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INTRODUCTION 

For the convenience of the reader, let's recall the following facts. 
We have from the restriction on Krull dimension, 1 <:: dimR[G] = 
dimR + r, where r denotes the torsion free rank of G. If r = 0, 
then G must be a finite group. If r = 1, then G ~ Z Ell H, where 
H is a finite abelian group and Z the group of the integers. We will 
concentrate on the case in which R is Artinian and r = 0, that is, G 
is a finite abelian group. The cases n = 2 and n = 3 were considered 
in [15, Theorem 4.1] and [1], respectively. However, for n <:: 4 , the 
problem of when R[G] has the n-generator property remains open. 

As the problem of determining when a group ring R[G] has the 
·4-generator property, when R is an Artinian principal ideal ring and 
G is a finite group is resolved in [2], in this paper, we consider the 
case where R is an Artinian ring with the 2-generator property. 

Rings and groups are taken to be commutative and the groups 
are written additively. If p is a prime integer, then the p-sylow 
subgroup of the finite abelian group G will be denoted Gp.When I 
is an ideal of R, we shall use Jl(I) to denote the number of generators 
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in a minimal basis for I. Finally, recall that in a local ring (R, m), 
if I is n-generated, then the n generators of I may be chosen from 
elements of a given set of generators of I (cf. [13, (5.3), p. 14]). 

PROPOSITION 1 Assume that G is a nontrivial finite 2-group, 
(R, M) is an Artinian local ring with the 2-generator property but 
R is not a principal ideal ring and that 2 EM. Then R[ GJ has the 
4-generator property if and only if 
G "" Z/2i Z, where 

(1) i ? 1 if M2 is a principal ideal and M3 = 0 
(2) 1::; i ::; 2 if M2 is a principal ideal, M3 # 0 and M2 C (2). 
(9) i = 1 otherwise. 

Proof. =*J Assume that G is not a cyclic group and R[GJ has the 
4-generator property. Then the homomorphic image R[Z/2Z EEl 
Z /2ZJ does also. Hence N2 is 4-generated where N = (u, v, 1 -
X 9,1-Xh

), M = (u,v) and < 9 > EEl < h >= Z/2Z EEl Z/2Z. Since 
1< 9 > 1= 2 and 2 E M, then N 2 = (u2,v2,uv,u(1 - X g),v(l­
X9), u(l - X h), v(l - Xh), (1 - X9)(1 - Xh». 

It is easy to see that (1-X9)(1-Xh) is required as a generator of 
. N 2

• Since M = (u, v) is not a principal ideal, it is also easy to verify 
that u(l - X9), v(l - X9), u(l - Xh) and v(l - Xh) are required as 
generators of N2. Therefore N 2 needs more than four generators, a 
contradiction. 

(1) Trivial. 

(2) Since M2 is a principal ideal, one can easily check that M3 
is a principal ideal too. Further, we may assume M = (2, v) since 
2 E M \ M2. Suppose that R[Z/8ZJ has the4-generator property 
and let < 9 >= Z/8Z, M2 = (a), and M3 = (p,). We have 

N = (2, v, 1 - X9) ; . 
N 2 = (a, 2(1 - xg), v(l - xg), (1 - X9)2) ; 
N 3 = (p" a(l - X9), 2(1 - X9)2, v(l - X9)2, (1 - X9)3). 
Since M3 # 0 and I < 9 > I > 3, it is clear that p, and (1 - X9)3 

are required as generators of N 3 • 

If a(l - X9) is a redundant generator of N3, then by passing to 
the homomorphic image R/M3[< 9 >J and by using [1, Lemma l.4J, 
we get a = 8A· for some A E R/ M3. It follows that a E M3, whence 
M2 = M 3, i. e., M2 = 0, a contradiction. 
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If 2(1 - X9)2 is redundant, then. passing to the, homomorphic 
image R/(4,v)[< 9 >J yields 2(1 - xg)2 = 2::;::~ aiXi9(1 - X9)3 
where ai E R/(4,v). After setting corresponding terms equal, we 
obtain a system of 8 linear equations in 8 unknowns. After resolving 
this system, we obtain 2 = ° in R/( 4, v), i. e., M = (2, v) = (22, v) = 
(23

, v) = ... = (v), since R is Artinian, a contradiction. 
If v(l - X9)2 is redundant, then passing to the homomorphic 

image R/(2, v2)[< 9 >J, yields v(l - X9)2 E (1 - X9)3 R/(2, v2)[< 
9 >J, whence v(l-Xg? E (1-X9)B R/(2, v2)[< 9 >J = O. Therefore 
v E (2, v2

) i. e., M = (2, v) = (2), a contradiction. Consequently, 
N 3 is not 4-generated. 

(3) We consider separately three subcases. ca8e1 : Assume M2 
is not a principal ideal. It suffices to prove that R[ Z / 4ZJ does not 
have the 4-generator property. 

Since M and M2 are not principal ideals and I < 9 > I > 3, it is 
easily seen that N2 = (u2, v2, uv, u(l - xg), v(l- X9), (1 - X9)2) is 
not 4-generated where M = (u,v) and < 9 >= Z/4Z. 

ca8e2: Assume M2 is a principal ideal, M3 # 0, and 2 E 
M2. We claim that N 3 is not 4-generated in R[Z/4ZJ, where N = 
(u, v, 1 - xg) and < 9 >= Z /4Z. Indeed, we have 
N2 = (a, u(l - xg), v(l - xg), (1 - Xg)2) and N 3 = (au, av, a(l -
xg), u(l - xg)2, v(l - xg)\ (1 - Xg)3), where M2 = (a). . 

I < 9 > I = 4 implies that (1 - Xg)3 is required as a generator of 
N3. If u(l - Xg)2 is redundant, then passing to the homomorphic 
image R/(u2,v)[< 9 >J yields u(l-Xg)2 E (1-Xg)3 R/(u2,v)[< 9 > 
J, whence u(l - Xg)3 E (1 - Xg)4 R/(u2, v)[< 9 >J C 2R/(u2 , v)[< 
9 >J. Since 2 E M2 and R/(u2,v)[< 9 >J is a free (R/(u2,v»)­
module, then u E (u2,v), a contradiction. Likewisefor v(l- Xg)2. 

