gy

Dekker Lect. Notes Pure Appl. Math. 205 (1999) 1-23.

Group Rings R[G] with 4-Generated
Ideals When R is an Artinian Ring
with the 2-Generator Property

SOUAD AMEZIANE HASSANI Department of Mathematics, Fac-
ulty of Sciences Saiss, University of Fez, Fez, Morocco..

SALAH-EDDINE KABBAJ Department of Mathematical Sciences,
KFUPM, P.O.Box 849, Dhahran 31261, Saudi Arabia.

INTRODUCTION

For the convenience of the reader, let’s recall the following facts.
We have from the restriction on Krull dimension, 1 2> dimR[G] =
dimR + r, where r denotes the torsion free rank of G. If r = 0,
then G must be a finite group. If » = 1, then G = Z @ H, where
H is & finite abelian group and Z the group of the integers. We will
concentrate on the case in which R is Artinian and r = 0, that is, G
is a finite abelian group. The cases n = 2 and n = 3 were considered
in [15, Theorem 4.1} and {1}, respectively. However, for n > 4 , the
problem of when R[G] has the n—generator property remains open.

As the problem of determining when a group ring R[G] has the

-4—generator property, when R is an Artinian principal ideal ring and

G is a finite group is resolved in [2], in this paper, we consider the
case where R is an Artinian ring with the 2-generator property.
Rings and groups are taken to be commutative and the groups
are written additively. If p is a prime integer, then the p—sylow
subgroup of the finite abelian group G will be denoted G,. When I
is an ideal of R, we shall use p(I) to denote the number of generators

1



Dr.Kabbaj
Typewritten Text
Dekker Lect. Notes Pure Appl. Math. 205 (1999) 1–23.


2. ' , Ameziane Hassani and Kabbaj

in a minimal basis for I. Finally, recall that in a local ring (R, m),
if I is n—generated, then the n generators of I may be chosen from
elements of a given set of generators of I (cf. [13, (5.3), p. 14]).

PROPOSITION 1 Assume that G is a nontriviel finite 2—group,
(R, M) is an Artinian local ring with the 2-generator property but
R is not o principal ideal ring and that 2 € M. Then R[G] has the
4—generator property if and only if
G = Z/22Z, where
(1) 21 i M? is a principal ideal and M? =0
(2) 1 <1 <2if M? is a principal ideal, M® # 0 and M? C (2).
(3) i = 1 otherwise.

Proof. =>| Assume that G is not a cyclic group and R[G] has the
4—generator property. Then the homomorphic image R[Z/2Z @
Z/27] does also. Hence N? is 4—generated where N = (u,v,1 —
X9,1-X"), M= (u,v)and < g>® < h>=2Z/2Z@ Z/2Z. Since
| <g>|=2and 2 € M, then N? = (u?,v? uv,u(l — X9),v(1 —
X9),u(1 = X*),v(1 — X*), (1 - X0)(1 — X*)).

It is easy to see that (1—X?)(1—X") is required as a generator of

N2, Since M = (u,v) is not a principal ideal, it is also easy to verify

that u(l — X9),v(1 — X9),u(l - X*) and v(1 —~ X*) are required as
generators of N2, Therefore N* needs more than four generators, a
contradiction. :

(1) Trivial.

(2) Since M? is a principal ideal, one can easily check that M3
is a principal ideal too. Further, we may assume M = (2,v) since
2 € M\ M?. Suppose that R[Z/8Z] has the 4-generator property
and let < g >=2/82, M? = (a), and M? = (u). We have

= (2,0,1 — X9) ; |
_ =(a,2(1~X9),v(1--X9),(1—X9)2) i

N? = (p, a(1 - X9),2(1 - X9)?,0(1 — X9)?,(1 - X9)°).

Since M® #£0and | <g > | > 3, it is clear that p and (1-X9)®
are required as generators of N3,

If a(l — X?) is a redundant generator of V3, then by passing to
the homomorphic image R/M®{< ¢ >] and by using [1, Lemma 1.4],
we get o = 8\ for some A € R/M3. It follows that o € M3, whence
M?* = M3, . e.,, M? = 0, a contradiction.
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If 2(1 — X9)? is redundant, then.passing to the. homomorphic

) image R/(4,v)[< g >] yields 2(1 — X9)® = Yim! a;X9(1 — X9)?

where a; € R/(4,v). After setting corresponding terms equal, we
obtain a system of 8 linear equations in 8 unknowns. After resolving
this system, we obtain 2 = 0in R/(4,v), 1. e., M = (2,v) = (22, v)
(2%,v) = - = (v), since R is Artinian, a contradlctmn

If »(1 — X9)? is redundant, then passing to the homomorphic
image R/(2,v?)[< g >], yields v(l - X2 e (1-X9R/(2,v)[<
g >], whence v(1-X?)" € (1~ X?9)8R/(2,v%)[< g >] = 0. Therefore
v € (2,v%) i. e, M = (2,v) = (2), a contradiction. Consequently,
N3 is not 4—genera,ted ' '

(3) We consider separately three subcases. casel : Assume M?
is not a principal ideal. It suffices to prove that R[Z/4Z] does not
have the 4—generator property.

Since M and M? are not principal ideals and | < g > | > 3, it is
easily seen that N? = (u?,v?,uv,u(l — X9),v(1 — X9),(1 — X9)?) is
not 4—generated where M = (u v) and < g >= Z/4Z.

case2:  Assume M? is a principal ideal, M® # 0, and 2 €
M?, We claim that N? is not 4—generated in R[Z/4Z], where N =
(u,v,1—X?) and < g >= Z/4Z. Indeed, we have

= (o, u(l — X9),v(1 - X9),(1 - Xg)2) and N* = (au,av, a1 —
X?),u(l—X9)2, 0(1 ~ X9)2,(1 — X9)3), where M? = (a).

| < ¢ > | = 4 implies that (1 — X9)3 is required as & genera,tor of

. ¥ (1 — X¥)? is redundant, then passing to the homomorphic

1ma,ge R/(u?,v)[< g >] yields u(1-X9)? € (1- X9 R/(u?,0v)[< g >
], whence u(1 —- X9) € (1 - X9)4R/(u )< g > C 2R/(u )<
g >]. Since 2 € M? and R/(v*,v)[< ¢ >] is a free (R/(u?,v))-
module, then u € (u?,v), a contradiction. Likewise for v(1 — X9)2.

