime ideals of $A \otimes \bar{B}$ such that $h=$ ht $\bar{Q}$. Then $\bar{Q}_{0} \cap A=p_{0}$ is a minimal prime of $A$ and $\bar{Q}_{0} \cap \bar{B}=0 \bar{B}$. Let $Q_{0} \subsetneq Q_{1} \subsetneq \cdots \subsetneq Q_{h}=Q$ be the chain of inverse images in $A \otimes B$. As in the case of demonstration given in Theorem. 1.4, ht $Q_{0} \geq$ ht $q\left[X_{1}, \ldots, X_{t_{p}}\right]$. Since $\bar{B}$ is an $A F$-domain, according to [W, Remark 1 (b) p. 398] it follows that

$$
\mathrm{ht} \bar{Q}+\mathrm{t}((A \otimes \bar{B}) / \bar{Q})=\mathrm{t}(\bar{B})+\mathrm{ht} p\left[X_{1}, \ldots, X_{\mathrm{t}(\bar{B})}\right]+\mathrm{t}(A / p)=\mathrm{t}_{p}+\mathrm{t}(B / q)
$$

Therefore
$\mathrm{ht} Q \geq \mathrm{ht} Q_{0}+\mathrm{ht}\left(Q / Q_{0}\right) \geq \mathrm{ht} Q_{0}+\mathrm{ht} \bar{Q} \geq \mathrm{ht} q\left[X_{1}, \ldots, X_{\mathrm{t}_{p}}\right]+\mathrm{t}_{p}+\mathrm{t}(B / q)-\mathrm{t}(T / Q)$. Then

$$
\mathrm{ht} Q+\mathrm{t}(T / Q) \geq \mathrm{t}_{p}+\mathrm{ht} q\left[X_{1}, \ldots, X_{\mathrm{t}_{p}}\right]+\mathrm{t}(B / q)
$$

On the other hand, let $Q_{0} \subsetneq Q_{1} \subsetneq \cdots \subsetneq Q_{s}=Q$ be a chain of prime ideals of $T$ such that $s=$ ht $Q$. Therefore, a finitely generated $k$-algebra $D_{1}$ contained in $A$ such that $\mathrm{t}(A / p)=\mathrm{t}\left(D_{1} / p_{1}\right)$, where $p_{1}=p \cap D_{1}$, and
$Q_{0} \cap\left(D_{1} \otimes B\right) \subsetneq Q_{1} \cap\left(D_{1} \otimes B\right) \subsetneq \cdots \subsetneq Q_{s} \cap\left(D_{1} \otimes B\right)=Q \cap\left(D_{1} \otimes B\right)$,
exists. It is $\mathrm{t}\left(D_{1}\right) \leq \mathrm{t}(A)$. By choosing $g_{1}, \ldots, g_{r} \in T$ such that, setting $T^{\prime \prime \prime}=\left(D_{1} \otimes\right.$ $B)\left[g_{1}, \ldots, g_{r}\right]$ and $\bar{Q}^{\prime \prime \prime}=Q \cap T^{\prime \prime \prime}$, it emerges $\mathrm{t}\left(T^{\prime \prime \prime}\right)=\mathrm{t}(T)$ and $\mathrm{t}\left(T^{\prime \prime \prime} / Q^{\prime \prime \prime}\right)=\mathrm{t}(T / Q)$. This gives rise to a finitely generated $k$-algebra $D$ where $D_{1} \subseteq D \subseteq A$, where, if we set $T^{\prime \prime}=D \otimes B$ and $Q^{\prime \prime}=Q \cap T^{\prime \prime}$, then we obtain $\mathrm{t}\left(T^{\prime \prime}\right)=\mathrm{t}(T)$ and $\mathrm{t}\left(T^{\prime \prime} / Q^{\prime \prime}\right)=\mathrm{t}(T / Q)$. So $t(D)=t(A)=t_{p}$. According to Noether's normalization Lemma [M, Lemma 2 p.262] $z_{1}, \ldots, z_{\mathrm{t}_{p}} \in D$ which are algebraically independent over $k$, so that $D$ is integral over $z_{1}, \ldots, z_{\mathrm{t}_{p}} \in D$ which are algebracaly $=k=k$; since $D \otimes B$ is integral over $C \otimes B$, distinct primes of $D \otimes B$ in a chain contract to distinct primes of $C \otimes B$. Thus
$Q_{0} \cap(C \otimes B) \subsetneq Q_{1} \cap(C \otimes B) \subsetneq \cdots \subsetneq Q_{s} \cap(C \otimes B)=Q \cap(C \otimes B)=Q^{\prime}$.
Then ht $Q \leq$ ht $Q^{\prime}$ and $\mathrm{t}\left(T^{\prime} / Q^{\prime}\right)=\mathrm{t}(T / Q)$. So ht $Q+\mathrm{t}(T / Q) \leq \mathrm{ht} Q^{\prime}+\mathrm{t}\left(T^{\prime} / Q^{\prime}\right)$; since $T^{\prime}=C \otimes B$, according to $[W$, Remark 1 (b) p. 398] it follows that