If a(l - X9) is a redundant generator of N 3 , then passing to 
the homomorphic image R/M3 [< 9 >J yields a(l - xg) E (1 -
X9)2R/M3[< 9 >]. By [1, Lemma 1.4] a = 4A, for some A ER/M3. 
It follows that a = ° in R/ M3 , i.e., M2 = (a) = 0, a contradiction. 

Since M3 # 0, it is clear that N 3 needs more than four generators. 
Consequently, R[Z/4Z] does not have the 4-generator property. 

Ca8e3: Assume M2 is a principal ideal, M3 # 0, 2 E M \ M2, 
and M2 rt (2). Clearly, M3 is principaL Further, we may assume 
M = (2,v), and henceM2 = (v2). We claim thatR[Z/4Z] does not 
have the 4-generator property. Effectively, . 
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Suppose 4!/:. M 4
, It follows. from the assumption MZ rt (2) that 

4 E M3 \M4, and hence M3 = (4). 
In R[Z/4ZJ, let I = (4, v2(1 - XU), 2(1 - XU), v(l - XD)2, (1 -

XU)3) where < 9 >= Z/4Z. Since 4 01 0 and I < 9 > I > 3, it is 
easily checked that 4 and (1 - XU)3 are required as generators of I. 
Moreover, using techniques similar to ones used above, we prove that 
v(l - XD)2 must appear in a party of 4 generators extracted from 
the original set of generators of I. If v2(1 - XU) is redundant, then 
passing to the homomorphic image R/(2)[< 9 >J yields v2(1-XD) E 
(1 - XD)2 R/(2)[< 9 >J. By [1, Lemma 1.4], we have v2 = 0 in 
R/(2)[< 9 >], i. e., v2 C (2), a contradiction since M2 = (v2) rt (2). 
Therefore I = (4, v2(1-XU), v(1-XD)2, (1_XU)3). Now 2(1-XD) E 
I, then passing to the homomorphic image R/( 4, v)[ < 9 >] yields 
2(1-XU) = L::~~ aiXiU(1-XU)3, where ai E R/(4, v). After setting 
corresponding terms equal, we obtain the following equations : 

ao - al + 3a2 - 3a3 = 2 

-3ao + al - az + 3a3 = -2 

3ao - 3al + az - a3 = 0 

-ao + 3al - 3a2 + a3 = 0 

This yields 2 = 0 in R/( 4, v), i. e., M = (2, v) = (v), a contradiction. 
Consequently, I needs more than four generators. 

Suppose 4 E M4. Let M3 = (/1), if M3 rt (2), we consider 
1= (2,/1,v2(1-XU),v(1-XD)2,(1_XD)3). Since 2 !/:. M2, M3 rt (2) 
and I < 9 > I > 3, it is an easy matter to verify that 2, /1 and (1-XD)3 
are require<;l as generators of I. Moreover, using arguments similar 
to ones used above, it is easy to check that v2(1-XD) and v(1-XU)2 
are required as generators of I. Thus I is not 4-generated. 
If M3 C (2), then /1 = 2A where A E M since 2 E M\M2. Therefore 
/1 = 4al + 2a2v, where aI, a2 E R. 

Since M3 01 0, M2 rt (2), it3 is a principal ideal and 4 E M4, 
then M3 = (2v). 

. On the other hand, M3 = (v3, 2v2). Since R is an Artinian ring 
and 2v E M3, then M3 = (v3), whence there exists A a unit in R such 
that 2v = AV3. Let I = (v3, 2-AV2, v2(1-XD), v(l-XU?, (1-XU)3). 
As before, one can easily check that v(l - XU)2 and (1 - XD)3 are 
required as generators of I. If 2 - Av2 is redundant, then passing to 
the homomorphic image R[< 9 >]/«1 - XU)) ~ R yields 2 - Av2 E 
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, (v3), i. e., 2 - Av2 = (3v3 where (3ER. Hence v2 E (2), so that 
M2 = (v2) C (2), a contradiction. If v3 is redundant, then passing 
to the homomorphic image R[< 9 >]/«1 - XU)) ~ R, we obtain 
that v3 E (2 - AV2), i. e., v3 = (3(2 - Av2) where (3 E R. Since 
M2 = (v2) rt (2), M3 c (2) and A is a unit, then (3 is not a unit in 
R, whence 

v3 = (2(31 + v(32)(2 - AV2), where (31)(32 E R 

= (31 (4 - A2v2) + (32(2v - AV3) 

= (31(4 - A2v2) 

4 E M4 and 2v E M3; then (4 - A2v2) E M 4, whence M3 = (v3) C 
M4, a contradiction since M3 01 O. Finally, if v2(1 - XU) is redun­
dant, then v3(1 - XU) E (v4, 2v - AV3, v2(1 - XD)2, v(l - XU)3) = 
(v4, v2(1- XU)2, v(1-XU)3). By passing to the homomorphic image 
R/(v4 )[< 9 >J, we obtain that v3(1 - XU) E «1 - XU)2)R/(v4 )[< 
9 >]. By [1, lemma 1.4], we get v3 = 4')' where,), E R/(v4). Since 
4 E M4 = (v 4 ), then v3 E (v4), i. e., M3 = M4, a contradiction 
(M3 01 0). Consequently, I needs more than four generators. Thus, 
R[Z/4Z] does not have the 4-generator property. 

{=) Now, R[G] is a local ring with maximal ideal N = (u, v, 1-
XU) where u v are the generators of M and 9 generates the cyclic 
group G. 

Step 1. We claim that N, N2, N3, and N4 are 4-generated. 
Indeed, 

(1) Assume M2 = (a) is aprincipal ideal and M3 = O. Clearly, 

N= (u,v,l-XU) j 

N 2 = (a, u(l - XU), v(l - XU), (1 _ XD)2) 

N 3 = (1 - XU)N2 and 

N 4 = (1- XD)2N2. 

(2) Assume M2 is a·principal ideal, M3 010; M2 C (2), and 
G = Z /2i Z with 1 :<:; i :<:; 2. 



· Since M2= (a) C(2), th~n 

(2 v 1- xg) . , , , 
(a, 2(1 - xg), v(l - xg), (1 _ Xg)2) 

("', a(l - xg), v(l - Xg)2, (1 - X 9)3) where M3 = ("') 
(a2, ",(I - xg), v(l - X g)3, (1 _ Xg)4). 