If (1 — X9) is a redundant generator of N3, then passing to
the homomorphic image R/M3[< g >] yields a(l - X% e (1-
X9)?R/M?3[< g >]. By [1, Lemma 1.4} a = 4), for some A € R/M?,

1t follows that & = 0 in R/M?®, i.e., M? = (&) = 0, a contradiction.

Since M3 # 0, it is clear that N 3 needs more than four generators.
Consequently, R[Z/4Z] does not have the 4—generator property.

Cased:  Assume M? is a principal ideal, M3 £ 0, 2 € M \ M?,
a,nd M? ¢ (2).: Clearly, M?® is principal. Further; we may assume

= (2,v), and hence M? = (v?). We claim that R[Z/4Z] does not
have the 4—generator property. Effectively, -
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. Suppose 4 ¢ M*, It follows from the assumption M? ¢ (2) that
4 € M3\ M*, and hence M?® = (4). ,

In R[Z/4Z], let T = (4,v%(1 — X¥),2(1 — X9),v(1 — X?)%,(1 -
X9)?%) where < g >= Z/4Z. Since4 #0and | < g > | > 3, it is
easily checked that 4 and (1 — X¢)? are required as generators of I.
Moreover, using techniques similar to ones used above, we prove that
v(1 — X9)* must appear in a party of 4 generators extracted from
the original set of generators of I. If v2(1 — X¥) is redundant, then
passing to the homomorphic image R/(2)[< g >] yields v*(1—X9) €
(1 - X92R/(2)[< ¢ >]. By [1, Lemma 1.4}, we have v? = 0 in
R/(2)[< g >], 1. e., v? C (2), a contradiction since M? = (v?) ¢ (2).
Therefore I = (4,v*(1~X7),v(1-X9)%, (1-X9)%). Now 2(1-X%) €
I, then passing to the homomorphic image R/(4,v)[< ¢ >] yields
2(1—X9) = Ti=3 0;.X9(1— X9)3, where a; € R/(4,v). After setting
corresponding terms equal, we obtain the following equations :

X° ' o, — a1+ 3ag —3az =2
p. ¢ —3a,+ a3 —az + 3a3 = -2
X2 ' 3a,—3a; +a2—az =0
X3g' —Go+3a1 —3as + a3 =0

This yields 2 = 0 in R/(4,v), 1. e., M = (2,v) = (v), a contradiction.
Consequently, I needs more than four generators.

Suppose 4 € M*. Let M® = (u), if M® ¢ (2), we consider
I=(2,p,v%(1-X9),0(1-X9)2,(1~-X9)%). Since 2 ¢ M2, M3 ¢ (2)
and | < g > | > 3, it is an easy matter to verify that 2, y and (1~ X9)?
are required as generators of I. Moreover, using arguments similar
to ones used above, it is easy to check that v?(1—X?) and v(1 —X9)?
are required as generators of I. Thus I is not 4-generated.

If M?® C (2), then p = 2X where A € M since 2 € M \ M2, Therefore
# = 4oy + 209v, where a;, 0y € R.

Since M® # 0, M? ¢ (2), M? is a principal ideal and 4 € M*,

then M3 = (2v). |

. On the other hand, M?® = (v%,20?). Since R is an Artinian ring
and 2v € M3, then M3 = (v®), whence there exists A a unit in R such
that 20 = Av®. Let I = (v%,2—X0?,v?(1-X9),0(1-X9)2, (1-X9)?).
As before, one can easily check that v(1 — X9)% and (1 — X9)3 are
required as generators of I. If 2 — \v? is redundant, then passing to
the homomorphic image R[< ¢ >]/((1 — X?)) ~ R yields 2 — \v? €
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(%), i e, 2 ~ W? = Bv® where §:€ R. Hence v? € (2), so that
“M? = (v*) C (?), a contradiction. If v? is redundant, then passing
to the homomorphic image R[< ¢ >]/((1 — X?)) ~ R, we obtain
“that v® € (2 — Av?), i. e, v® = B(2 — \?) where § € R. Since
M? = (v?) ¢ (2), M® C (2) and X is a unit, then B is not a unit in
R, whence

v = (26 +v62)(2 — W?), where B;,8; € R
= f1(4 — A20%) + (20 — A?)
= ﬂ1(4 - /\2’02)

4 € M* and 2v € M?, then (4 — A\20?) € M*, whence M?® = (v?) C

. M?*, a contradiction since M® # 0. Finally, if v2(1 — X?) is redun-

-+ dant, then v3(1 — X?) € (v*,2v — M3, v2(1 - X9)%,v(1 — X9)®) =

L (w4, 02 (1 = X9)%,u(1 - X9)%). By passing to the homomorphic image

" R/(vY)[< g >], we obtain that v3(1 — X¥) € ((1 - X9)2)R/(v*)[<

¢ . g >]. By[l, lemma 1.4], we get v} = 4y where v € R/(v*). Since

L 4 € M* = (v'), then v® € (v*), i. e, M® = M*, a contradiction

. (M3 # 0). Consequently, I needs more than four generators. Thus,
R[Z/4Z] does not have the 4—generator property.

<) Now, R[G] is a local ring with maximal ideal N = (u,v,1~

' X%) where u v are the generators of M and g generates the cyclic
group G. '

Step 1. We claim that N,N%, N? and N! are 4—generated.
Indeed, = - : ; :
(1) Assume M? = («) is a principal ideal and M*® = 0. Clearly,

G T

; N= (uv1-X);

o N? = (a,u(l—X9),0(1 - X),(1- X9)?) ;
' : N¥= (1-X9N? and ;

’: Nt= (1—X9°N%

- - (2) Assume M? is a principal ideal, M3 # 0, M? C (2), and
- G=2Z/2"Z with1<:<2. Co
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- . Since M? = (a) C.(2), then

N= (2,v,1-X%); _

N = (a,2(1-X%),v(1 - X9),(1-X9)?) ;

N3 (u,a(l—Xg),v(1~Xg)2,(1—Xg)3) where M® = (u) ;
Nt= (o, u(l - X9),0(1 - X9)3, (1 - XO)),

i

(8)Casel  Assume M? is not a principal ideal and G = 2 /2Z.
Clearly,

N= (uv,1-X9);
N? = (a,b,u(1 — X9),v(1 — X?)) where M? = (a,b) ;
N’ = (d',b,a(1 — X9),b(1 —~ X?)) where M® = (o, V) ;
N* = (&,,a(1~ X%),5(1 - X7)) where M* = (", b"),

(8)Case2  Assume M? = (a) is a principal ideal, M? # 0,
2 € M?, and G = Z/2Z. We verify that
N= (u,9,1-X9);
N = (e, u(l - X9),v(1 — X9)) ;
N?= (au,av,0(l ~ X9)) = aN ;
Nt = aNZ .

