Group Rings $R[G]$ with 4-Generated Ideals When R is an Artinian Ring with the 2-Generator Property

SOUAD AMEZIANE HASSANI Department of Mathematics, Faculty of Sciences Saiss, University of Fez, Fez, Morocco.

SALAH-EDDINE KABBAJ Department of Mathematical Sciences, KFUPM, P.O.Box 849, Dhahran 31261, Saudi Arabia.

INTRODUCTION

For the convenience of the reader, let's recall the following facts. We have from the restriction on Krull dimension, $1 \geq \operatorname{dim} R[G]=$ $\operatorname{dim} R+r$, where r denotes the torsion free rank of G. If $r=0$, then G must be a finite group. If $r=1$, then $G \cong Z \oplus H$, where H is a finite abelian group and Z the group of the integers. We will concentrate on the case in which R is Artinian and $r=0$, that is, G is a finite abelian group. The cases $n=2$ and $n=3$ were considered in [15, Theorem 4.1] and [1], respectively. However, for $n \geq 4$, the problem of when $R[G]$ has the n-generator property remains open. As the problem of determining when a group ring $R[G]$ has the 4-generator property, when R is an Artinian principal ideal ring and G is a finite group is resolved in [2], in this paper, we consider the case where R is an Artinian ring with the 2-generator property.

Rings and groups are taken to be commutative and the groups are written additively. If p is a prime integer, then the p-sylow subgroup of the finite abelian group G will be denoted G_{p}. When I is an ideal of R, we shall use $\mu(I)$ to denote the number of generators
in a minimal basis for I. Finally, recall that in a local ring (R, m), if I is n-generated, then the n generators of I may be chosen from elements of a given set of generators of I (cf. [13, (5.3), p. 14]).

PROPOSITION 1 Assume that G is a nontrivial finite 2-group, (R, M) is an Artinian local ring with the 2-generator property but R is not a principal ideal ring and that $2 \in M$. Then $R[G]$ has the 4-generator property if and only if
$G \cong Z / 2^{i} Z$, where
(1) $i \geq 1$ if M^{2} is a principal ideal and $M^{3}=0$
(2) $1 \leq i \leq 2$ if M^{2} is a principal ideal, $M^{3} \neq 0$ and $M^{2} \subset(2)$.
(3) $i=1$ otherwise.

Proof. \Rightarrow] Assume that G is not a cyclic group and $R[G]$ has the 4-generator property. Then the homomorphic image $R[Z / 2 Z \oplus$ $Z / 2 Z]$ does also. Hence N^{2} is 4-generated where $N=(u, v, 1-$ $\left.X^{g}, 1-X^{h}\right), M=(u, v)$ and $\langle g\rangle \oplus\langle h\rangle=Z / 2 Z \oplus Z / 2 Z$. Since $|<g>|=2$ and $2 \in M$, then $N^{2}=\left(u^{2}, v^{2}, u v, u\left(1-X^{g}\right), v(1-\right.$ $\left.\left.X^{g}\right), u\left(1-X^{h}\right), v\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right)\right)$.

It is easy to see that $\left(1-X^{g}\right)\left(1-X^{h}\right)$ is required as a generator of N^{2}. Since $M=(u, v)$ is not a principal ideal, it is also easy to verify that $u\left(1-X^{g}\right), v\left(1-X^{g}\right), u\left(1-X^{h}\right)$ and $v\left(1-X^{h}\right)$ are required as generators of N^{2}. Therefore N^{2} needs more than four generators, a contradiction.
(1) Trivial.
(2) Since M^{2} is a principal ideal, one can easily check that M^{3} is a principal ideal too. Further, we may assume $M=(2, v)$ since $2 \in M \backslash M^{2}$. Suppose that $R[Z / 8 Z]$ has the 4 -generator property and let $\langle g\rangle=Z / 8 Z, M^{2}=(\alpha)$, and $M^{3}=(\mu)$. We have
$N=\left(2, v, 1-X^{g}\right) ;$
$N^{2}=\left(\alpha, 2\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) ;$
$N^{3}=\left(\mu, \alpha\left(1-X^{g}\right), 2\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$.
Since $M^{3} \neq 0$ and $|<g>|>3$, it is clear that μ and $\left(1-X^{g}\right)^{3}$ are required as generators of N^{3}.

If $\alpha\left(1-X^{g}\right)$ is a redundant generator of N^{3}, then by passing to the homomorphic image $R / M^{3}[<g>]$ and by using [1, Lemma 1.4], we get $\alpha=8 \lambda$ for some $\lambda \in R / M^{3}$. It follows that $\alpha \in M^{3}$, whence $M^{2}=M^{3}$, i. e., $M^{2}=0$, a contradiction.

If $2\left(1-X^{g}\right)^{2}$ is redundant, then passing to the homomorphic image $R /(4, v)\left[<g>\right.$] yields $2\left(1-X^{g}\right)^{2}=\sum_{i=0}^{i=7} a_{i} X^{i g}\left(1-X^{g}\right)^{3}$ where $a_{i} \in R /(4, v)$. After setting corresponding terms equal, we obtain a system of 8 linear equations in 8 unknowns. After resolving this system, we obtain $2=0$ in $R /(4, v)$, i. e., $M=(2, v)=\left(2^{2}, v\right)=$ $\left(2^{3}, v\right)=\cdots=(v)$, since R is Artinian, a contradiction.

If $v\left(1-X^{g}\right)^{2}$ is redundant; then passing to the homomorphic image $R /\left(2, v^{2}\right)[<g>]$, yields $v\left(1-X^{g}\right)^{2} \in\left(1-X^{g}\right)^{3} R /\left(2, v^{2}\right)[<$ $g>$], whence $v\left(1-X^{g}\right)^{7} \in\left(1-X^{g}\right)^{8} R /\left(2, v^{2}\right)[<g>]=0$. Therefore $v \in\left(2, v^{2}\right)$ i. e., $M=(2, v)=(2)$, a contradiction. Consequently, N^{3} is not 4-generated.
(3) We consider separately three subcases. case1: Assume M^{2} is not a principal ideal. It suffices to prove that $R[Z / 4 Z]$ does not have the 4 -generator property.