$$
\operatorname{ht} Q^{\prime}+\mathrm{t}\left(T^{\prime} / Q^{\prime}\right)=\mathrm{t}_{p}+\mathrm{ht} q\left[X_{1}, \ldots, X_{\mathrm{t}_{p}}\right]+\mathrm{t}(B / q)
$$

Consequently

$$
\mathrm{ht} Q+\mathrm{t}(T / Q) \leq \mathrm{t}_{p}+\mathrm{ht} q\left[X_{1}, \ldots, X_{\mathrm{t}_{p}}\right]+\mathrm{t}(B / q)
$$

Proof of theorem. Let $T=A \otimes B$, let $Q \in \operatorname{Spec}(T)$ and let $p=Q \cap A, q=Q \cap B$. For any $n \geq 0$ let $T^{\prime}=T\left[X_{1}, \ldots, X_{n}\right] ; T^{\prime} \cong A\left[X_{1}, \ldots, X_{n}\right] \otimes B$ and $A\left[X_{1}, \ldots, X_{n}\right]$ is an $A F$-ring by [W, Corollary 3.2]; therefore, on the basis of the previous Lemma
ht $Q\left[X_{1}, \ldots, X_{n}\right]+\mathrm{t}\left(T^{\prime} / Q\left[X_{1}, \ldots, X_{n}\right]\right)=\mathrm{t}_{p^{\prime}}+\mathrm{ht} q\left[X_{1}, \ldots, X_{\mathrm{t}_{p^{\prime}}}\right]+\mathrm{t}(B / q)$
where $p^{\prime}=Q\left[X_{1}, \ldots, X_{n}\right] \cap A\left[X_{1}, \ldots, X_{n}\right]=p\left[X_{1}, \ldots, X_{n}\right]$. Furthermore, since $A$ is an $A F$-ring,

$$
\mathrm{t}_{p^{\prime}}=\mathrm{t}\left(A\left[X_{1}, \ldots, X_{n}\right]_{p^{\prime}}\right)=\mathrm{ht} p^{\prime}+\mathrm{t}\left(A\left[X_{1}, \ldots, X_{n}\right] / p\left[X_{1}, \ldots, X_{n}\right]\right)=\mathrm{t}_{p}+n
$$

Since $B$ is a locally Jaffard ring,

$$
\mathrm{ht} Q\left[X_{1}, \ldots, X_{n}\right]+\mathrm{t}\left(T^{\prime} / Q\left[X_{1}, \ldots, X_{n}\right]\right)=n+\mathrm{t}_{p}+\mathrm{ht} q+\mathrm{t}(B / q) .
$$

Besides,

$$
\text { ht } Q\left[X_{1}, \ldots, X_{n}\right]+\mathrm{t}\left(T^{\prime} / Q\left[X_{1}, \ldots, X_{n}\right]\right)=\text { ht } Q\left[X_{1}, \ldots, X_{n}\right]+n+\mathrm{t}(T / Q) .
$$

Therefore, by applying the previous Lemma to $Q$, it follows that

$$
\mathrm{ht} Q\left[X_{1}, \ldots, X_{n}\right]=\mathrm{t}_{p}+\mathrm{ht} q+\mathrm{t}(B / q)-\mathrm{t}(T / Q)=\mathrm{ht} Q
$$

Consequently $A \otimes B$ is a locally Jaffard ring.