(3) Case3  Assume M? = (@) is & principal ideal, M3 = (4) #
0,2€ M\ M2 M? ¢ (2), and G = 2/22. We easily check that

N= (2,v,1-X9) ;

N = (@,2(1 - X9),v(1 - X9)) ;
N = (na(l-X%) ;

Nt= (a?,p(l - X7)).

Step 2.  Let I be an ideal of R[G], we claim that I is 4—generated.
-Insdeed, (1) Assume M? is & principal ideal and M? = 0. Then
N® = (1 - X9)N?, whence by [12, Lemma 2] w(I) < p(I 4+ N?),
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Since N? is 4—generated, we may assume N2 C I, Let z € I\ N2

hen u (N =3—-1=2, so0 aiv—zﬁﬁor
Theny((;j)=p(N)—1-—-3 1 =2, tht(:c) (7, %)

N (@, 1—X9) or % = (7,1 - X9), where N = (u,v,1 — X9).

" (2)

If (—% = (%, ), then (N/(z))? is 2—generated since M? =
- (u?,v%,uv) is 2—generated. By [12, Theorem 1, 1< 6], RIG]/(z)

has the 2—generator property. Hence I is 4—generated.

A n (MY - M@ o I
i 7y = @ T30, ten () ® < W

We consider separately two cases :

N\ 1
Agsume | ——= | C —. Choose z € I such that
(=) (z)

zZE f% \ ((]—:5)2 We have

() - 4ot

< 2-1=1.

EFAN
="

R[G]
(2, 2)

N Iy,
)is a principal ideal ring, so that ( ) 18

Consequently, ( -(-;c—;j

a principal ideal, whence I is 4—generated.

N\? N4(2) I ,

Assume (m) & @ Then I = N* + (z), where
N? = (o,u(l — X9),0(1 - X9),(1 — X?)?) and M? = (a). Since
x € N,z = du+pv+vy(1-X7) for some A, i,v € R[G]. Moreover, we
may assume that v is not a unit, Hence there exist X', u',v' € R[G]
such that & = Mu 4 p'v + 7'(1 — X9)2. Clearly, since z ¢ N%, X or
#', say X' is a unit. Since I = N2+ (2) we may choose z = u+ v for
some § € R[G] then z(1 — X9) = w(1 — X9) + fv(1 — X9) therefore
I=(a,v(1 - X?),(1 - X9)? ) which is 4—generated.

Likewise, for — = (¥#,1 - X9).

wise, for 1 (_, ) | )

From now on, (3) case 1, (3) case 2, and (3) case 3 refer to the

three subcases considered in the proof of thé‘only if” assertion (3).
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We first handle (2) and (3) case 1 simultaneous. We have y(N*) <
4, then by [2, Lemma 4], u(I) < u(I+N?). Since N3 is 4—generated,
we may assume that N® C I,

Casel:  Suppose there exists x € I\ N2, then u ( @ ))

p(N)—1~3—-1——2 therefore — = (%,?) or—]Y—= %,1— X9)

( ) (z)
r $) = (7,1 — X9), here N = (u,v,1 ~ X9)).
If % = (%,7), using arguxﬁents similar to ones used above, we
can check that I is 4—generated.
N N\? N3 + () I
If — = — X9 = —t C —. We
& = 6T, (&) @ @

consider separately two cases:

3
If (%) (I) the proof is similar to that one given in the

proof of |2, proposition 3| (see pages 8,9)

N ’ "“"“_‘_N3+(w)_"£' €n = 3 X
If((w)) @ - @) e I= N @)

(2) I=N?+(2) = (,p,0(1 = X9),0(1 — X9)%, (1 — X9)).

z € N = (2,v,1 — X?) then z = 2) + fv + ¥(1 — X9) for some
A, B,v € R[G]. Moreover, we may assume that v is not a unit. Hence
there exist M, 3',4' € R[G], with X’ or ' is a unit such that z =
2N + Blo+ (1 - X9)2,

If B is & unit, then v € (2,2,1 — X“) Therefore v(1 — X9)? ¢
(2(1 — X9)?, a:(l - X9, (1~ X9)3) C (41~ X%,2,(1-X9% C
(a(l—X9),2,(1 - X9)®) (see (2, page 6]. Consequently, I = N3 +
(z) “—“‘(:B,p,a(].—-xg), (1_Xg)3)' '

I A is not a unit, then ) is a unit because z ¢ N2. Now,
2(1-X9) = 2N (1-X9)+p'v(1+X9)2 +4'(1-X9)? then 2(1-X9) €
I. Since M? = (@) C (2), I = (z,1,2(1 -~ X9),v(1=X9)2,(1-X9)).
Finally, since X' is & unit, I = (z, g, v(1 — X9)2, (1 — X9)3).

(3)casel:  M? is not a principal ideal and < g >= Z/2Z. We

. L NN\* I
are in the situation where ( 2) ( ) We have
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N o @TTX) and;

o, o(1 — X9), (1 - X9)2)

(
(—{‘i)a = (F X9, o0 - X7, A= XP)

= (PP -9, (1= X9),30 - X9))

(v—3,a(1 — X9),b(1 ~ Xg)) where M? = (a, b).

3
Thus, ( e )) ‘18 3-generated, and hence so is (_a:_)- It follows that

I is 4—generated.

The argument is similar 1f @ = (7,1~ X9).