(3)Case1 Assume M2 is not a principal ideal and G = Z/2Z. 
Clearly, 

N = (u,v, 1-X9) j 

N
2 = (a,b,u(1-X 9),v(1-X9» where M2 = (a,b) j 

N
3 

= (a',b',a(1-X 9),b(1-Xg» where M3 = (a',b') 

N
4 = (a",b",a'(l-X

g
),b'(l-Xg» where M4 = (a",b"). 

(3)Case2 Assume M2 = (a) is a principal ideal, M3 t: 0, 
2 E M2, and G = Z/2Z. We verify that 

(u v 1- xg) . , , , 
(a,u(l- Xg),v(l- X9» 

N 3 = (au,av,a(1-X9»=aN 

N 4 = aN2. 

(3) Case3 Assume M2 = (a) is a principal ideal, M3 = ("') t: 
0, 2 E M \ M2, M2 It (2), and G = Z/2Z. We easily check that 

(2, v, 1 - xg) j 

(a, 2(1 - X 9 ), v(l - xg» 

("', a(l - xg» j 

(a 2 ,,,,(1_ K9». 

Step 2. Let I be an ideal of R[GJ, we claim that I is 4-generated. 
Indeed, (1) Assume M2 is a principal ideal.and M3 = 0. Then 
N

3 = (1 - X 9)N2, whence by [12, Lemma 2J ",(I) ::::; ",(I + N2). 
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Since N2 is 4-generated, we may assume N2 C I. Let x E I\ N2. 

Then '" (~) = ",(N) - 1 = 3 - 1 = 2, so that (~) = (u,v) or 

N =(u1-X9)or N)=(V,1- X 9),whereN=(u,v,1-X9). 
(x)' (x 

If N = (u,v), then (N/(x»2 is 2-generated since M2 = 
(x) 

(u2,V2,UV) is 2-generated. By [12, Theorem 1, 1{= 6J, R[Gl/(x) 
has the 2-generator property. Hence I is 4-generated. 

N _ ( N ) 2 N2 + (x) 
If (x) = (u, 1- X 9), then (x) = (x) ~ 

We consider separately two cases : 

( 
N)2 I Assume - c -. Choose z E I such that 
(x) (x) 

I (N)2 zE (x) \ (x) . We have 

'" (x~z») - (
N/(X») 

'" (z) 

'" (~) -1 (x) 

::::; 2-1=1. 

Consequently, (R[GJ )is a principal ideal ring, so that (_( I ») is 
(x,z) x,z 

a principal ideal, whence I is 4-generated. 

Assume (N)2 = N2 +)(X) = (I). Then I = N 2 + (x), where 
(x) (x x 

N2 = (a,u(l - X9),v(1- Xg),(l- Xg)2) and M2 = (a). Since 
x E N, x = AU+",V+1(1-Xg) for some A,"',1 E R[G]. Moreover, we 
may assume that 1 is not a unit. Hence there exist A',,,,',1' E R[G] 
such that x = A'u + ",'v + 1'(1 - X9)2. Clearly, since x 1: N 2, A' or 
",', say A' is a unit. Since I = N 2 + (x) we may choose x = U + f3v for 
some f3 E R[GJ then x(l - xg) = u(l - xg) + f3v(l - xg) therefore 
I = (a,v(l- X9),(1- Xg)2,x) which is 4-generated. 

N 
Likewise, for (x) = (v, 1- xg). 

From now on, (3) case 1, (3) case 2,and (3) case 3 refer to the 
three subcases considered in the proof of thl'only if" assertion (3). 
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We first handle (2) and (3) case 1 simultaneous. We have p,(N4) S 
4, then by [2, Lemma 4], p,(I) S p,(I +N3). Since N3 is 4-generated, 
we may assume that N3 C I. 

CaseI: Suppose there exists x E I \ N 2, then p, (~) = 

p,(N) - 1 = 3 - 1 = 2, therefore (~) = (u, v) or (~) = (u,l - X 9) 

N _ .,----="" 
or (x) = (v, 1- Xg), here N = (u,v, 1- X 9». 

N 
If (x) = (u,v), using arguments similar to ones used above, we 

can check that I is 4-generated. 

N (N)3 If (x) = (v,l-X g
), (x) -

consider separately two cases: 

I 
(x)' We 

If ((~») 3 C (~)' the proof is similar to that one given in the 

proof of [2, proposition 3] (see pages 8,9) 

( 
N )3 N 3 + (x) I 3 

If (x) = (x) = (x),thenI=N +(x). 

(2) I = N 3 + (x) = (x,p"a(l- X9),v(1- X9)2,(1- Xg)3). 
x E N = (2, v, 1 - X9) then x = 2A + (3v + ')'(1 - X9) for some 
A, (3, ')' E R[G]. Moreover, we may assume that')' is not a unit. Hence 
there exist N, (3', ')" E R[G], with N or (3' is a unit such that x = 
2N + (3'v +')"(1- X9)2. 
If (3' is a ~nit, then v E (2, x, 1 - xg). Therefore v(l - xg? E 
(2(1 - Xg)2, x(l - Xg)2, (1 - X 9)3) C (4(1 - xg), x, (1 - X 9)3) C 
(a(l -X9), x, (1 - X 9)3) (see [2, page 6]. Consequently, I = N3 + 
(x) = (x,p"a(1-Xg),(1-Xg)3). 
If (3' is not a unit, then A' is a ~nit because x ~ N2. Now, 
x(1-X9) = 2N(1-X9)+(3'v(1.t.Xg)2+')"(1-X9)3 then 2(1-X9) E 
I. SinceM2 = (a) C (2), I = (x,p,,2(1-X9),v(1-X9)2,(1-X9)3). 
Finally, since A' is a unit, I = (x, p" v(l - Xg)2; (1 - Xg)3). 

(3)case1: M2 is not a principal ideal and < 9 >= Z/2Z. We 

are in the situation where ((~J 3 = (~)' We have 

Group Rings with 4·Generated Ideals 

(v2, v(l - X9), (1 - X9)2 ); 

(v3,v2(1-X9),v(1-X9)2,(1- X 9)3) ; 

(v3, v2(1 - X9), 2v(1 - xg), 4(1 - X9») ; 

(v3, a(l - X9), b(l - X9») where M2 = (a, b). 