Since M and M^{2} are not principal ideals and $\left.|\langle g\rangle|\right\rangle 3$, it is easily seen that $N^{2}=\left(u^{2}, v^{2}, u v, u\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right)$ is not 4-generated where $M=(u, v)$ and $\langle g\rangle=Z / 4 Z$.
case2: Assume M^{2} is a principal ideal, $M^{3} \neq 0$, and $2 \in$ M^{2}. We claim that N^{3} is not 4-generated in $R[Z / 4 Z]$, where $N=$ $\left(u, v, 1-X^{g}\right)$ and $<g>=Z / 4 Z$. Indeed, we have $N^{2}=\left(\alpha, u\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right)$ and $N^{3}=(\alpha u, \alpha v, \alpha(1-$ $\left.\left.X^{g}\right), u\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$, where $M^{2}=(\alpha)$.
$|<g>|=4$ implies that $\left(1-X^{g}\right)^{3}$ is required as a generator of N^{3}. If $u\left(1-X^{g}\right)^{2}$ is redundant, then passing to the homomorphic image $R /\left(u^{2}, v\right)[<g>]$ yields $u\left(1-X^{g}\right)^{2} \in\left(1-X^{g}\right)^{3} R /\left(u^{2}, v\right)[<g\rangle$], whence $u\left(1-X^{g}\right)^{3} \in\left(1-X^{g}\right)^{4} R /\left(u^{2}, v\right)[<g>] \subset 2 R /\left(u^{2}, v\right)[<$ $g>]$. Since $2 \in M^{2}$ and $R /\left(u^{2}, v\right)[<g>]$ is a free $\left(R /\left(u^{2}, v\right)\right)$ module, then $u \in\left(u^{2}, v\right)$, a contradiction. Likewise for $v\left(1-X^{g}\right)^{2}$.

If $\alpha\left(1-X^{g}\right)$ is a redundant generator of N^{3}, then passing to the homomorphic image $R / M^{3}[<g>]$ yields $\alpha\left(1-X^{g}\right) \in(1-$ $\left.X^{g}\right)^{2} R / M^{3}[<g>]$. By [1, Lemma 1.4] $\alpha=4 \lambda$, for some $\lambda \in R / M^{3}$. It follows that $\alpha=0$ in R / M^{3}, i.e., $M^{2}=(\alpha)=0$, a contradiction.

Since $M^{3} \neq 0$, it is clear that N^{3} needs more than four generators. Consequently, $R[Z / 4 Z]$ does not have the 4-generator property.

Case3: Assume M^{2} is a principal ideal, $M^{3} \neq 0,2 \in M \backslash M^{2}$, and $M^{2} \not \subset(2)$. Clearly, M^{3} is principal. Further, we may assume $M=(2, v)$, and hence $M^{2}=\left(v^{2}\right)$. We claim that $R[Z / 4 Z]$ does not have the 4-generator property. Effectively,

Suppose $4 \notin M^{4}$. It follows from the assumption $M^{2} \not \subset(2)$ that $4 \in M^{3} \backslash M^{4}$, and hence $M^{3}=(4)$.

In $R[Z / 4 Z]$, let $I=\left(4, v^{2}\left(1-X^{g}\right), 2\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},(1-\right.$ $\left.X^{g}\right)^{3}$) where $<g>=Z / 4 Z$. Since $4 \neq 0$ and $|<g>|>3$, it is easily checked that 4 and $\left(1-X^{g}\right)^{3}$ are required as generators of I. Moreover, using techniques similar to ones used above, we prove that $v\left(1-X^{g}\right)^{2}$ must appear in a party of 4 generators extracted from the original set of generators of I. If $v^{2}\left(1-X^{g}\right)$ is redundant, then passing to the homomorphic image $R /(2)[<g>]$ yields $v^{2}\left(1-X^{g}\right) \in$ $\left(1-X^{g}\right)^{2} R /(2)[<g>]$. By [1, Lemma 1.4], we have $v^{2}=0$ in $R /(2)[<g>]$, i. e., $v^{2} \subset(2)$, a contradiction since $M^{2}=\left(v^{2}\right) \not \subset(2)$. Therefore $I=\left(4, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. Now $2\left(1-X^{g}\right) \in$ I, then passing to the homomorphic image $R /(4, v)[\langle g\rangle]$ yields $2\left(1-X^{g}\right)=\sum_{i=0}^{i=3} a_{i} X^{i g}\left(1-X^{g}\right)^{3}$, where $a_{i} \in R /(4, v)$. After setting corresponding terms equal, we obtain the following equations :
X^{0}
X^{g}
$X^{2 g}$
$X^{3 g}$

$$
\begin{aligned}
a_{o}-a_{1}+3 a_{2}-3 a_{3} & =2 \\
-3 a_{o}+a_{1}-a_{2}+3 a_{3} & =-2 \\
3 a_{o}-3 a_{1}+a_{2}-a_{3} & =0 \\
-a_{o}+3 a_{1}-3 a_{2}+a_{3} & =0
\end{aligned}
$$

This yields $2=0$ in $R /(4, v)$, i. e., $M=(2, v)=(v)$, a contradiction. Consequently, I needs more than four generators.

Suppose $4 \in M^{4}$. Let $M^{3}=(\mu)$, if $M^{3} \not \subset(2)$, we consider $I=\left(2, \mu, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. Since $2 \notin M^{2}, M^{3} \not \subset(2)$ and $|\langle g\rangle|>3$, it is an easy matter to verify that $2, \mu$ and $\left(1-X^{g}\right)^{3}$ are required as generators of I. Moreover, using arguments similar to ones used above, it is easy to check that $v^{2}\left(1-X^{g}\right)$ and $v\left(1-X^{g}\right)^{2}$ are required as generators of I. Thus I is not 4 -generated.
If $M^{3} \subset(2)$, then $\mu=2 \lambda$ where $\lambda \in M$ since $2 \in M \backslash M^{2}$. Therefore $\mu=4 \alpha_{1}+2 \alpha_{2} v$, where $\alpha_{1}, \alpha_{2} \in R$.

Since $M^{3} \neq 0, M^{2} \not \subset(2), M^{3}$ is a principal ideal and $4 \in M^{4}$, then $M^{3}=(2 v)$.