Casell: (N® O)I C Nz. In this case, we claim- that there

3
exists « € I'\ N? such that g (((N)) ) < 3. Indeed,
(2) We have

N= (20,1-X9;
N% = (a2(1 - X7),0(1 - X7),(1 - X)?) ;
N® = (ga(l— X?),0(1 - X9)2,(1- X9))

Let € I\ N? z = aya+ b,2(1 — X9) + cpo(1 — X9) + d,(1 — X9)?
for some a;,b,,¢;,d; € R[G], where at least one of ag, bs, ce, dy is
a unit.

If ¢, is a unit, then @ € (2(1—X9) v(l-—Xg) (1—X9)2)

whence i € (a(l - X9),2(1 — X9)%,9(1 - Xg)2) C
N )3 N3+ (2)
(2) (2)

(a(l — X9),(1 ~ X9, 0(1 ~ X9)2) So that (

= (a(T=X9),[T= X9, (I - X)? ).
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If ¢, is a unit, then v(1 — X9) € (2(1 - X9),&, (1 — Xﬂ')z), whence
o(1 - X0) € (BT = X0)7, o1 - X9),1 ~X77) €
N +(2) _

(2)

(aT=%9),a= X)) . Therefore (%) 3
(7 aT=X9),(1 ~X9)).
If d, is a unit, then (1 — X9)2 € (2(1 ~ X9),a@,v(1 — XS‘)), whence

v(l1-X9) e (,'u',a(l - Xy)) Hence

N\® N3 N° +(x)
= —X9),(1 —X9)3).
(&) =% - aa=a=x)
Otherwise, for each z € I \ N3, a,, ¢;, and d, are not units,
Necessarily, b, is a unit. It follows that 2(1 ~ X¢) € I'\ N3,

( N )3 _N® (21 = X9))
(2(1 - X9)) (2(1 - X9))
_ (o1 - X%),0(1— X9, (1 — X9)° 2(1 — X9))
(2(1 - X9))

Since M? = (&) C (2), then
3

(fz_('lﬁl%) - (-‘a’”(l - X9)%,(1 —Xa)S) ,
(3) casel:  We have '

- N= (u,v,1~X9),
N% = (a,b,u(l — X9),v(1 — X?)) where M? = (a,b);
(a',b',a(1 = X9),b(1 — X9)) where M®=(d,b').

Let 2 € I\ N3, Clearly, ¢ = aza+ bsb+ c;u(l — X9) + dpv(1 — X9)
for some ag, b;,c;,d, € R[G], where at least one of a;, bs, ¢;, dy 18

3
a unit. In each case, one may verify that p ((%) ) < 3 (Assume

a € {u?,uv} and b = v?).
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- .‘f_ ~ We get

(&) 5 (& (&))< (2D s semm s
=pu (f%) since I C N? ;

<3 since 2 € N*\ N® and N? is 4-generated .

Consequently, I is 4—generated.

(3) cases 2 and_3: We have u(N?) < 3, then by [2, Lemma 4],
#(I) < (I + N?).
Since N? is 4—generated, we can assume that N% C I. We ape the

2
proof of (1) (page 7) to reach the desired conclusion when ( (N))

-—I-. Otherwise, I = N? + (z) is 4—generated because in (3) cases 2

()
and 3, N? is 3—generated. ¢

PROPOSITION 2 Assume G i3 @ non trivial finite 3—group, (R, M)
18 an Artinian local ring with the 2-generator property but R i3 not a
principal ideal ring, and that 3 € M. Then R[G] has the 4—generator
property zf and only if .
(e) G is a cyclic group.
(by) When M? is o principal ideal and M? 7’: 0 then
(a1) If 3 € M2, then G 2 Z/3Z and M?® is a principal ideal.
(az) If3 € M\Mz, then G = Z/3'Z with 1 <i <2,
moreover, if 9 € M? then G = Z/32Z.

(b2 ) When M? is not a principal ideal, then 3¢ M?, G & Z/327,
moreover, if M2 #0 and M? ¢ (3) then M? is o principal
ideal and

(61) If 9 € M2\ M? then M® C (9).
(62) If 9 € M? then M® = 3M2.

Proof. =] (a) Assume that G is not a cyclic group and R[G]
has the 4—generator property. Necessarily, the homomorphic image
R[Z/pZ & Z/pZ] does also, when p = 3. Then N? is 4—generdted,
where N = (u,v,1 - X9,1— Xh), = (u,v),and < g > B <h >=
ZipZ ® Z/pZ. : S
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2 = (u?,v%,uv,u(l — X9),0(1 — X9),u(l — X*),v(1 — X?),(1 -
XN(1-XM,0-X9,01-xm.

Since |< g >|= 8, via [1, Lemma 1.4], it is easy to verify that N2
needs more than four generators. Thus G = Z/p™Z, with m > 1.

(b1} Assume M? = () is a principal ideal and M?3 # 0.

(a1) Suppose p =3 € M2, If G = Z/p™Z with m > 1, we claim
that N3 is not 4—generated in R[Z/p™Z| where N =(u,v,1 - X7),
M = (u,v), and < g >=Z/p™Z.

We have N? = (o,u(l — X9),v(1 — X9),(1 — X9)?) and N? =
(ou, v, a(l - X9),u(l — X9)2,v(1 — X9)2,(1 — X9)3).

By [1, Lemma 1.7], u(1 ~ X9)? and v(1 — X?9)? are required as gen-
erators of N3,

Since | < g > | > 3 it is clear that (1 — X¥)3 is required as generator
of N3,

¥ a(l — X9) is a redundant generator of N3, then passing to
the hommorphic image R/M3[< g >], yields a(1 - X9) € (1 —
X9)2R/M3*[< ¢g >]. By [1, Lemma 1.4] o = )\p”‘ for some A €
R/M3. Tt follows that o = 0 in R/.M'3 That is, M? = (&) = 0, a
contradiction. Further, au or av is requlred as a generator of N3,
since M3 # 0.

Now, suppose M3 is not a principal 1deal and G = Z/32Z.