9 

Thus, ((~») 3 is 3.generated, and hence so is (~)' It follows that 

I is 4-generated. 

The argument is similar if (~) = (u,l - X9). 

Casell: (N3 C)I <; N 2 • In this case, we claim that there 

exists x E I \ N 3 such that p. ( ((~») 3) S 3. Indeed, 

(2) We have 

N = (2, v, 1 - X9) ; 

N 2 = (a, 2(1 - X9), v(l - X9), (1 - X9)2) 

N 3 = (p" a(l - xg), v(l - Xg)2, (1 - xg?). 

Let x E I \ N 3, X = axa + bx2(1- xg) + cxv(l- xg) + dx(l- X9)2 
for some aX, b" Cx, dx E R[G], where at least one of aX! bx, Cx, dx is 
a unit. 

If ax is a unit, then a E (2(1 - X9), v(l - X9), (1 - X9)2) , 

whence 71 E (a(l- X9),2(1- X9)2,v(1 - X9)2) <; 

(a(l - X9), (1 - X9)3, v(l - X9)2) . So that (rx) r = N3(:t) 

= (a(l - xg), (1 - X9)3, v(l - X9)2). 
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If Cx is a unit, then v(l - Xu) E (2(1 - Xu), a, (1 - XU)2), whence 

v(l - XU)2 E (2(1 - XU)2 ,a(l - XU),(l - XU)3) ~ 

(a(1-Xu),(1-XU)3). Therefore (~)r = N3(~t:) = 

(II, a(l - Xu), (1 - XU)3) . 

If dx is a unit, then (1 - XU)2 E (2(1 - Xu), a, v(l - XU)), whence 

v(l - XU)2 E (iI, a(l - XU)). Hence 

(~)r = N3(~)(x) = (iI,a(1-XU),(1-XU)3). 

Otherwise, for each x E 1\ N3, ax, cx, and dx are not units, 
Necessarily, bx is a unit. It follows that 2(1 - XU) E I \ N3. 

( 
N )3 N3 +(2(1-XU)) 

(2(1 - Xu)) = (2(1 - XU)) 

(ft, a{l - XU), v(l - X9)2, (1 - Xg)3, 2(1 - xg)) 
(2(1 - Xg)) 

Since M2 = (a) C (2), then 

C2(1 ~Xg))y = (iI,v(1-Xg)2,(1-Xq). 

(3) casel: We have 

(u v 1 - xg)· , , , 
(a,b,u(l-Xg),v(l-Xg)) where M2=(a,b)j 

(a',b',a(l-XU),b(l-Xg)) where M3 = (a',b'). 

Let x E 1\ N 3. Clearly, x = axa + bxb + cxu(l - XU) + dxv(l - xg) 
for some ax,b.,c.,dx E R[G], where at least one of a.,b., c., dx is 

a unit. In each case, one may verify that ft ( (~J 3) :::; 3 (Assume 

a E {u2,uv} and b = v2). 
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We get 

ft C~)) :::;11 (~) + (~)r) = ft (I 1xt) by [2, Lemma 4] 

=11 (fx;) since I ~ N 2 
j 

:::;3 since x E N 2 \ N 3 and N 2 is 4-generated . 

Consequently, I is 4-generated. 

(3) cases 2 and 3: We have Il(N3) :::; 3, then by [2, Lemma 4], 
11(1) :::; 1l(I + N 2

). 

Since N2 is 4-generated, we can assume that. N 2 c I. We ape the 

proof of (1) (page 7) to reach the desired conclusion when (~)) 2 C 

(~r Otherwise, 1= N 2 + (x) is 4-generated because in (3) cases 2 

and 3, N 2 is 3-generated. <> 

PROPOSITION 2 Assume G is a non trivial finite 3-group, (R, M) 
is an Artinian local ring with the 2-generator property but R is not a 
principal ideal ring, and that 3 E M. Then R[G] has the 4-generator 
property if and only if 

(a) G is a cyclic group. 
(bl ) When M2 is a principal ideal and M3 # 0 then 

(al) If3 E M2, then G ~ Z/3Z and M3 is a principal ideal. 
(a2) If 3 E M \ M2, then G ~ Z /3 i Z with 1 :::; i :::; 2, 
moreover, if 9 E M3 then G ~ Z /3Z. 

(b2) When M2 is not a principal ideal, then 3 i M2, G ~ Z /3Z, 
moreover, if M3 # 0 and M2 rt (3) then M3 is a principal 
ideal and 

(81 ) If 9 E M2 \ M3 then M3 C (9). 
(82) If9 E M3 then M3 = 3M2. 

Proof. *] (a) Assume that G is not a cyclic group and R[G] 
has the 4-generator property. Necessarily, the homomorphic image 
R[Z/pZ Ell Z/pZ] does also, when p = 3. Then N 2 is 4-generated, 
where N = (u,v,l-Xu, 1-Xh), M = (u,v), and < g > Ell <h >= 
Z/pZ Ell Z/pZ. 
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N2 = (u2, v2, uv, u(l - XU), v(l - XU), u(l - Xh), v(l - Xh), (1 -
XU)(l - Xh), (1 - XU)2, (1 - Xh?). 

Since 1< 9 >1= 3, via [1, Lemma 1.4], it is easy to verify that N2 
needs more than four generators. Thus G = Zipm Z, with m ~ 1. 