On the other hand, $M^{3}=\left(v^{3}, 2 v^{2}\right)$. Since R is an Artinian ring and $2 v \in M^{3}$, then $M^{3}=\left(v^{3}\right)$, whence there exists λ a unit in R such that $2 v=\lambda v^{3}$. Let $I=\left(v^{3}, 2-\lambda v^{2}, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. As before, one can easily check that $v\left(1-X^{g}\right)^{2}$ and $\left(1-X^{g}\right)^{3}$ are required as generators of I. If $2-\lambda v^{2}$ is redundant, then passing to the homomorphic image $R[<g>] /\left(\left(1-X^{g}\right)\right) \simeq R$ yields $2-\lambda v^{2} \in$
$\left(v^{3}\right)$, i. e., $2-\lambda v^{2}=\beta v^{3}$ where $\beta \in R$. Hence $v^{2} \in(2)$; so that $M^{2}=\left(v^{2}\right) \subset(2)$, a contradiction. If v^{3} is redundant, then passing to the homomorphic image $R[<g>] /\left(\left(1-X^{g}\right)\right) \simeq R$, we obtain that $v^{3} \in\left(2-\lambda v^{2}\right)$, i. e., $v^{3}=\beta\left(2-\lambda v^{2}\right)$ where $\beta \in R$. Since $M^{2}=\left(v^{2}\right) \not \subset(2), M^{3} \subset(2)$ and λ is a unit, then β is not a unit in R , whence

$$
\begin{aligned}
v^{3} & =\left(2 \beta_{1}+v \beta_{2}\right)\left(2-\lambda v^{2}\right), \text { where } \beta_{1}, \beta_{2} \in R \\
& =\beta_{1}\left(4-\lambda 2 v^{2}\right)+\beta_{2}\left(2 v-\lambda v^{3}\right) \\
& =\beta_{1}\left(4-\lambda 2 v^{2}\right)
\end{aligned}
$$

$4 \in M^{4}$ and $2 v \in M^{3}$; then $\left(4-\lambda 2 v^{2}\right) \in M^{4}$, whence $M^{3}=\left(v^{3}\right) \subset$ M^{4}, a contradiction since $M^{3} \neq 0$. Finally, if $v^{2}\left(1-X^{g}\right)$ is redundant, then $v^{3}\left(1-X^{g}\right) \in\left(v^{4}, 2 v-\lambda v^{3}, v^{2}\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{3}\right)=$ $\left(v^{4}, v^{2}\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{3}\right)$. By passing to the homomorphic image $R /\left(v^{4}\right)[<g>]$, we obtain that $v^{3}\left(1-X^{g}\right) \in\left(\left(1-X^{g}\right)^{2}\right) R /\left(v^{4}\right)[<$ $g>]$. By [1, lemma 1.4], we get $v^{3}=4 \gamma$ where $\gamma \in R /\left(v^{4}\right)$. Since $4 \in M^{4}=\left(v^{4}\right)$, then $v^{3} \in\left(v^{4}\right)$, i. e., $M^{3}=M^{4}$, a contradiction ($M^{3} \neq 0$). Consequently, I needs more than four generators. Thus, $R[Z / 4 Z]$ does not have the 4-generator property.
$\Leftrightarrow \quad$ Now, $R[G]$ is a local ring with maximal ideal $N=(u, v, 1-$ X^{g}) where $u v$ are the generators of M and g generates the cyclic group G.

Step 1. We claim that N, N^{2}, N^{3}, and N^{4} are 4-generated. Indeed,
(1) Assume $M^{2}=(\alpha)$ is a principal ideal and $M^{3}=0$. Clearly,

$$
\begin{aligned}
N & =\left(u, v, 1-X^{g}\right) \\
N^{2} & =\left(\alpha, u\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) \\
N^{3} & =\left(1-X^{g}\right) N^{2} \text { and } \\
N^{4} & =\left(1-X^{g}\right)^{2} N^{2}
\end{aligned}
$$

(2) Assume M^{2} is a principal ideal, $M^{3} \neq 0 ; M^{2} \subset(2)$, and $G=Z / 2^{i} Z$ with $1 \leq i \leq 2$.

Since $M^{2}=(\alpha) \subset(2)$, then

$$
\begin{aligned}
N & =\left(2, v, 1-X^{g}\right) ; \\
N^{2} & =\left(\alpha, 2\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) ; \\
N^{3} & =\left(\mu, \alpha\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right) \text { where } M^{3}=(\mu) ; \\
N^{4} & =\left(\alpha^{2}, \mu\left(1-X^{g}\right), v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right) .
\end{aligned}
$$

(3) Case1 Assume M^{2} is not a principal ideal and $G=Z / 2 Z$. Clearly,

$$
\begin{aligned}
N & =\left(u, v, 1-X^{g}\right) ; \\
N^{2} & =\left(a, b, u\left(1-X^{g}\right), v\left(1-X^{g}\right)\right) \text { where } M^{2}=(a, b) ; \\
N^{3} & =\left(a^{\prime}, b^{\prime}, a\left(1-X^{g}\right), b\left(1-X^{g}\right)\right) \text { where } M^{3}=\left(a^{\prime}, b^{\prime}\right) ; \\
N^{4} & =\left(a^{\prime \prime}, b^{\prime \prime}, a^{\prime}\left(1-X^{g}\right), b^{\prime}\left(1-X^{g}\right)\right) \text { where } M^{4}=\left(a^{\prime \prime}, b^{\prime \prime}\right)
\end{aligned}
$$

(3)Case2 Assume $M^{2}=(\alpha)$ is a principal ideal, $M^{3} \neq 0$, $2 \in M^{2}$, and $G=Z / 2 Z$. We verify that

$$
\begin{aligned}
N & =\left(u, v, 1-X^{g}\right) ; \\
N^{2} & =\left(\alpha, u\left(1-X^{g}\right), v\left(1-X^{g}\right)\right) ; \\
N^{3} & =\left(\alpha u, \alpha v, \alpha\left(1-X^{g}\right)\right)=\alpha N ; \\
N^{4} & =\alpha N^{2} .
\end{aligned}
$$

(3) Case3 Assume $M^{2}=(\alpha)$ is a principal ideal, $M^{3}=(\mu) \neq$ $0,2 \in M \backslash M^{2}, M^{2} \not \subset(2)$, and $G=Z / 2 Z$. We easily check that

$$
\begin{aligned}
N & =\left(2, v, 1-X^{g}\right) ; \\
N^{2} & =\left(\alpha, 2\left(1-X^{g}\right), v\left(1-X^{g}\right)\right) ; \\
N^{3} & =\left(\mu, \alpha\left(1-X^{g}\right)\right) \\
N^{4} & =\left(\alpha^{2}, \mu\left(1-X^{g}\right)\right)
\end{aligned}
$$

Step 2. Let I be an ideal of $R[G]$, we claim that I is $4-$ generated. Indeed, (1) Assume M^{2} is a principal ideal and $M^{3}=0$. Then $N^{3}=\left(1-X^{g}\right) N^{2}$, whence by [12, Lemma 2] $\mu(I) \leq \mu\left(I+N^{2}\right)$.