By [1, Lemma 1.7] and the fact that M3 is not a principal ideal, we
can easily check that au, av,u(l — X9)2andv(1l — X9)? are required
as generators of N3, then, if N3 is 4-generated, necessarly, N® =
(cu,av,u(l - X9)%, v(1 — X9)?). Further [< g >|=3 and 3 € M?,
a(l - Xg) ¢ (ou, av,u(l — X9)% v(1 — X9)?%). Then N? needs more
than four generators. -

(ap) Suppose p = 3 € M\ M2
4—generated in R[Z/ psz]
We have

= (p,v, 1~ Xg) and N3 =
X9, 02X
Since [ <g>|=p*>3and M =

Let's show that N3 is not

(pa,va,a(1-X9),p(1-X*9)?, v(1—

(p,v) is not a principal ideal,

by {1, Lemma 1.4 and Lemma 1.7, a(1 - Xg),p(l ~X9)2, v(1— X")2
and (1 — X? )3 are required as generators of N3. Furthermore, since
M? # 0, it is clear that N3 needs more than four generators. It
follows that G = Z/p*Z with 1 <t £ 2, as desired.

Suppose in addition that p* = 9 € M3, Using the arguments sim-
lar to ones used above, it is easy to verify that p(1—X?)%, v(1—-X9)32,

' Xg)2a”(1“Xg)2,(1—Xg)3), where M? =

X001 = X9),0(1 - X)),
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.and (1 — X9)3 must appear in a party of four generators extracted

from the original set of generators of N3. Furthermore, if a1 — X 9)
is redundant, then a(1 — X9) € (pa, av,p(1 —X9)?,v(1 - X9)?,(1 -
X9)3), whence passing to the homomorphic image R/M3%[< ¢ >],
we get ar(l — X9 € (1 - X9 R/M3< g >]. By [1, Lemma 1.4},
a. = Ap? = 0 for some ) € R/M?, a contradiction (M3 # O) Thus,
G = Z/pZ, as desired.

(b2) Assume M? is not a principal ideal. one may easily show
that N2 is not 4—generated neither if < g >= Z/9Z nor if 3 € M?
and < g >= Z/3Z. Necessarily, 3 € M \ M? and < ¢ >= Z/32Z.

Set p = 3. Assume in addition M? # 0 and M? ¢ (p). wé claim
that M3 is a principal ideal. Deny. Let N = (p,v,1 — X¥) and
< g >= Z/pZ. Cleatly, N} = (a',V/,a{l — X9),b(1 — X9),p(1 =
(a,b) and M? = (a',b') =
(9%, p?v, pv?,v?). Further M? = (a,b) = (v?,p?,pv), since M? ¢
(p), we can take a = v? and b e {p?,pv}. Then N3 = (o', b, (1 —

Since M? is not a principal ideal, by [1, Lemma 1.4 and Lemma
1.7], a',bY, v¥(1 — X9), and v(1 ~ X¥)? are required as generators of
N3. Since N?® is 4-generated, then (1 — X9)® = —3X9(1 — X9) ¢
(¢, b, v3(1 — X9),v(1 — X?)%) (Here p = 3). By passing to the
homomorphic image R/(v)[< g >], we obtain that 3 € (27,v). It
follows that M = (3,v) = (v) since R is Artinian, a contradiction.
Consequently, M?® = (y) is a principal ideal.

Let I = (v3,5,0%(1 — X9),v(1 — X9)2,(1 - X9)?).

Since | < ¢ > | > 3 and b ¢ M? (R Artinian and M? not

_principal), it is clear that b and (1 — X¢)® are required as generators

of I.

If v(1 — X9)? is redundant, then by passing to the homomorphic
image R/M?[< g >], and by using [1, Lemma 1.7], we get v = Ap
for some A\ € R/M?. Hence, v € (p,v?). Therefore M = (p,v) =
(p,v?) =+ = (p), a contradiction.

If v3(1 — X9) is redundant, then passing to the homomorphic
image R/(v3,b)[< ¢ >] yields (1 — X9) € (1 — X9)’R/(+?,b)[<
¢ >]. By [1, Lemma 1.4], we have v? = Ap for some X €. R/(v3 b).
Similaly, (5, 0%) = (7, 0%) = -+ = (1), whence M= = (37,0",pv) C
(p), a contradiction. -

© Thus I = (b,v%3(1 — X9),v(l — Xf’)2 (1 — X9)%). Further,v? € I,

by passing.to the homomorphic image R[< ¢ >]/(1 — X?) & R, we
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obtain that v® & (b). :
(91) If p? E Mz\M3 we may assume b = p?.
= (p°, p*v, pv?,v*). Since pv € (p,v?) then pv? € (v3, p?v).
Therefore M3 ¢ (p?), as desired.

(62) If p* € M3, we may assume b = pv. Weha,veJ\J2 (v2,pv) =
vM so tha,t M3 = '02M (v3,pv?). Since v® € (b) (pv) and pv ¢
M3, then v® € (p’v, pv?). Therefore M? = (pv?, p?v) = p(v?, pv) =
pM2 as desired.

<=)  Now, R[] is alocal ring with maximal ideal N = (u,v,1—
X?9) where u and v are the generators of M and ¢ is a generator of
the cyclic group G.

Step 1. We claim that N, N2, N3 and N* are 4—generated.
Indeed,

(b1) Assume M? = (a) is a principal ideal. If M® = 0, then the
proof is straightforward (see the case p = 2).

In the sequel, we suppose M3 # 0.
a1) Assume 3 € M?, G = Z/3Z, and M® = (u) is a principal ideal.
We easily check that

N= (uv,1-X9);
N?= (a,u(l - X9),v(1 - X9),(1 ~ XN ;
(b a(l = X9),u(1 - X9)%,0(1 - X9)?) ;
N*= (o pu(l - X9),0(l — X9)%).
(az) Assume p=3 € M\ M? and G = Z/p'Z ,1 < i < 2. Since M?
is a principal ideal, it is easy to verify that M® = (y) is a principal

ideal.
Suppose p? = 9 € M2\ M3, Clearly M? = (p?).

1 = (1-X7%4x9y
i=p? 2
= Z (p,)(l__xy)ix(p"’—i)y
i=0 ¢

2(.2
= 14 p*(1 - Xa)x(pz—l)y + LTQ(I-— Xg)zx(p’*-z)g

+ (1 - X9 (ti (?;2)(1 - Xy)(i—3)X(p2~i59) )

§=23
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© Then p*(1 — X?) € (p¥(1 — X9)%,(1 — X9)*) C ((1 .~ X7)%).
Therefore, : .