(b1) Assume M2 = (a) is a principal ideal and M3 f: o. 
(a1) Suppose p = 3 E M2. If G =Z/pmz with m > 1, we claim 

that N3 is not 4-generated in R[Z/pm Z] where N = (u, v, 1- XU), 
M = (u,v), and < 9 >= Zlpmz. ' 
We have N 2 = (a,u(l - X9),v(1 - X9),(1 - X9?) and N3 = 
(au, av, a(l - XU), u(l - XU)Z, v(l - XU)2, (1 - X9)3). 
By [1, Lemma 1.7], u(l - X9? and v(l- XU)2 are required as gen­
erators of N 3 • 

Since 1 < 9 > 1 > 3 it is clear that (1 - XU)3 is required as generator 
of N 3 • 

If a(l - xg) is a redundant generator of N3, then passing to 
the hommorphic image R/M3[< 9 >], yields a(l - XU) E (1 -
X9)2 R/M3[< 9 >]. By [1, Lemma 1.4] a = ),pm for some), E 
RIM3. It follows that a = 0 in RIM3. That is, M2 = (a) = 0, a 
contradiction. Further, au or av is required as a generator of N 3 , 

since M3 f: O. 
Now, suppose M3 is not a principal ideal and G = Z/3Z. 
By [1, Lemma 1.7] and the fact that M3 is not a principal ideal, we 

can easily check that au, av, u(l - Xg)2andv(1 - Xg)2 are required 
as generators of N3, then, if N3 is 4-generated, necessarly, N3 = 
(au,av,u(l- XU?,v(l- X9)2). Further 1< 9 >1= 3 and 3 E M2, 
a(l - X9) ¢ (au, av, u(l - XU)2, v(l - X9)2). Then N3 needs more 
than four generators. 

(a2) Suppose p = 3 E M \ M2. Let's show that N3 is not 
4-generated in R[Z/p3 Z]. 
We have: 

N = (p,v,1-X9) andN3 = (pa,va,a(1-XU),p(1-X9)2,v(1-
XU)2, (1 - X9)3). 

Since 1 < 9 > 1 = p3 > 3 and M = (p, v) is not a principal ideal, 
by [1, Lemma 1.4 and Lemma 1.7], a(1-X9),p(1-XU)2, v(1-XU)2, 
and (1- X9)3 are required as generators of N 3 .Furthermore, since 
M3 f: 0, it is clear that N 3, needs more than four generators. It 
follows that G = Zipi Z with 1 ::; i ::; 2, as desired. 

Suppose in'addition that p2 = 9 E M3. Using the arguments sim­
ilar to ones used above, it is easy to verify that p(l-XU)2, v(1-X9)2, 
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. and (1 - XU)3 must appear in a party offour generators extracted 
from the original set of generators of N3. Furthermore, if a(l- xg) 
is redundant, then a(l- XU)E (pa, av,p(l- X9)2, v(l- XU)\ (1-
X9)3), whence passing to the homomorphic image R/M3[< 9 >], 
we get a(l - XU) E (1 - X9)2 R/M3[< 9 >]. By [1, Lemma l.4J, 
a = ),p2 = 0 for some), E RIM3, a contradiction (M3 f: 0). Thus, 
G = ZlpZ, as desired. 

(b2 ) Assume M2 is not a principal ideal. one may easily show' 
that N 2 is not 4-generated neitherif< 9 >= Z/9Z nor if 3 E M2 
and < 9 >= Z/3Z. Necessarily, 3 E M \ M2 and < 9 >= Z/3Z. 

Set p = 3. Assume in addition M3 f: 0 and M2 rt. (p). we claim 
that M3 is a principal ideal. Deny. Let N = (p, v, 1 - xg) and 
< 9 >= Z/pZ. Clearly, N3 = (a',b',a(l - Xg),b(l - X9),p(1-
X9)2, v(l- X9)2, (1- X9)3), where M2 = ( a, b) and M3 = (a', b') = 
(p3,p2v,pV2,V3). Further, M2 = (a, b) = (v2,p2,pV), since M2 rt. 
(p), we can take a = v2 and b E {p2,pv}. Then N3 = (a',b',(l­
X9)3, v2(1 - X9), v(l - X9)2). 

Since M3 is not a principal ideal, by [1, Lemma 1.4 and Lemma 
1.7], a',b l , v2(1- X9), and v(l- XU? are required as generators of 
N3. Since N3 is 4-generated, then (1 - X9)3 = -3xu(1 - X9) E 
(a',b',v2(1- X9),v(1- XU)2) (Here p = 3). By passing to the 
homomorphic image R/(v)[< 9 >], we obtain that 3 E (27,v). It 
follows that M = (3, v) = (v) since R is Artinian, a contradiction. 
Consequently, M3 = (J.l) is a principal ideal. 

Let I = (v3, b, v2(1 - X9), v(l - XU)2, (1 - X9)3). 
Since 1 < 9 > 1 > 3 and b 1= M3 (R Artinian and M2 not 

,principal), it is clear that band (1- XU)3 are required as generators 
off. 

If v(l - XU? is redundant, then by passing to the homomorphic 
image R/M2[< 9 >], and by using [1, Lemma 1.7], we get v = ),p 
for some), E R/M2. Hence, v E (p,v2). Therefore M = (p,v) = 
(p, v2 ) = ... = (p), a contradiction. 

If v 2 (1 - X9) is redundant, then passing to the homomorphic 
image R/(v3,b)[< 9 >] yields v2(1- XU) E (1- X9)2RI(v3,b)[< 
9 >J. By [1, Lemma 1.4], we have v2 = ),p for some )'E,R/(va, b). 
Similarly, (p,v2) = (p,v3) = ... = (p), whence M2 = (p2,V2,pV) C 
(p), a contradiction. 
Thus I = (b, v2(1 - XU), v(l- XU)2, (1 - XU)3), Further,v3 E I, 
by passing to the homomorphic image R[< 9 >J/(l - XU) ~ R, we 
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obtain that v 3 E (b). 
(01 ) If p2 E M2 \ M3, we may assume b = p2. 
M3 = (p3,p2v,pV2,v3). Since pv E (p2,V2) then pv2 E (V3,p2V). 

Therefore M3 C (p2), as desired. 
(02) Ifp2 E M3, we may assume b = pv. We have M2 = (v2,pv) = 

vM so that M3 = v2M = (v3,pV2). Since v3 E (b) = (pv) and pv 1:. 
M3, then v3 E (p2v,pv2). Therefore M3 = (pV2,p2v) = p(v2,pv) = 
pM2, as desired. 

¢:) Now, R[GJ is a local ring with maximal ideal N = (u, v, 1-
xg) where u and v are the generators of M and g is a generator of 
the cyclic group G. 