Since N^{2} is 4-generated, we may assume $N^{2} \subset I$. Let $x \in I \backslash N^{2}$. Then $\mu\left(\frac{N}{(x)}\right)=\mu(N)-1=3-1=2$, so that $\frac{N}{(x)}=(\bar{u}, \bar{v})$ or $\frac{N}{(x)}=\left(\bar{u}, \overline{1-X^{g}}\right)$ or $\frac{N}{(x)}=\left(\bar{v}, \overline{1-X^{g}}\right)$, where $N=\left(u, v, 1-X^{g}\right)$. If $\frac{N}{(x)}=(\bar{u}, \bar{v})$, then $(N /(x))^{2}$ is 2-generated since $M^{2}=$ $\left(u^{2}, v^{2}, u v\right)$ is 2 -generated. By [12, Theorem $\left.1,1 \Leftarrow 6\right], R[G] /(x)$ has the 2 -generator property. Hence I is 4-generated.

$$
\text { If } \frac{N}{(x)}=\left(\bar{u}, \overline{1-X^{g}}\right) \text {, then }\left(\frac{N}{(x)}\right)^{2}=\frac{N^{2}+(x)}{(x)} \subseteq \frac{I}{(x)}
$$

We consider separately two cases :

$$
\begin{aligned}
& \text { Assume }\left(\frac{N}{(x)}\right)^{2} \subset \frac{I}{(x)} . \text { Choose } z \in I \text { such that } \\
& \begin{aligned}
& \bar{z} \in \frac{I}{(x)} \backslash\left(\frac{N}{(x)}\right)^{2} . \text { We have } \\
& \mu\left(\frac{N}{(x, z)}\right)=\mu\left(\frac{N /(x)}{(\bar{z})}\right) \\
& \leq \mu\left(\frac{N}{(x)}\right)-1 \\
& \leq 2-1=1 .
\end{aligned}
\end{aligned}
$$

Consequently, $\left(\frac{R[G]}{(x, z)}\right)$ is a principal ideal ring, so that $\left(\frac{I}{(x, z)}\right)$ is a principal ideal, whence I is 4 -generated.

Assume $\left(\frac{N}{(x)}\right)^{2}=\frac{N^{2}+(x)}{(x)}=\frac{I}{(x)}$. Then $I=N^{2}+(x)$, where $N^{2}=\left(\alpha, u\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right)$ and $M^{2}=(\alpha)$. Since $x \in N, x=\lambda u+\mu v+\gamma\left(1-X^{g}\right)$ for some $\lambda, \mu, \gamma \in R[G]$. Moreover, we may assume that γ is not a unit. Hence there exist $\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime} \in R[G]$ such that $x=\lambda^{\prime} u+\mu^{\prime} v+\gamma^{\prime}\left(1-X^{g}\right)^{2}$. Clearly, since $x \notin N^{2}, \lambda^{\prime}$ or μ^{\prime}, say λ^{\prime} is a unit. Since $I=N^{2}+(x)$ we may choose $x=u+\beta v$ for some $\beta \in R[G]$ then $x\left(1-X^{g}\right)=u\left(1-X^{g}\right)+\beta v\left(1-X^{g}\right)$ therefore $I=\left(\alpha, v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}, x\right)$ which is $4-$ generated.

Likewise, for $\frac{N}{(x)}=\left(\bar{v}, \overline{1-X^{g}}\right)$.
From now on, (3) case $1,(3)$ case 2 , and (3) case 3 refer to the three subcases considered in the proof of the "only if" assertion (3).

We first handle (2) and (3) case 1 simultaneous. We have $\mu\left(N^{4}\right) \leq$ 4, then by [2, Lemma 4], $\mu(I) \leq \mu\left(I+N^{3}\right)$. Since N^{3} is 4 -generated, we may assume that $N^{3} \subset I$.

CaseI: Suppose there exists $x \in I \backslash N^{2}$, then $\mu\left(\frac{N}{(x)}\right)=$ $\mu(N)-1=3-1=2$, therefore $\frac{N}{(x)}=(\bar{u}, \bar{v})$ or $\frac{N}{(x)}=\left(\bar{u}, \overline{1-X^{g}}\right)$ or $\frac{N}{(x)}=\left(\bar{v}, \overline{1-X^{g}}\right)$, here $N=\left(u, v, 1-X^{g}\right)$).

If $\frac{N}{(x)}=(\bar{u}, \bar{v})$, using arguments similar to ones used above, we can check that I is 4-generated.

$$
\text { If } \frac{N}{(x)}=\left(\bar{v}, \overline{1-X^{g}}\right),\left(\frac{N}{(x)}\right)^{3}=\frac{N^{3}+(x)}{(x)} \subseteq \frac{I}{(x)} . \mathrm{We}
$$

consider separately two cases:
If $\left(\frac{N}{(x)}\right)^{3} \subset \frac{I}{(x)}$, the proof is similar to that one given in the proof of [2, proposition 3] (see pages 8,9)

$$
\text { If }\left(\frac{N}{(x)}\right)^{3}=\frac{N^{3}+(x)}{(x)}=\frac{I}{(x)}, \text { then } I=N^{3}+(x)
$$

(2) $I=N^{3}+(x)=\left(x, \mu, \alpha\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$.
$x \in N=\left(2, v, 1-X^{g}\right)$ then $x=2 \lambda+\beta v+\gamma\left(1-X^{g}\right)$ for some $\lambda, \beta, \gamma \in R[G]$. Moreover, we may assume that γ is not a unit. Hence there exist $\lambda^{\prime}, \beta^{\prime}, \gamma^{\prime} \in R[G]$, with λ^{\prime} or β^{\prime} is a unit such that $x=$ $2 \lambda^{\prime}+\beta^{\prime} v+\gamma^{\prime}\left(1-X^{g}\right)^{2}$.
If β^{\prime} is a unit, then $v \in\left(2, x, 1-X^{g}\right)$. Therefore $v\left(1-X^{g}\right)^{2} \in$ $\left(2\left(1-X^{g}\right)^{2}, x\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right) \subset\left(4\left(1-X^{g}\right), x,\left(1-X^{g}\right)^{3}\right) \subset$ $\left(\alpha\left(1-X^{g}\right), x,\left(1-X^{g}\right)^{3}\right)$ (see [2, page 6]. Consequently, $I=N^{3}+$ $(x)=\left(x, \mu, \alpha\left(1-X^{g}\right),\left(1-X^{g}\right)^{3}\right)$.
If β^{\prime} is not a unit, then λ^{\prime} is a unit because $x \notin N^{2}$. Now,
$x\left(1-X^{g}\right)=2 \lambda^{\prime}\left(1-X^{g}\right)+\beta^{\prime} v\left(1 \pm X^{g}\right)^{2}+\gamma^{\prime}\left(1-X^{g}\right)^{3}$ then $2\left(1-X^{g}\right) \in$ I. Since $M^{2}=(\alpha) \subset(2), I=\left(x, \mu, 2\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. Finally, since λ^{\prime} is a unit, $I=\left(x, \mu, v\left(1-X^{g}\right)^{2} ;\left(1-X^{g}\right)^{3}\right)$.
(3)case1: $\quad M^{2}$ is not a principal ideal and $\langle g\rangle=Z / 2 Z$. We are in the situation where $\left(\frac{N}{(x)}\right)^{3}=\frac{I}{(x)}$. We have