- N= (pv,1-X%);

T NP= (P,p(1 - XP),0(1 - X9), (1 - X9)?) 4

N3 = (,u,p(l-—Xg)z,v(l—Xy)z,(l-—X-")s) ‘ |
Nt= (p4p(l—X9),p(1 —X9)% 0(1 - X%, (1~ X9*).

i

" We have M? = () € M? = (p?), whence p € (p®,p*v) since
p?* ¢ M3, Therefore p(l — X9) € (p*(1 — X9),p%v(1 — X)) C

T (p(l — X9)3,v(1 — X9)%). It results that
| Nt = (p ,p(l _Xg)3 'u(l _Xg)3 (1 —Xg)4)

_ Suppose 9 € M? and G = Z/3Z. Cleaxly,
N= (3v,1-X9);
N? = (a’v(l_xg)'r(l_xg)z) 3
N = (p,o(l—X%),v(1-X"2%3(1—X?)) ;
Nt = (o, u(1 - X9),a(l - X9)? 3(1 - X9)?).

(by) Set p = 3. Assume M? = (a,b) is not a principal ideal,
p & M?, and G = Z/pZ. Clearly,

N = (p:'"}]-_Xg) ;
NZ= (a,b,v(1—X9),(1—-X9?).

If M3 = 0, then

N? = (a(l—X9),b(1 - X?),v(1 = X°), (1 - X9)*) = (1 — XO) N,
N*= (1-X%)2N? (Recall that p(1 — X9) € (1 — X?)°).

In the sequel, we suppose M?* # 0.

If M? C (p), then M? = (p*,pv) (p ¢ M?), whence N* =
(%, p?v,v(1 — X9)2,(1 — X9)%) and N* = (p*, pPv,v(1 — X9)%, (1 -
X 7)4), since p(1 — X9) € ((1 — X9)%).

Now, assume M? ¢ (p) and M® = (i) is a principal ideal. We
may assume a = v? and b € {pv,p?}.
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- It is easily seen that N® = (u,v%(1 — X9),0(1 - X9)2, (1 —-X9)3).
It remains to show that N* is 4-generated. -

If p? € M?* and M3 = pM?, then M* = p?M? C M5, whence
M* = 0. Therefore N* = (u(1 - X9),v?(1 — X9y, 0(1 — X9 (1 -
XY,

If p? € M2\ M® and M3 (»?), since M?is a principal ideal,
it is easy to verify that (M* = (v)) is a principal ideal. So that
N4 = (7, (1 — X0),0%(1 — X9)2, o1 — X9)8, (1 - XoY0,

Since p(1 — X¥) € ((1 - X9)?) and p € (p3,p%0) (M? = (u) C
(p?)), then p(l — X9) € (v(1 — X9)%,(1 — X)), Therefore N* =
(1 31— XOY, o1 = X098, (1 — xoY4)

Step 2. Let I be an ideal of R[G], we claim that I is 4—generated.
Indeed, _ . o _
If M® =0, then the proof is similar to the one given for p = 2.
If M® # 0, as in the proof of Proposition 1 (cases (2) and (3) casel),
we may assume N°® C I.

Casel:  Suppose that there exists z € I \ N? . Via the proof
of Proposition 1, it suffices to consider the case I = N3 + ().

(b1) Assume M? = (@) is a principal ideal and M? # 0,

(1) We got from step 1 that N3 = (, 0(1~X9), u(1~X9)2, v(1—
X?)?). Since x € N = (u,v,1 - X9), 2 = \u + Bv + v(1 ~ X9) for
some A,fB,v € R[G], where ) or § or v is a unit. If v is a unit,

m = (&,9). We conclude in the same way as in the case P = 2 step
2 page 7.

If 4 is not a'unit, necessarily, A or P is a unit, say A. Clearly,
u € (z,v,1 ~ X9), then u(1 — X% € (z,v(1 - X9)2,3(1 ~ X)) ¢
(,9(1 - X9)%, a(1 ~ X9)), since |< g >|= 3 and 3 € M?. Therefore
I=(z,p,0(1 - X9)?2 a(l - X9)).

(az) Assume p = 3 € M\ M? and p* € M2\ M3, We got
from stepl that N® = (u,p(1 — X9)2,v(1 ~ X9)2,(1- X9)%). Since
€N =(pv,1-X9), 2= Ap+Bv+(1—X9), where A or 8 or v is
a unit (¢ ¢ N?). In each case, it is easy to verify that I = N3 + ()
i8 4—generated. o

Now, assume 9 € M® and G = Z/32. If M? ¢ (3), we are
done via [1, Proposition 2.1]. Let’s suppose M? Z (3). We have
N? = (u,v*(1 - X9),0(1 - X9)%,3(1 — X9)). Sincez € N \ N2,
2 =3\ + fv + (1 — X9) for some A, 8,7 € R[G], with X or B or v
is a unit. The cases in which 8. or 7 is a unit are straightforward.
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'TWe assume then that 8 and v are not 'units. Then z = 3\ 4 B'v? +
"y'.v(l'—-Xg)+7'(1 —X9)? for some N, #', 1!, v' € R[G). Clearly, X’ is
& unit. Therefore (1~ X?) = 3M(1— X9} + f'v2(1 — X9) + p'v(1 —
XY + (1 - X9,

CIf ! or B is & unit, it is easy to see that I = (=, p,v*(1-X7),3(1~
X)) or I=(z,p,v(l—X9)23(1—X9)).
- If @' and B’ are not units, since I = N® 4 (), we can take
z = 3N + 4'(1 — X¥)2. Furthermore, if 4' is not a unit, we may
take x = 3, whence I = (3,,v%(1 — X?),0(1 — X9)?). If v is a

- unit, then (1 — X9)? € (3,z), hence v(1 ~ X7)? € (3v,2) C (u,z)

since 3v € M*® = (p) ( Recall M? is a principal ideal and M? ¢ (3)).
Thus, I = (z,p,v%(1 — X?),3(1 — X9)).

(b2) Assume M? is not a principal ideal, p = 3 ¢ M? and G =

- Z[pZ.