Lemma 2.3. Let $A$ be an $A F$-ring and $B$ any ring; let $P \in \operatorname{Spec}(A)$. Then for any $r \geq 1$

$$
D\left(\mathrm{t}_{P}, \text { ht } P, B\left[X_{1}, \ldots, X_{r}\right]\right)=D\left(\mathrm{t}_{P}+r, \text { ht } P+r, B\right) .
$$

Proof. Since $A_{P} \otimes B\left[X_{1}, \ldots, X_{r}\right] \cong A_{P}\left[X_{1}, \ldots, X_{r}\right] \otimes B$, according to Theorem 1.4 and Remark 1.7 (a), it emerges that
$D\left(\mathrm{t}_{P}\right.$, ht $\left.P, B\left[X_{1}, \ldots, X_{r}\right]\right)=\max \left\{D\left(\mathrm{t}_{P^{\prime}}\right.\right.$, ht $\left.\left.P^{\prime}, B\right) \mid P^{\prime} \in \operatorname{Spec}\left(A_{P}\left[X_{1}, \ldots, X_{r}\right]\right)\right\}$.
Since $A_{P}$ is a locally Jaffard ring, $\operatorname{dim} A_{P}\left[X_{1}, \ldots, X_{r}\right]=\mathrm{ht} P+r$; therefore, for any $P^{\prime} \in \operatorname{Spec}\left(A_{P}\left[X_{1}, \ldots, X_{r}\right]\right)$ it follows that

$$
D\left(\mathrm{t}_{P^{\prime}}, \text { ht } P^{\prime}, B\right) \leq D\left(\mathrm{t}_{P}+r, \text { ht } P+r, B\right)
$$

and therefore that

$$
D\left(\mathrm{t} p, \text { ht } P, B\left[X_{1}, \ldots, X_{r}\right]\right) \leq D\left(\mathrm{t}_{P}+r, \text { ht } P+r, B\right) .
$$

Furthermore, by letting $M^{\prime}=\left(P A_{P}, X_{1}, \ldots, X_{r}\right)$, it follows that ht $M^{\prime}=$ ht $P+r$ and $\mathrm{t}_{M^{\prime}}=\mathrm{t}_{P}+r$; therefore

$$
D\left(\mathrm{t}_{P}+r, \text { ht } P+r, B\right) \leq D\left(\mathrm{t}_{P}, \text { ht } P, B\left[X_{1}, \ldots, X_{r}\right]\right) .
$$

Proposition 2.4. Let $A$ be an $A F$-ring and $B$ any ring. Then for any $r \geq \operatorname{dim}_{v} B-1$

$$
\operatorname{dim}_{v}(A \otimes B)=\max \left\{D\left(\mathrm{t}_{p}+r, \operatorname{ht} p+r, B\right) \mid p \in \operatorname{Spec}(A)\right\}-r=
$$

$=\max \left\{\operatorname{ht} q\left[X_{1}, \ldots, X_{r}\right]+\min \left(\mathrm{t}_{p}, \operatorname{ht} P+\mathrm{t}(B / q) \mid p \in \operatorname{Spec}(A)\right.\right.$ and $\left.q \in \operatorname{Spec}(B)\right\}$.
Proof. Let $r \geq \operatorname{dim}_{v} B-1$. Since, according to [C, Proposition 1. ii)], $B\left[X_{1}, \ldots, X_{r}\right]$ is a locally Jaffard ring, according to Theorem $2.1 A \otimes B\left[X_{1}, \ldots, X_{r}\right]$ is a Jaffard ring. Therefore by Theorem1.4 and Lemma 2.3

$$
\begin{aligned}
\operatorname{dim}_{v}\left(A \otimes B\left[X_{1}, \ldots, X_{r}\right]\right) & =\operatorname{dim}\left(A \otimes B\left[X_{1}, \ldots, X_{r}\right]\right) \\
& =\max \left\{D\left(t_{p}, \text { ht } p, B\left[X_{1}, \ldots, X_{r}\right]\right) \mid p \in \operatorname{Spec}(A)\right\} \\
& =\max \left\{D\left(t_{p}+r, \text { ht } p+r, B\right) \mid p \in \operatorname{Spec}(A)\right\}
\end{aligned}
$$