$$
\begin{aligned}
\frac{N}{(x)} & =\left(\bar{v}, \overline{1-X^{g}}\right) \text { and } \\
\left(\frac{N}{(x)}\right)^{2} & =\left(\overline{v^{2}}, \overline{v\left(1-X^{g}\right)}, \overline{\left(1-\bar{X}^{g}\right)^{2}}\right) \\
\left(\frac{N}{(x)}\right)^{3} & =\left(\overline{v^{3}}, \overline{v^{2}\left(1-X^{g}\right)}, \overline{v\left(1-X^{g}\right)^{2}}, \overline{\left(1-X^{g}\right)^{3}}\right) \\
& =\left(\overline{v^{3}}, \overline{v^{2}\left(1-X^{g}\right)}, \overline{2 v\left(1-X^{g}\right)}, \overline{4\left(1-X^{g}\right)}\right) \\
& =\left(\overline{v^{3}}, \overline{a\left(1-X^{g}\right)}, \overline{b\left(1-X^{g}\right)}\right) \text { where } M^{2}=(a, b)
\end{aligned}
$$

Thus, $\left(\frac{N}{(x)}\right)^{3}$ is 3-generated, and hence so is $\frac{N}{(x)}$. It follows that I is 4-generated.

The argument is similar if $\frac{N}{(x)}=\left(\bar{u}, \overline{1-X^{g}}\right)$.
CaseII: $\quad\left(N^{3} \subset\right) I \subseteq N^{2}$. In this case, we claim that there exists $x \in I \backslash N^{3}$ such that $\mu\left(\left(\frac{N}{(x)}\right)^{3}\right) \leq 3$. Indeed,
(2) We have

$$
\begin{aligned}
N & =\left(2, v, 1-X^{g}\right) \\
N^{2} & =\left(\alpha, 2\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) \\
N^{3} & =\left(\mu, \alpha\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)
\end{aligned}
$$

Let $x \in I \backslash N^{3}, x=a_{x} \alpha+b_{x} 2\left(1-X^{g}\right)+c_{x} v\left(1-X^{g}\right)+d_{x}\left(1-X^{g}\right)^{2}$ for some $a_{x}, b_{x}, c_{x}, d_{x} \in R[G]$, where at least one of $a_{x}, b_{x}, c_{x}, d_{x}$ is a unit.

If a_{x} is a unit, then $\bar{\alpha} \in\left(\overline{2\left(1-X^{g}\right)}, \overline{v\left(1-X^{g}\right)}, \overline{\left(1-X^{g}\right)^{2}}\right)$, whence $\bar{\mu} \in\left(\overline{\alpha\left(1-X^{g}\right)}, \overline{2\left(1-X^{g}\right)^{2}}, \overline{v\left(1-X^{g}\right)^{2}}\right) \subseteq$
$\left(\overline{\alpha\left(1-X^{g}\right)}, \overline{\left(1-X^{g}\right)^{3}}, \overline{v\left(1-X^{g}\right)^{2}}\right)$. So that $\left(\frac{N}{(x)}\right)^{3}=\frac{N^{3}+(x)}{(x)}$ $=\left(\overline{\alpha\left(1-X^{g}\right)}, \overline{\left(1-X^{g}\right)^{3}}, \overline{v\left(1-X^{g}\right)^{2}}\right)$.

If c_{x} is a unit, then $\overline{v\left(1-X^{g}\right)} \in\left(\overline{2\left(1-X^{g}\right)}, \bar{\alpha}, \overline{\left(1-X^{g}\right)^{2}}\right)$, whence $\overline{v\left(1-X^{g}\right)^{2}} \in\left(\overline{2\left(1-X^{g}\right)^{2}}, \overline{\alpha\left(1-X^{g}\right)}, \overline{\left(1-X^{g}\right)^{3}}\right) \subseteq$
$\left(\overline{\alpha\left(1-X^{g}\right)}, \overline{\left(1-X^{g}\right)^{3}}\right)$. Therefore $\left(\frac{N}{(x)}\right)^{3}=\frac{N^{3}+(x)}{(x)}=$
$\left(\bar{\mu}, \overline{\alpha\left(1-\overline{X^{g}}\right)}, \overline{\left(1-X^{g}\right)^{3}}\right)$.
If d_{x} is a unit, then $\overline{\left(1-X^{g}\right)^{2}} \in\left(\overline{2\left(1-X^{g}\right)}, \bar{\alpha}, \overline{v\left(1-X^{g}\right)}\right)$, whence $\overline{v\left(1-X^{g}\right)^{2}} \in\left(\bar{\mu}, \overline{\alpha\left(1-X^{g}\right)}\right)$. Hence

$$
\left(\frac{N}{(x)}\right)^{3}=\frac{N^{3}+(x)}{(x)}=\left(\bar{\mu}, \overline{\alpha\left(1-X^{g}\right)}, \overline{\left(1-X^{g}\right)^{3}}\right)
$$

Otherwise, for each $x \in I \backslash N^{3}, a_{x}, c_{x}$, and d_{x} are not units, Necessarily, b_{x} is a unit. It follows that $2\left(1-X^{g}\right) \in I \backslash N^{3}$.

$$
\begin{aligned}
\left(\frac{N}{\left(2\left(1-X^{g}\right)\right)}\right)^{3} & =\frac{N^{3}+\left(2\left(1-X^{g}\right)\right)}{\left(2\left(1-X^{g}\right)\right)} \\
& =\frac{\left(\mu, \alpha\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}, 2\left(1-X^{g}\right)\right)}{\left(2\left(1-X^{g}\right)\right)}
\end{aligned}
$$

Since $M^{2}=(\alpha) \subset(2)$, then

$$
\left(\frac{N}{\left(2\left(1-X^{g}\right)\right)}\right)^{3}=\left(\bar{\mu}, \overline{v\left(1-X^{g}\right)^{2}}, \overline{\left(1-X^{g}\right)^{3}}\right)
$$