If M? C (p), we have N = (p® pPv,o(1 — X9)2,(1 — X?)3).
Since, p(1 — X9) € ({1 — X?)%), we easily show that I = N? + (z) is
4-generated. ' o

If M2 ¢ (p), we have N* = (4, v?(1~ X9), 0(1— X9)2, (1 — X9)?),
Similarly, z = Ap+ fv +4(1— X9) for some A, 8,7 € R[G], with ) or

B or v is a unit. We can assume that 4 and v are not. units, hence,

there exist A, #',~',6' € R[G] such that z = Mp + fv? +4'v(1 —
X9) +8(1 — X9)2, where X is a unit, .

If #' or v' is & unit, it is easy to verify that I = (z) + N3 is
4—generated.

If 3" and ' are not units, since I = (z) + N3, we can suppose
that = = A'p + §'(1 — X9)2, whence p? € (z,p(1 — X9)?) C (z,(1 —
X%)3) and pv € (z,v(1 — X9)?). Purtheremore, under the present
hypotheses, one may check that M® = (x) C (b) where b € {p?, pv}.
Hence, p € (2,v(1 — X9)?,(1 — X9)®). Therefore I = (z,v*(1 —
X9),0(1 - X7, (1 - X9)9), o -

Casell Suppose (N?® C)I C N2, Using stepl an'dl arguments
similar to ones used above, we show that there exists 2 € I'\ N® such

that u ((%)3) <3.

Actually, it remains to-handle the following case : Assume M?
is not principal, p = 3 ¢ M?, < g >= Z/pZ, M® = (u) is a
nonzero principal ideal, and - M? ¢ (p). we got by stepl that N2 =
(02: b$ 'U(l—.Xy), (1_X9)2), and N* = (”102(1_)(!’)’”(1:")(9)2'1 (1'_'
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X9)%), where b € {p?,pv}. Let ¢ € I\ N?, z = a,v® + b, b+ cpv(1 —
X9)+dz(1 ~ X9)? for some @z, by, cy,dy € R[G], with a; or b, or ¢,
or d; is a unit. . o

_ _ \
If a; or ¢; or dy is a unit, easily we check that p ((%) ) <3

Otherwise, since b, is & unit, z ¢ N3, and hence b € (z) + N3,
Therefore N? + () = N® 4 (b). Since b ¢ N® and M? = (4) C (b),
- /NY? N+ (b)
then (-——) = (—-—-—) <3
"\B)) T\

By the same proof for p = 2, we claim that I is 4—generated. ¢

PROPOSITION 3 Assume that G is a non trivial finite p—group,
(R, M) is an Artinian local ring with the 2-generator property bui
R is mot a principal ideal ring and that p € M. Then R[G] has the
4—generator property if and only if
(e) G is a cyclic group.
(b1) When M? is « principal ideal and M® 3 0 then
(1) If p € M2, then G = Z/pZ, p ¢ M®, and M3 is ¢
principal 1deal.
(az) If pe M\ M?, then G = Z/p'Z with 1 <1 <2,
moreover, if p* € M® then G = Z/pZ and either M? ¢ (p)
or M3 C (p).

(b2) When M? is not a principal ideal, then p ¢ M?, G = Z/pZ,
moreover, if M? # 0 and M? ¢ (p) then M® is a principal
ideal and , ,

(61) If p* € M?\ M? then M3 C (p?).
(0:) If p* € M® then M3 = pM?2.

Proof of Proposition 3. It is almost similar to the proof of Proposition
2. Here the main fact is that |< ¢ >|= p > 8. The remaining two
cases are : (a1) and (ag) when p? € M2, _ '

=] (@1) Assume p € M?. If M is not a principal ideal or p € M?
or G = Z[p™Z with m > 1, by the same proof given for Proposition
2 (a1} we verify that N® is not 4—generated in R[Z/p™Z] where
N = (u,v,1 = X?), M = (u,v), and < g >= Z/p™Z.

(a2) Assume p € M \ M? and p? € M3, Necessarily, < ¢ >=
Z[pZ. let’s suppose M2.¢ (p) and M® ¢ (p). Let I = (p, (1 —
X9),a(l - X% 0(1 - X9 (1—-X9)Y., o
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© Since p € M\ 'M? and | < g > |> 4, then p and (1 — X?)* are

- required as generators of I. - ' : :
~ oI (1l —~ X9)® is redundant then by passing to the homomor-

phic image R/(a,p)[< g >], we obtain that v(1 — X9)® € (1 —
X9 R/(a,p)[< g >], and whence v(1 — X9)P~! = ( in R/(o'e,p.)[<
g >]. Therefore M = (p,v) = (p,v?) = ------ = (p), a contradiction.

. If p(1 — X9) is a redundant generator then by passing to the
‘homomorphic image R/(p)[< ¢ >], we obtain that p(1 — X9) €
(1—X?)R/(p)[< g >]. By [1, Lemma 1.4]; we get x4 = Ap for some
A € R/(p). Hence M? = (n) C (p), a contradiction.
R a(l — X9)? is redundant, then by passing to the homomor-

phic image R/(p,p)[< g >], we obtain that (1 — X?)? € (1 —
- X?®R/(p,n)[< g >]. By [1, Lemma 1.7], we get o = Ap for some
.~ A € R/(p,p), whence v* € (p,v*). Hence (p,v?) = (p,v?) =+ =
~ (p), so that M? = (v, p?,pv) C (p), 2 contradiction.
. Consequently, I is not 4—generated,

| <) Now, we know that R[G] is a local ring with maximal ideal
N = (u,v,1 — X9), where u and v are the generators of M and g is
- a generator of the cyclic group G. ' '
i Step: 1.- - We claim that N, N?,N3 and N* are 4—generated.
.. Indeed, : ' R ‘

T ay) Assume p € M?, G = Z/pZ, p ¢ M3, and M? is a principal

. ideal, Necessarily, M? = (p).
- Since p(1 — X?) € ((1 - X)), we get

N= (uv,1-X%);

N? = (p,u(l~X7),0(1 - X%),(1- X)) ;
N = (pu(l - X u(1- X9)% (1 - X9)°)
N = (phu(l-X9% 01X (1-X9%).