Step 1. We claim that N, N 2 , N3, and N 4 are 4-generated. 
Indeed, 

(bl ) Assume M2 = (a) is a principal ideal. If M3 = 0, then the 
proof is straightforward (see the case p = 2). 
In the sequel, we suppose M3 =J O. 
OIl) Assume 3 E M2, G = Z/3Z, and M3 = (J1.) is a principal ideal. 
We easily check that 

N= (u,v,l-X g); 

N 2 = (a, u(l - xg), v(l - xg), (1 _ Xg)2) 

N 3 = (J1.,a(l - xg), u(l - Xg)2, v(l - X9)2) 

N 4 = (a2,J1.(1-Xg),a(1-Xg)2). 

( (12) Assume p = 3 E M \ M2 and G ~ Z / pi Z , 1 :5 i :5 2. Since M2 
is a principal ideal, it is easy to verify that M3 = (J1.) is a principal 
ideal. . 

Suppose p2 = 9 E M2 \ M3. Clearly M2 = (p2). 

1 _ (1 - xg + Xg)P' 

i=p2 2 - ~ (~ )(1- XU)iX(p'-i)g 

_ 1 + p2(1- Xg)X(P'-1)9 + p2(p2 - 1) (1- XU? X(P'-2)U 
.2' 

+ (1 - X9)3 (~ (~2) (1- X 9)(i-3) X(P'-i)U) . 
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Then p2(1 - xg) E (p2(1 - Xg)2, (1 - Xg)3) C ((1 - Xg)3). 
. Therefore, 

N = (p, v, 1 - xg) ; 

N 2 = (p2,p(1 - xg), v(l - xg), (1 _ Xg)2) 

N 3 = (J1., p(l - Xg)2, v(l - Xg)2, (1 - Xg)3) ; 

N 4 = (p4, J1.(1 _ XU),p(l ....: Xg)3, v(l - Xg)3, (1 _ XU)4). 

We have M3 = (J1.) C M2 = (p2), whence J1. E (p3,p2V) since 
p2 1:. M3. Therefore J1.(1 - xg) E (p3(1 - xg),p2v(1 - xg» C 
(p(l - Xg)3, v(l - Xg)3). It results that 
N 4 = (p4 ,p(l _ Xg)3, v(l - Xg)3, (1 _ Xg)4) 

Suppose 9 E M3 and G = Z/3Z. Clearly, 

N = (3, v, 1 - xg) ; 

N 2 = (a, v(l - xg), (1 - X9)2) 

N 3 = (J1., 01(1 - xg), v(l - X9)2, 3(1 - Xu» 

N 4 = (a2,J1.(1- Xg),a(l- Xg)2,3(1- Xg)2). 

(b2 ) Set p = 3. Assume M2 = (a,b) is not a principal ideal, 
p 1:. M2, and G = Z/pZ. Clearly, 

N = (p, v, 1 - xg) 

N 2 = (a, b, v(l - xg), (1 - xg?). 

If M3 = 0, then 

N 3 = (a(l - xg), b(l - xg), v(l - Xg)2, (1 - Xg)3) = (1 - Xg)N2; 

N 4 = (1 - Xg)2 N 2 (Recall that p(l - xg) E (1 - Xg)3). 

In the sequel, we suppose M3 =J O. 
If M2 C (p), then M2 = (p2,pv) (p 1:. M2), whence N 3 = 

(p3,p2v,v(1_ Xg)2,(1- Xg)3) and N 4 = (p4, p3v,v(1- Xg)3,(1-
Xg)4), since p(l - xg) E ((1 - Xg)2). 

Now, assume M2 ·ct (p) and M3 = (J.!) is a principal ideal. We 
may assume a = v2 and b E {pV,p2}. 
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It is easily seen that N3 = (J.t, v2(1- xg), v(l- X9)2, (1- X9)3). 
It remains to show that N4 is 4-generated. 

If p2 E M3 and M3 = pM2, then M4 = p2 M2 C MS, whence 
M4 = O. Therefore N4 = (J.t(l - xg), v2(1 - X9)2, v(l _ X9)3, (1 _ 
Xg)4). 

If p2 E M2 \ M3 and M3 C (p2), since M3 is a principal ideal, 
it is easy to verify that (M4 = (oy)) is a principal ideal. So that 
JY4 = (oy, J.t(l - xg), v2(1 - X g?, v(l - X9)3, (1 _ X9)4). 

Since p(l- xg) E ((1- Xg)2) and J.t E (p3,p2V) (M3 = (J.t) C 
(p2)), then J.t(l - xg) E (v(l- X g)3,(1_ X9)4). Therefore N4 = 
(oy, v2(1 - X g?, v(l - X 9)3, (1 - X9)4). 

Step 2. Let I be an ideal of R[G], we claim that lis 4-generated. 
Indeed, 
If M3 = 0, then the proof is similar to the one given for p = 2. 
If M3 =f 0, as in the proof of Proposition 1 (cases (2) and (3) easel), 
we may assume N3 C I. 

Casel: Suppose that there exists x E 1\ N2 . Via the proof 
of Proposition 1, it suffices to consider the case 1= N3 + (x). 

(bl ) Assume M2 = (a) is a principal ideal and M3 =f O. 
(al) We gotfrom step 1 that N3 = (J.t, a(l-Xg), u(1-XU)2, v(l­

X9)2). Since x E N = (u, v, 1 - XU), x = AU + (3v + 'Y(l - xg) for 
some A,{3,'Y E R[G], where A or {3 or 'Y is a unit. If'Y is a unit, N . 
(x) = (ii, v). We conclude in the same way as in the case p = 2 step 

2 page 7. 

If 'Y is not a' unit, necessarily, A or {3 is a unit, say A. Clearly, 
u E (x, v, 1 ~ xg), then u(l - Xg)2 E (x, v(l - Xg)2, 3(1 - XU)) C 
(x, v(l- xg?, a(l - xg)), since /< 9 >/= 3 and 3 E M2. Therefore 
1= (x,J.t,v(l- Xg)2,a(1_ xg)). 

(a2) Assume p = 3 E M \ M2 and p2 E M2 \ M3. We got 
from step1 that N3 = (J.t,p(1-Xg)2,v(1-Xg)2,(1_ X 9)3). Since 
x E N = (p, v, 1- xg), x = AP+ (3v +'Y(l- XU), where A or {3 or 'Y is 
a unit (x ¢ N2). In each case, it is easy to verify that 1= N3 + (x) 
is 4-generated. 