(3) casel: We have

$$
\begin{aligned}
N & =\left(u, v, 1-X^{g}\right) \\
N^{2} & =\left(a, b, u\left(1-X^{g}\right), v\left(1-X^{g}\right)\right) \text { where } M^{2}=(a, b) \\
N^{3} & =\left(a^{\prime}, b^{\prime}, a\left(1-X^{g}\right), \dot{b}\left(1-X^{g}\right)\right) \text { where } M^{3}=\left(a^{\prime}, b^{\prime}\right)
\end{aligned}
$$

Let $x \in I \backslash N^{3}$. Clearly, $x=a_{x} a+b_{x} b+c_{x} u\left(1-X^{g}\right)+d_{x} v\left(1-X^{g}\right)$ for some $a_{x}, b_{x}, c_{x}, d_{x} \in R[G]$, where at least one of $a_{x}, b_{x}, c_{x}, d_{x}$ is a unit. In each case, one may verify that $\mu\left(\left(\frac{N}{(x)}\right)^{3}\right) \leq 3$ (Assume $a \in\left\{u^{2}, u v\right\}$ and $b=v^{2}$).

We get

$$
\begin{aligned}
\mu\left(\frac{I}{(x)}\right) & \leq \mu\left(\frac{I}{(x)}+\left(\frac{N}{(x)}\right)^{2}\right)=\mu\left(\frac{I+N^{2}}{(x)}\right) \text { by }[2, \text { Lemma 4] } \\
& =\mu\left(\frac{N^{2}}{(x)}\right) \text { since } I \subseteq N^{2} ; \\
& \leq 3 \text { since } x \in N^{2} \backslash N^{3} \text { and } N^{2} \text { is 4-generated }
\end{aligned}
$$

Consequently, I is 4-generated.
(3) cases 2 and 3: We have $\mu\left(N^{3}\right) \leq 3$, then by [2, Lemma 4], $\mu(I) \leq \mu\left(I+N^{2}\right)$.
Since N^{2} is 4 -generated, we can assume that $N^{2} \subset I$. We ape the proof of (1) (page 7) to reach the desired conclusion when $\left(\frac{N}{(x)}\right)^{2} \subset$ $\frac{I}{(x)}$. Otherwise, $I=N^{2}+(x)$ is 4-generated because in (3) cases 2 and $3, N^{2}$ is 3 -generated. \diamond

PROPOSITION 2 Assume G is a non trivial finite 3-group, (R, M) is an Artinian local ring with the 2-generator property but R is not a principal ideal ring, and that $3 \in M$. Then $R[G]$ has the $4-$ generator property if and only if
(a) G is a cyclic group.
$\left(b_{1}\right)$ When M^{2} is a principal ideal and $M^{3} \neq 0$ then (α_{1}) If $3 \in M^{2}$, then $G \cong Z / 3 Z$ and M^{3} is a principal ideal. (α_{2}) If $3 \in M \backslash M^{2}$, then $G \cong Z / 3^{i} Z$ with $1 \leq i \leq 2$, moreover, if $9 \in M^{3}$ then $G \cong Z / 3 Z$.
$\left(b_{2}\right)$ When M^{2} is not a principal ideal, then $3 \notin M^{2}, G \cong Z / 3 Z$, moreover, if $M^{3} \neq 0$ and $M^{2} \not \subset(3)$ then M^{3} is a principal ideal and
$\left(\theta_{1}\right)$ If $9 \in M^{2} \backslash M^{3}$ then $M^{3} \subset(9)$.
$\left(\theta_{2}\right)$ If $9 \in M^{3}$ then $M^{3}=3 M^{2}$.
Proof. $\quad \Rightarrow$] (a) Assume that G is not a cyclic group and $R[G]$ has the 4-generator property. Necessarily, the homomorphic image $R[Z / p Z \oplus Z / p Z]$ does also, when $\mathrm{p}=3$. Then N^{2} is 4 -generated, where $N=\left(u, v, 1-X^{g}, 1-X^{h}\right), M=(u, v)$, and $\langle g\rangle \oplus\langle h\rangle=$ $Z / p Z \oplus Z / p Z$.
$N^{2}=\left(u^{2}, v^{2}, u v, u\left(1-X^{g}\right), v\left(1-X^{g}\right), u\left(1-X^{h}\right), v\left(1-X^{h}\right),(1-\right.$ $\left.\left.X^{g}\right)\left(1-X^{h}\right),\left(1-X^{g}\right)^{2},\left(1-X^{h}\right)^{2}\right)$.

Since $|<g>|=3$, via [1, Lemma 1.4], it is easy to verify that N^{2} needs more than four generators. Thus $G=Z / p^{m} Z$, with $m \geq 1$.
$\left(b_{1}\right)$ Assume $M^{2}=(\alpha)$ is a principal ideal and $M^{3} \neq 0$.
(α_{1}) Suppose $p=3 \in M^{2}$. If $G=Z / p^{m} Z$ with $m>1$, we claim that N^{3} is not 4-generated in $R\left[Z / p^{m} Z\right]$ where $N=\left(u, v, 1-X^{g}\right)$, $M=(u, v)$, and $<g>=Z / p^{m} Z$.
We have $N^{2}=\left(\alpha, u\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right)$ and $N^{3}=$ $\left(\alpha u, \alpha v, \alpha\left(1-X^{g}\right), u\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$.
By [1, Lemma 1.7], $u\left(1-X^{g}\right)^{2}$ and $v\left(1-X^{g}\right)^{2}$ are required as generators of N^{3}.
Since $|<g>|>3$ it is clear that $\left(1-X^{g}\right)^{3}$ is required as generator of N^{3}.

If $\alpha\left(1-X^{g}\right)$ is a redundant generator of N^{3}, then passing to the hommorphic image $R / M^{3}[<g>]$, yields $\alpha\left(1-X^{g}\right) \in(1-$ $\left.X^{g}\right)^{2} R / M^{3}[<g>]$. By [1, Lemma 1.4] $\alpha=\lambda p^{m}$ for some $\lambda \in$ R / M^{3}. It follows that $\alpha=0$ in R / M^{3}. That is, $M^{2}=(\alpha)=0$, a contradiction. Further, $\alpha \mathrm{u}$ or $\alpha \mathrm{v}$ is required as a generator of N^{3}, since $M^{3} \neq 0$.