From this it follows that $\operatorname{dim}_{v}(A \otimes B)=\max \left\{D\left(\mathrm{t}_{p}+r\right.\right.$, ht $\left.\left.p+r, B\right) \mid p \in \operatorname{Spec}(A)\right\}-r=$ $\max \left\{\right.$ ht $q\left[X_{1}, \ldots, X_{r}\right]+\min \left(\mathrm{t}_{p}\right.$, ht $\left.p+\mathrm{t}(B / q)\right) \mid p \in \operatorname{Spec}(A)$ and $\left.q \in \operatorname{Spec}(B)\right\}$.
Corollary 2.5. Let $A$ be an AF-domain with $t=t(A)$ and $d=\operatorname{dim} A$ and let $B$ be any ring. Then for any $r \geq \operatorname{dim}_{v} B-1$

$$
\begin{aligned}
\operatorname{dim}_{v}(A \otimes \dot{B}) & =D(t+r, d+r, B)-r= \\
& =\max \left\{\operatorname{ht} q\left[X_{1}, \ldots, X_{r}\right]+\min (t, d+t(B / q)) \mid q \in \operatorname{Spec}(B)\right\}
\end{aligned}
$$

Corollary 2.6. Let $A$ be an $A F$-domain with $t=\mathrm{t}(A)$ and $B$ a ring such that $\operatorname{dim}_{v} B \leq$ $t+1$. Then $A \otimes B$ is a Jaffard ring.
Corollary 2.7. Let $A$ be an $A F$-domain with $t=\mathrm{t}(A)$ and $B$ a Jaffard ring such that $B[X]$ is a locally Jaffard ring. Then $A \otimes B$ is a Jaffard ring.
Proof. If $t=0$, then $A \otimes B$ is an integral extension of $B$; since $B$ is a Jaffard ring, according to [J, Proposition 4, p. 58] $A \otimes B$ is a Jaffard ring. Assume that $t \geq 1 ; A \otimes B[X]$ is a Jaffard ring according to Theorem 2.1 ; furthermore, according to [J, Theorem 2 p . $60], \operatorname{dim}_{v}(A \otimes B[X])=\operatorname{dim}_{v}(A \otimes B)+1$; so according to [W, Theorem 3.7]

$$
\operatorname{dim}_{v}(A \otimes B)=\operatorname{dim}_{v}(A \otimes B[X])-1=\operatorname{dim}(A \otimes B[X])-1=
$$

$$
=\max \left\{\operatorname{ht} Q\left[X_{1}, \ldots, X_{t}\right]+\min (t, d+t(B[X] / Q)) \mid Q \in \operatorname{Spec}(B[X])\right\}-1=
$$

$$
=\max \{\operatorname{ht} q[X]+\min (t+1, d+1+\mathrm{t}(B / q)) \mid q \in \operatorname{Spec}(B)\}-1=
$$

$$
=D(t+1, d+1, B)-1=D(t, d, B)=\operatorname{dim}(A \otimes B)
$$

In conclusion, $A \otimes B$ is a Jaffard ring.
Remark 2.8. The example 3.2 of [ABDFK] is an example of a Jaffard, not locally Jaffard ring $B$, where $B[X]$ is a locally Jaffard ring.
Example 2.9. The result of Theorem 2.1 is the best-possible one: the tensor product of an AF-domain and a Jaffard ring is not necessarily a Jaffard ring.