Now, assume 9 E M3 and G = Z/3Z. If M2 c (3), we are 
done via [1, Proposition 2.1J. Let's suppose M2 ~ (3). We have 
N3 = (J.t, v2(1 - xg), v(l - XU)2, 3(1 - XU)). Since x E N \ N2, 
X = 3A + {3v +'Y(l - XU} for some A, {3, 'Y E R[GJ, with A or {3 or 'Y 
is a unit. The cases in which {3. or 'Y is a unit are straightforward. 

Rings with 4-Generated Ideals 17 
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X9)3), where b E. {p2,pv}. Let x E 1\ N3, X ;=: axv2 + bxb + cxv(l­
X9) + dx(l- Xg)2 for some ax> bx, Cx, dx E R[G), with ax or bx or Cx 
or I/x is. a unit. 

If ax or Cx or dx is a unit, easily we check that J1. ( (~») 3) ::5 3. 

Otherwise, since bx is a unit, x rf. N3, and hence b E (x) + N3. 
Therefore N3 + (x) = N3 + (b). Since b rf. N3 and M3 = (J1.) c (b), 

(
N)3 (N3+(b») 

then J1. (b) = J1. (b) ::5 3. 

By the same proof for p = 2, we claim that I is 4-generated. <> 

PROPOSITION 3 Assume that G is a non trivial finite p-group, 
(R, M) is an Artinian local ring with the 2-generator property but 
R is not a principal ideal ring and that p EM. Then R[ G) has the 
4-generator property if and only if 

(a) G is a cyclic group. 
(bl ) When M2 is a principal ideal and M3 '" 0 then 

(al) If p E M2, then G ~ Z/pZ, p rf. M3, and M3 is a 
principal ideal. 
(a2) Ifp E M\ M2, then G ~ Z/piZ with 1::5 i::5 2, 
moreover, if p2 E M3 then G 2;! Z / pZ and either M2 C (p) 
or M3 C (p). 

(b2) When M2 is not a principal ideal, then p rf. M2, G 2;! Z/pZ, 
moreover, if M3 '" 0 and M2 rt. (p) then M3 is a principal 
ideal and 

(()j) If p2 E M2 \ M3 then M3 C (p2). 
(()2) If p2 E M3 then M3 = pM2. 

Proof of Proposition 3. It is almost similar to the proof of Proposition 
2. Here the main fact is that 1< g >1= p > 3. The remaining two 
cases are: (al) and (a2) when P2E M3. 

=}) (aI) Assume p E M2. If M3 is not a principal ideal or p E M3 
or G = Z/pm Z with m > 1, by the same proof given for Proposition 
2 (al) we verify that N3 is not 4-generated in R[Z/pmz) where 
N = (u,v, 1- xg), M = (u,v), and < g >= Z/pmz. 

(a2) Assume p E M \ M2 and p2 E M3. Necessarily, < 9 >= 
Z/pZ. Let's supposeM2 rt. (p) and M3 rt. (p). Let 1= (p,J1.(I­
X9), a(1 - X9)2, v(1 - X9)3, (1 _ Xg)4). 
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Since p E M \ M2 and 1 < 9 > I'> 4, then p and (1- X9)4 are 
required as generators of I. 
... If v(1 - X9)3 is redundant then by passing to the homomor­
phic image R/(a,p)[< 9 », we obtain that v(1 - Xg)3 E (1 -
Xg)4R/(a,p)[< 9 », and whence v(l- Xg)P-1 = 0 in R/(a,p)[< 
9 ». Therefore M = (p,v) = (p,v2) = ...... = (p), a contradiction. 

If J1.(1 - XU) is a redundant generator then by passing to the 
homomorphic image R/(p)[< 9 », we obtain that J1.(1 - XU) E 
(1 - Xg)2 R/(p)[< 9 ». By [1, Lemma 1.4), we get J1. = >.p for some 
>. E R/(p). Hence M3 = (J1.) C (p), a contradiction. 

If a(1 - X9)2 is redundant, then by passing to the homomor­
phic image R/(p, J1.)[< 9 », we obtain that a(1 - X9? E (1 -
X9)3R/(p,J1.)[< 9 ». By [1, Lemma 1.7), we get a = >.p for some 
>. E R/(p, J1.), whence v2 E (p, v3). Hence (p, v2) = (p, v3) = ... = 
(p), 80 that M2 = (v 2 , p2, pv) C (p), a contradiction. 

Consequently, I is not 4-generated. 

{=) Now, we know that R[G] is a local ring with maximal ideal 
N = (u, v, 1 - XU), where u and v are the generators of M and 9 is 
a generator of the cyclic group G. . 

Step: 1. We claim that N, N2, N 3, and N 4 are 4-generated. 
Indeed, 
al) Assume p E M2, G = Z/pZ, p rf. M 3, and M3 is a principal 
ideal. Necessarily, M2 = (p). 

Since p(1 - xg) E «1 - X9)3), we get 

N= (u,v,I-XU); 

N 2 = (p, u(1 - xg), v(1 - xg), (1 - X9)2) 

N 3 = (J1., u(1 - Xg)2, v(1 - Xg)2, (1 _ XU)3) 

N 4 = (p2, u(1 _ X9)3, v(1 _ Xg)3, (1 _ X9)4). 

(a2) Assume p E M\M2, p2 E M 3, G 2;! Z/pZ, and either M2 C (p) 
. or M3 C (p). We have 

N= (p,v,I-Xg); 

N 2 = (a,v(I-X9),(1-X9)2) where M2=(a); 

N 3 = (J1., a(1 - XU), v(1 _XU)2, (1- XU?) where M3 = (J1.) 

N 4 = (a2, J1.(1 - xg), a(1 - XU)2, v(1 - XU)3, (1 _ XU)4); 
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If M2 C (p) then a(l ~ XU) E (p2(1_ xg),pv(l- xg» c (v(l -
X 9)3,(1_X9)4), whence N4 = (a2,jt(1-X9),v(1-X9)3,(1-X9)4). 

If M3 C (p). Since p EM \ M2, jt E (p2,pv). Further, p2(1 -
xg) E «1-Xg)4) and pv(l-Xg) E (v(1-Xg)3). Then jt(1-xg) E 
(v(l - Xg)3,(1 - Xg)4). Therefore N4 = (a2,a(1 - xg)2,v(1 _ 
xg?, (1 - Xg)4). 