Now, suppose M^{3} is not a principal ideal and $G=Z / 3 Z$.
By [1, Lemma 1.7] and the fact that M^{3} is not a principal ideal, we can easily check that $\alpha u, \alpha v, u\left(1-X^{g}\right)^{2} a n d v\left(1-X^{g}\right)^{2}$ are required as generators of N^{3}, then, if N^{3} is 4-generated, necessarly, $N^{3}=$ $\left(\alpha u, \alpha v, u\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2}\right)$. Further $|<g>|=3$ and $3 \in M^{2}$, $\alpha\left(1-X^{g}\right) \notin\left(\alpha u, \alpha v, u\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2}\right)$. Then N^{3} needs more than four generators.
$\left(\alpha_{2}\right)$ Suppose $p=3 \in M \backslash M^{2}$. Let's show that N^{3} is not 4-generated in $R\left[Z / p^{3} Z\right]$.
We have:
$N=\left(p, v, 1-X^{g}\right)$ and $N^{3}=\left(p \alpha, v \alpha, \alpha\left(1-X^{g}\right), p\left(1-X^{g}\right)^{2}, v(1-\right.$ $\left.\left.X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$.

Since $|\langle g\rangle|=p^{3}>3$ and $M=(p, v)$ is not a principal ideal, by [1, Lemma 1.4 and Lemma 1.7], $\alpha\left(1-X^{g}\right), p\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2}$, and $\left(1-X^{g}\right)^{3}$ are required as generators of N^{3}. Furthermore, since $M^{3} \neq 0$, it is clear that N^{3} needs more than four generators. It follows that $G=Z / p^{i} Z$ with $1 \leq i \leq 2$, as desired.

Suppose in addition that $p^{2}=9 \in M^{3}$. Using the arguments similar to ones used above, it is easy to verify that $p\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2}$,
and $\left(1-X^{g}\right)^{3}$ must appear in a party of four generators extracted from the original set of generators of N^{3}. Furthermore, if $\alpha\left(1-X^{g}\right)$ is redundant, then $\alpha\left(1-X^{g}\right) \in\left(p \alpha, \alpha v, p\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2},(1-\right.$ $\left.X^{g}\right)^{3}$), whence passing to the homomorphic image $R / M^{3}[\langle g\rangle]$, we get $\alpha\left(1-X^{g}\right) \in\left(1-X^{g}\right)^{2} R / M^{3}[<g>]$. By [1, Lemma 1.4], $\alpha=\lambda p^{2}=0$ for some $\lambda \in R / M^{3}$, a contradiction ($M^{3} \neq 0$). Thus, $G=Z / p Z$, as desired.
(b_{2}) Assume M^{2} is not a principal ideal. one may easily show that N^{2} is not 4-generated neither if $\langle g\rangle=Z / 9 Z$ nor if $3 \in M^{2}$ and $\langle g\rangle=Z / 3 Z$. Necessarily, $3 \in M \backslash M^{2}$ and $\langle g\rangle=Z / 3 Z$.

Set $p=3$. Assume in addition $M^{3} \neq 0$ and $M^{2} \not \subset(p)$. we claim that M^{3} is a principal ideal. Deny. Let $N=\left(p, v, 1-X^{g}\right)$ and $<g>=Z / p Z$. Clearly, $N^{3}=\left(a^{\prime}, b^{\prime}, a\left(1-X^{g}\right), b\left(1-X^{g}\right), p(1-\right.$ $\left.\left.X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$, where $M^{2}=(a, b)$ and $M^{3}=\left(a^{\prime}, b^{\prime}\right)=$ $\left(p^{3}, p^{2} v, p v^{2}, v^{3}\right)$. Further, $M^{2}=(a, b)=\left(v^{2}, p^{2}, p v\right)$, since $M^{2} \not \subset$ (p), we can take $a=v^{2}$ and $b \in\left\{p^{2}, p v\right\}$. Then $N^{3}=\left(a^{\prime}, b^{\prime},(1-\right.$ $\left.\left.X^{g}\right)^{3}, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2}\right)$.

Since M^{3} is not a principal ideal, by [1, Lemma 1.4 and Lemma 1.7], $\mathrm{a}^{1}, \mathrm{~b}^{1}, v^{2}\left(1-X^{g}\right)$, and $v\left(1-X^{g}\right)^{2}$ are required as generators of N^{3}. Since N^{3} is 4 -generated, then $\left(1-X^{g}\right)^{3}=-3 X^{g}\left(1-X^{g}\right) \in$ $\left(a^{\prime}, b^{\prime}, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2}\right)($ Here $\mathrm{p}=3)$. By passing to the homomorphic image $R /(v)[<g>]$, we obtain that $3 \in(27, v)$. It follows that $M=(3, v)=(v)$ since R is Artinian, a contradiction. Consequently, $M^{3}=(\mu)$ is a principal ideal.

Let $I=\left(v^{3}, b, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$.
Since $|<g>|>3$ and $b \notin M^{3}$ (R Artinian and M^{2} not principal), it is clear that b and $\left(1-X^{g}\right)^{3}$ are required as generators of I.

If $v\left(1-X^{g}\right)^{2}$ is redundant, then by passing to the homomorphic image $R / M^{2}[<g>$], and by using [1, Lemma 1.7], we get $v=\lambda p$ for some $\lambda \in R / M^{2}$. Hence, $v \in\left(p, v^{2}\right)$. Therefore $M=(p, v)=$ $\left(p, v^{2}\right)=\cdots=(p)$, a contradiction.

If $v^{2}\left(1-X^{g}\right)$ is redundant, then passing to the homomorphic image $R /\left(v^{3}, b\right)[<g>]$ yields $v^{2}\left(1-X^{g}\right) \in\left(1-X^{g}\right)^{2} R /\left(v^{3}, b\right)[<$ $g>]$. By [1, Lemma 1.4], we have $v^{2}=\lambda p$ for some $\lambda \in R /\left(v^{3}, b\right)$. Similarly, $\left(p, v^{2}\right)=\left(p, v^{3}\right)=\cdots=(p)$, whence $M^{2}=\left(p^{2}, v^{2}, p v\right) \subset$ (p), a contradiction.
Thus $I=\left(b, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. Further, $v^{3} \in I$, by passing to the homomorphic image $R[<g>] /\left(1-X^{g}\right) \cong R$, we
obtain that $v^{3} \in(b)$.
$\left(\theta_{1}\right)$ If $p^{2} \in M^{2} \backslash M^{3}$, we may assume $b=p^{2}$.
$M^{3}=\left(p^{3}, p^{2} v, p v^{2}, v^{3}\right)$. Since $p v \in\left(p^{2}, v^{2}\right)$ then $p v^{2} \in\left(v^{3}, p^{2} v\right)$. Therefore $M^{3} \subset\left(p^{2}\right)$, as desired.
$\left(\theta_{2}\right)$ If $p^{2} \in M^{3}$, we may assume $b=p v$. We have $M^{2}=\left(v^{2}, p v\right)=$ $v M$ so that $M^{3}=v^{2} M=\left(v^{3}, p v^{2}\right)$. Since $v^{3} \in(b)=(p v)$ and $p v \notin$ M^{3}, then $v^{3} \in\left(p^{2} v, p v^{2}\right)$. Therefore $M^{3}=\left(p v^{2}, p^{2} v\right)=p\left(v^{2}, p v\right)=$ $p M^{2}$, as desired.
$\Leftrightarrow \quad$ Now, $R[G]$ is a local ring with maximal ideal $N=(u, v, 1-$ X^{g}) where u and v are the generators of M and g is a generator of the cyclic group G.