It is possible to deduce the following example from [ABDFK]. Let $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ be four indeterminates over $k$. Let $L=k\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right)$. Let

$$
V_{1}=k\left(Z_{1}, Z_{2}, Z_{3}\right)\left[Z_{4}\right]_{\left(Z_{4}\right)}=k\left(Z_{1}, Z_{2}, Z_{3}\right)+M_{1}
$$

$V_{1}$ is a one-dimensional valuation ring of $L$, with maximal ideal $M_{1}=Z_{4} V_{1}$. Let $V^{\prime}$ be a one-dimensional valuation overring of $k\left(Z_{4}\right)\left[Z_{2}, Z_{3}\right]$ of the form $V^{\prime}=k\left(Z_{4}\right)+M^{\prime}$. Let $V^{\prime}{ }_{2}=k\left[Z_{4}\right]_{\left(Z_{4}\right)}+M^{\prime}=k+M_{2}^{\prime}$, where $M_{2}^{\prime}=Z_{4} k\left[Z_{4}\right]_{\left(Z_{4}\right)}+M^{\prime} . V_{2}^{\prime}$ is a two-dimensional valuation ring. Let $V=k\left(Z_{2}, Z_{3}, Z_{4}\right)\left[Z_{1}\right]\left(Z_{1}\right)=k\left(Z_{2}, Z_{3}, Z_{4}\right)+M$, with $M=Z_{1} V$; let $M_{2}=M^{\prime}{ }_{2}+M$ and

$$
V_{2}=V_{2}^{\prime}+M=k+M_{2}
$$

$V_{2}$ is a three-dimensional valuation ring.
We now wish to demonstrate that $V_{1}$ and $V_{2}$ are incomparable. If not, it would follow from the one-dimensionality of $V_{1}$ that $V_{2} \subset V_{1}$. Then we would have $V_{1}=\left(V_{2}\right)_{M}$. We would have that $M$ is a divided prime ideal of $V_{2}$. Then $Z_{4} V_{1}=M_{1}=M\left(V_{2}\right)_{M}$. Thus $1=Z_{4} Z_{4}^{-1} \in M V=M$, which is a contradiction. Since $V_{1}$ and $V_{2}$ both have quotient field $k\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right)$, we can now see from [ N , Theorem 11.11] that $S=V_{1} \cap V_{2}$ is a three-dimensional Prüfer domain with only two maximal ideals, $m_{1}$ and $m_{2}$, such that $S_{m_{1}}=V_{1}$ and $S_{m_{2}}=V_{2}$. Let $F=k\left(Z_{1}\right), f: V_{1} \longrightarrow k\left(Z_{1}, Z_{2}, Z_{3}\right)$ be the natural ring homomorphism and $D=f^{-1}(F)=F+M_{1}$. Let $g: S \longrightarrow S / m_{1} \cong V_{1} / m_{1} \cong k\left(Z_{1}, Z_{2}, Z_{3}\right)$ homomorphism and $D=f^{-1}(F)=F+M_{1}$. Let $g: S \longrightarrow S / m_{1} \cong V_{1} / m_{1} \cong k\left(Z_{1}, Z_{2}, Z_{3}\right)$
be the natural ring homomorphism and $B=g^{-1}(F)$. It follows that $B=D \cap S=D \cap V_{2}$ be the natural ring homomorphism and $B=g^{-1}(F)$. It follows that $B=D \cap S=D \cap V_{2}$
and $\operatorname{dim} B=\operatorname{dim} S=3$. Furthermore, according to [ABDFK, Theorem 2.11], it follows and d

$$
\operatorname{dim}_{v} B=\max \left\{\operatorname{dim}_{v} S, \operatorname{dim}_{v} F+\operatorname{dim}_{v} S_{m_{1}}+\mathrm{t}\left(S / m_{1}: F\right)\right\}=3
$$