(ova) Assume p € M\ M?, p? € M?, G = Z/pZ, and either M? C (p)
“or M? C (p). We have . . o

N= (po,1-X7);

N? = (a,v(1—-X7),(1 - X?)?%) where M2I'= (@) 5 N
N3 = (u,o(l—~X%),v(1 =Xy (1 — X9)%) where M3 = (u) ;
Nt = (a®, pu(l—X%),0(l-X9% (1 =X9% 1 - XN
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. If M2 C(p) then a(l‘—‘Xg)E( 2(1-X9),pv(1 —X9)) C (v(1 -
X9)3,(1-X9)*), whence N* = (a?, u(1-X9),v(1-X7)?,(1- X9)%),
If M® C (p). Since p € M\ M?, p € (p?,pv). Further, p?(1 —
X9) e (1-X9)*) and pv(1~X79) € (v(1— X-")3) Then p(1-X9) €
(v(1 — X9)%,(1 — X9)*). Therefore N* = (a?,a(l — X9)2,v(1 —
X9, (1~ X0)%),

Step: 2 Let I be an ideal of R[G], we claim that I is 4—generated.

As in Proposition 1, we may assume that N3 C I.

Casel:  Suppose that there exists x € I\ N%, As above, it
suffices to consider the case I = N® 4 ().

(01) By stepl, it is easily seen that I = N3 + (2) is 4—generated.

(o) Assume p € M\ M?, p* € M3, G = Z/pZ, and either
M?* C (p) or M® C (p). By stepl, N* = (y,a(l — X9),v(1 —
X9)%,(1 — X9)%). Since z € N\ N? then z = Ap + fv + (1 — X¥)
for some A, 8,7 € R[G], with ) or B or v is a unit. We can assume
that g and 7 are not units, Therefore p € (z,v,1 — X9).

If M? C (p), « € (p?,pv). Hence a{l — X?) € (p*(1 - X9),pv(1 -
X)) C ((1—-X9)°). So that I = (z, p,v(1 — X?)%,(1 - X9)?),

If M® C(p), z = Np+fla+yv(l—X9)+8(1- X9)? for some

P UN E R[G]. Clearly X is a unit ( = ¢ N?).

If ' or v is & unit, we verify that I is 4~generated.

Otherwise, since I = N? 4 (z), we can suppose that z = A'p +
6'(1— X9)%, By hypothesis, M® = (1) C (p). Then p = 8p for some
6 € M (p ¢ M?), hence 26 = N + 6'6(1 — X9)%. Therefore y €
(z,v(1-X9)2,p(1-X9)?) C (z,v(1-X9)2,(1~X79)*). Consequently,

= (2,a(1 = X9),0(1 = X9)2,(1 - X9)%).

Casell:  Suppose (N® C)I C N?. The proof is the same as in
Proposition 2. ¢ .

THEOREM. ILet R be an Artinian ring with the 2—generator
property and let G be o finite abelian group. Then R[G] has the
4—generator property if and only if R= Ry ® Ry & -+ ® R, where,
for each j, (R;, M;) is a local Artinian ring with the 2—generator
property subject to :

(I) Assume R; is o field of chamctemstw p# 0

(a) when p = 2 then G, is @ homomorphic smage of Z/2Z€BZ/2Z®
Z[2Z or Z/4Z <) Z/2'Z where ¢ > 0
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. (8) wheﬂp =3, then G is a lmmo11’.:07"1”*zc image of Z/3Z EBZ/?"

where i > 0
() when p > 3, then G is a cyclic group.

(II) Assume (R;, M;) is a principal ideal ring which is not a field,
and p o prime integer such that p divides Ord(G) and p € M;, then

- (o) Assumep 2,

4) (i) G, Z/2Z(BZ/2"Z with i > 1
(1) when M} # 0, then G, ='Z/2Z @ Z[22.

- B) (1)Gpisa cyclzc group

(it) When M} #0, then
(a) Gp = Z2[2°Z, where 1 < i <2, if 2€ M?
(b) G, = Z/2’Z where 1 <1 < 3, zf2EM \ M7.
(B) Assumep 3,
A) G, Z/SZ@Z/SZ 3€ M;\ M} and M} = 0.
B) (z) Gp is a cyclic group
(i) When M"‘ # 0, then
(a) Gy = Z/32, if 3 € M?
(b) G, = 2/312, where 1< i < 3, zf3eM,\M2

: " (v) Assume p > 3,

(i) Gp is ¢ cyclic group
(1) IfM; # 0, then p ¢ M} and
(¢) Gp 2 Z/pZ, if pe M}
(b) Gp = Z[p'Z, where 1 <i <3, if p€ M;\ M?.
(I1I) Assume (R;, M;) has the 2—generator property but is not a
principal ideal ring and p a prime mtege'r such that p divides Ord(G)

and p € M;, then

(a) Assume p = 2,
> 7/27,
(I) i>1 sz2 i3 a principal ideal and M3 = 0
(2)1<:<2 1zfl’k{[2 is @ principal ideal, M3 7é 0, and .M'2 C (2)
(8)i=1 otherwise. :

- (B) Assume p = 3,

(a) Gp is e cyclzc group
(b1) thn M? is a principal zdeal and M} # 0 then
(1) If3 € .M2 then G, = Z/3Z and M3 is o principel ideal.
(az) If 3 € M,—\M}, then G, & Z/3"z with 1< 1 < 2,
moreover, if Qe M? - - 0 0 ‘
then G, 2 Z/32.
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(bz) When M3 is not a principal ideal, then 3 ¢ M » &
Z[3Z, moreover, zf
M} #0 and M} ¢ (3) then M} is a principal ideal and
(81) If9e Mf \ M} then M} C (9).
(62) If 9 € M} then M} = 3M},
() Assume p > 3,
(¢) G, is a cyclic group
(b) (b1) When M? zs a principal ideal and M} 7’: 0 then
(a1) If p € M7, then G, & Z/pZ, p é Y, and M} is a
principal ideal. '
(a2) If p € M\ M} then Gp & Z/p'Z with 1 < 4 < 2,
moreover, if p* € M3,
then Gy = Z/pZ and either M} C (p) or M} C (p)

(bs) When M7 is not a principal ideal, then p ¢ MJ?, G, =
Z/pZ, moreover, if
M} # 0 and M} ¢ (p) then M} is o principal ideal and
(61) If p* € M} \ M} then M} C (p?).
(6;) If p* € M} then M} = pMj.

Proof. We appeal to [2, Theorem], Propositions 1, 2, and 3, and
similar techniques used in the proof of [1, Theorem]. ¢
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