Step: 2 Let I be an ideal of R[G], we claim that I is 4-generated. 
As in Proposition 1, we may assume that N3 C I. 

CaseI: Suppose that there exists x E 1\ N2. As above, it 
suffices to consider the case I = N 3 + (x). 

(ad By step1, it is easily seen that 1= N3 + (x) is 4-generated. 
(a2) Assume p E M \ M2, p2 E M3, G ~ ZlpZ, and either 

M2 C (p) or M3 C (p). By step1, N3 = (/-I, a(l - X9), v(l -
X9)2, (1 - X9)3). Since x E N \ N 2 then x = :>..p + (3v + 1'(1- xg) 
for some ).., (3, "Y E R[G], with)" or (3 or l' is a unit. We can assume 
that (3 and "Y are not units. Therefore p E (x, v, 1 - xg). 

IfM2 C (p),a E (p2,pv). Hencea(l-Xg) E (p2(1-X9),pv(1-
xg» C «1 - X9)3). So that I = (x, /-I, v(l - X9)2, (1 - X9)3). 

If M3 C (p), x = )..'p+(3'a+1"v(1-X9)+8'(1-X9)2 for some 
)..', (3' d, 8' E R[G]. Clearly)..' is a unit ( x ~ N2). 

If (3' or 1" is a unit, we verify that I is 4-generated. 
Otherwise, since I = N3 + (x), we can suppose that x = )..'p+ 

8'(1 - xg? By hypothesis, M3 = (jt) C (p). Then /-I = 8p for some 
8 E M (p ~ M2), hence x8 = )..'/-1 + 8'8(1- X9)2. Therefore /-I E 
(x, v(1-Xg)2,p(1-Xg)2) C (x, v(1-X9)2, (1-X9)3). Consequently, 
I = (x, a(l- X9), v(l - X9)2, (1 _ X9)3). 

CaseII: Suppose (N3 ~)I C N2. The proof is the same as in 
Proposition 2. <> 

THEOREM. Let R be an Artinian ring with the 2-generator 
property and let G be a finite abelian group. Then R[G] has the 
4-generator property if and only if R = RI Ell R2 Ell ... Ell R. where, 
for each j, (Rj> M j ) is a local Artinian ring with the 2-generator 
property subject to : 
(I) Assume Rj is a field of characteristic p oF O. 
(a) when p = 2, then Gp is a homomorphic image of Z /2Z Ell Z /2Z Ell 
ZI2 i Z or ZI4Z Ell ZI2i Z where i > 0 . 
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((3) when p = 3, then Gp is a homomorphic image of ZI3Z Ell Z 13i Z 
where i > 0 
h) when p > 3, then Gp is a cyclic group. 

(II) Assume (Rj, Mj) is a principal ideal ring which is not a field, 
and p a prime integer such that p divides Ord(G) and p E M j , then 
(a) Assume p = 2, . 
A) (i) Gp ~ ZI2Z Ell ZI2i Z with i > 1 

(ii) when MJ oF 0, then Gp ~ZI2Z Ell ZI2Z. 
B) (i) G p is a cyclic group 

(ii) When Mf oF 0, then 

(a) Gp ~ ZI2iZ, where 1 < i < 2, if2 E MJ 

(b) Gp ~ ZI2i Z, where 1 < i < 3, if2 E Mj \ MJ. 
((3) Assume p = 3, 
A) Gp ~ ZI3Z Ell ZI3Z, 3 E M j \ MJ and MJ = O. 
B) (i) Gp is a cyclic group 

(ii) When Mf oF 0, then 
(a) Gp ~ ZI3Z, if3 E MJ 
(b) Gp ~ ZI3iZ, where 1 < i < 3, if3 E Mj \MJ. 

h) Assume p > 3, 
(i) G p is a cyclic group 
(ii) If Mf oF 0, then p ~ Mf and 

(a) Gp ~ ZlpZ, ifp E MJ 

(b) Gp ~ ZlpiZ, where 1 < i < 3, if p E Mj \ MJ. 

(III) Assume (Rj>Mj) has the 2-generator property but is not a 
principal ideal ring and p a prime integer such that p divides Ord(G) 
and p E M j , then 
(a) Assume p = 2, 

Gp~ZI2iZ, 
(1) i ~ 1 if MJ is a principal ideal and MJ = 0 . 
(2) 1 ::; i ::; 2 if MJ is a principal ideal, MJ oF 0, and M2 C (2). 
(3) i = 1 otherwise. 

. ((3) Assume p = 3, 
(a) Gp is a cyclic group 
(b l ) When MJ is a principal ideal and MJ oF 0 then 

(al) If3 E MJ, then Gp ~ ZI3Z and MJ is a principal ideal. 
(a2) If 3 E M j \ MJ, then Gp ~ Z/3iZ with 1 ::; i ::; 2, 

moreover, if 9 :: MJ . 
then Gp = Z/3Z. 

--, 
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. (b2) When MJ is nota principal ideal, then 3 rI: MJ, Gp ~ 
Z/3Z, moreover, if 

MJ f= 0 and MJ rt (3) then MJ is a principal ideal and 
(81 ) If 9 E MJ \ MJ then MJ C (9). 
(82 ) If 9 E MJ then MJ = 3MJ. 

(y) Assume p > 3, 
(a) Gp is a cyclic group 
(b) (bl ) When MJ is a principal ideal and MJ f= 0 then 

(01) If p E MJ, then Gp ~ Z/pZ, p rI: MJ, and MJ IS a 
principal ideal. 

(02) If p E Mj \ MJ then Gp c:< Zip; Z with 1 ::; i ::; 2, 
moreover, if p2 E M 3 , 

then Gp ~ Z/pZ and either MJ C (p) or MJ C (p) 

(b2 ) When MJ is not a principal ideal, then p rI: MJ, Gp ~ 
Z/pZ, moreover, if 

MJ f= 0 and MJ rt (p) then MJ is a principal ideal and 
(01 ) If p2 E MJ \ MJ then MJ C (p2). 
(82) If p2 E MJ then Mj = pM]. 

Proof. We appeal to [2, TheoremJ, Propositions 1, 2, and 3, and 
similar techniques used in the proof of [1, TheoremJ. 0 
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