Thus, $B$ is a Jaffard ring. Since $B=D \cap V_{2}$ and $V_{1}, V_{2}$ are incomparable, it follows that $B_{n_{1}}=D$ and $B_{n_{2}}=V_{2}$, where $\left\{n_{1}, n_{2}\right\}=\operatorname{Max}(B)$. Moreover, ht $n_{1}\left[X_{1}, \ldots, X_{s}\right]=$ ht $n_{1} B_{n_{1}}\left[X_{1}, \ldots, X_{s}\right]=$ ht $M_{1}\left[X_{1}, \ldots, X_{s}\right]$. Since $V_{1}$ is a Jaffard ring, by [A, Theorem 17] it follows that ht $p\left[X_{1} M_{1}\left[X_{1}, \ldots, X_{s}\right]=\right.$ ht $V_{1} M_{1}+\inf (s, 2)$. Thus, ht $n_{1}=1$ ht $n_{1}\left[X_{1}\right]=2$ and ht $n_{1}\left[X_{1}, X_{2}\right]=3 ; \mathrm{t}\left(B / n_{1}\right)=\mathrm{t}\left(D / M_{1}\right)=1$ and $\mathrm{t}\left(B / n_{2}\right)=\mathrm{t}\left(V_{2} / M_{2}\right)=0$. ht $n_{1}\left[X_{1}\right]=2$ and ht $n_{1}\left[X_{1}, X_{2}\right]=3 ; \mathrm{t}\left(B / n_{1}\right)$
Let $A=k(X)$. According to Theorem 1.4,
$\operatorname{dim}(A \otimes B)=D(\mathrm{t}(A), 0, B)=\max \left\{\operatorname{ht} q\left[X_{1}\right]+\min (1, \mathrm{t}(B / q)) \mid q \in \operatorname{Spec}(B)\right\}$.
For $q=n_{1}$, it is ht $n_{1}\left[X_{1}\right]+\min \left(1, \mathrm{t}\left(B / n_{1}\right)\right)=2+1=3$; for $q=n_{2}$, it is ht $n_{2}\left[X_{1}\right]+$ $\min \left(1, \mathrm{t}\left(B / n_{2}\right)\right)=\mathrm{ht} n_{2}=3$ and ht $q\left[X_{1}\right]+\min (1, \mathrm{t}(B / q)) \leq 3$ for every prime ideal of $B$ contained in $n_{2}$. Consequently, $\operatorname{dim}(A \otimes B)=3$. On the basis of Corollary 2.5,

$$
\operatorname{dim}_{v}(A \otimes B)=\max \left\{\mathrm{ht} q\left[X_{1}, X_{2}\right]+\min (1, \mathrm{t}(B / q)) \mid q \in \operatorname{Spec}(B)\right\}
$$

for $q=n_{1}$, ht $n_{1}\left[X_{1}, X_{2}\right]+\min \left(1, \mathrm{t}\left(B / n_{1}\right)\right)=3+1=4$. Therefore $\operatorname{dim}_{v}(A \otimes B)=4 \neq$ $\operatorname{dim}(A \otimes B)$. In conclusion $A \otimes B$ is not a Jaffard ring.

## References

[A] A. Ayache: Inégalité ou formule de la dimension et produits fibrés, Thèse de doctorat en sciences, Université d'Aix-Marseille, 1991.
[ABDFK] D.F. Anderson, A. Bouvier, D.E. Dobbs, M. Fontana, S. Kabbaj: "On Jaffard domains", Expo. Math., 6 (1988), 145-175.
[C] P.-J. Cahen: "Construction $B, I, D$ et anneaux localement ou résiduellement de Jaffard", Arch Math., 54 (1990), 125-141.
[G] R. Gilmer: Multiplicative ideal theory, M. Dekker, New York, 1972.
[Gi] F. Girolami: "AF-rings and locally Jaffard rings", Proc. Fès Conference 1992, Lect. Notes Pure Appl. Math. 153, M. Dekker, 1994, 151-161.
[J] P. Jaffard: "Théorie de la dimension dans les anneaux de polynômes", Mém. Sc. Math., 146 (1960), Gauthier-Villars, Paris.
[M] H. Matsumura: Commutative ring theory, Cambridge University Press, Cambridge, 1989.
[N] M. Nagata: Local rings, Interscience, New York 1962.
[S] R.Y. Sharp: "The dimension of the tensor product of two field extensions", Bull. London Math. Soc. 9 (1977), 42-48.
[SV] R.Y. Sharp, P. Vamos: "The dimension of the tensor product of a finite number of field extensions", J. Pure Appl. Algebra, 10 (1977), 249-252
[V] P. VAMOS: "On the minimal prime ideals of a tensor product of two fields", Math. Proc. Camb. Phil. Soc., 84 (1978), 25-35.
[W] A.R. WADSWORTH: "The Krull dimension of tensor products of commutative algebras over a field", J. London Math. Soc., 19 (1979), 391-401.
[ZS] O. Zariski, P. Samuel: Commutative Algebra, Vol. I, Van Nostrand, New York, 1960.