Step 1. We claim that N, N^{2}, N^{3}, and N^{4} are 4-generated. Indeed,
$\left(b_{1}\right)$ Assume $M^{2}=(\alpha)$ is a principal ideal. If $M^{3}=0$, then the proof is straightforward (see the case $\mathrm{p}=2$).
In the sequel, we suppose $M^{3} \neq 0$.
α_{1}) Assume $3 \in M^{2}, G=Z / 3 Z$, and $M^{3}=(\mu)$ is a principal ideal. We easily check that

$$
\begin{aligned}
N & =\left(u, v, 1-X^{g}\right) ; \\
N^{2} & =\left(\alpha, u\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) ; \\
N^{3} & =\left(\mu, \alpha\left(1-X^{g}\right), u\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2}\right) ; \\
N^{4} & =\left(\alpha^{2}, \mu\left(1-X^{g}\right), \alpha\left(1-X^{g}\right)^{2}\right)
\end{aligned}
$$

(α_{2}) Assume $p=3 \in M \backslash M^{2}$ and $G \cong Z / p^{i} Z, 1 \leq i \leq 2$. Since M^{2} is a principal ideal, it is easy to verify that $M^{3}=(\mu)$ is a principal ideal.

Suppose $p^{2}=9 \in M^{2} \backslash M^{3}$. Clearly $M^{2}=\left(p^{2}\right)$.

$$
\begin{aligned}
1= & \left(1-X^{g}+X^{g}\right)^{p^{2}} \\
= & \sum_{i=o}^{i=p^{2}}\binom{p^{2}}{i}\left(1-X^{g}\right)^{i} X^{\left(p^{2}-i\right) g} \\
= & 1+p^{2}\left(1-X^{g}\right) X^{\left(p^{2}-1\right) g}+\frac{p^{2}\left(p^{2}-1\right)}{2}\left(1-X^{g}\right)^{2} X^{\left(p^{2}-2\right) g} \\
& +\left(1-X^{g}\right)^{3}\left(\sum_{i=3}^{i=p^{2}}\binom{p^{2}}{i}\left(1-X^{g}\right)^{(i-3)} X^{\left(p^{2}-i\right) g}\right)
\end{aligned}
$$

Then $p^{2}\left(1-X^{g}\right) \in\left(p^{2}\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right) \subset\left(\left(1-X^{g}\right)^{3}\right)$. Therefore,

$$
\begin{aligned}
N & =\left(p, v, 1-X^{g}\right) ; \\
N^{2} & =\left(p^{2}, p\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) ; \\
N^{3} & =\left(\mu, p\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right) ; \\
N^{4} & =\left(p^{4}, \mu\left(1-X^{g}\right), p\left(1-X^{g}\right)^{3}, v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)
\end{aligned}
$$

We have $M^{3}=(\mu) \subset M^{2}=\left(p^{2}\right)$, whence $\mu \in\left(p^{3}, p^{2} v\right)$ since $p^{2} \notin M^{3}$. Therefore $\mu\left(1-X^{g}\right) \in\left(p^{3}\left(1-X^{g}\right), p^{2} v\left(1-X^{g}\right)\right) \subset$ $\left(p\left(1-X^{g}\right)^{3}, v\left(1-X^{g}\right)^{3}\right)$. It results that
$N^{4}=\left(p^{4}, p\left(1-X^{g}\right)^{3}, v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$
Suppose $9 \in M^{3}$ and $G=Z / 3 Z$. Clearly,

$$
\begin{aligned}
N & =\left(3, v, 1-X^{g}\right) ; \\
N^{2} & =\left(\alpha, v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) ; \\
N^{3} & =\left(\mu, \alpha\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2}, 3\left(1-X^{g}\right)\right) ; \\
N^{4} & =\left(\alpha^{2}, \mu\left(1-X^{g}\right), \alpha\left(1-X^{g}\right)^{2}, 3\left(1-X^{g}\right)^{2}\right)
\end{aligned}
$$

(b_{2}) Set $p=3$. Assume $M^{2}=(a, b)$ is not a principal ideal, $p \notin M^{2}$, and $G=Z / p Z$. Clearly,

$$
\begin{aligned}
N & =\left(p, v, 1-X^{g}\right) ; \\
N^{2} & =\left(a, b, v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right)
\end{aligned}
$$

If $M^{3}=0$, then

$$
\begin{aligned}
& N^{3}=\left(a\left(1-X^{g}\right), b\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)=\left(1-X^{g}\right) N^{2} ; \\
& \left.N^{4}=\left(1-X^{g}\right)^{2} N^{2} \text { (Recall that } p\left(1-X^{g}\right) \in\left(1-X^{g}\right)^{3}\right)
\end{aligned}
$$

In the sequel, we suppose $M^{3} \neq 0$.
If $M^{2} \subset(p)$, then $M^{2}=\left(p^{2}, p v\right)\left(p \notin M^{2}\right)$, whence $N^{3}=$ $\left(p^{3}, p^{2} v, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$ and $N^{4}=\left(p^{4}, p^{3} v, v\left(1-X^{g}\right)^{3},(1-\right.$ $\left.\left.X^{g}\right)^{4}\right)$, since $p\left(1-X^{g}\right) \in\left(\left(1-X^{g}\right)^{2}\right)$.

Now, assume $M^{2} \not \subset(p)$ and $M^{3}=(\mu)$ is a principal ideal. We may assume $a=v^{2}$ and $b \in\left\{p v, p^{2}\right\}$.

It is easily seen that $N^{3}=\left(\mu, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. It remains to show that N^{4} is 4 -generated.

If $p^{2} \in M^{3}$ and $M^{3}=p M^{2}$, then $M^{4}=p^{2} M^{2} \subset M^{5}$, whence $M^{4}=0$. Therefore $N^{4}=\left(\mu\left(1-X^{g}\right), v^{2}\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{3},(1-\right.$
$\left.\left.X^{g}\right)^{4}\right)$.

If $p^{2} \in M^{2} \backslash M^{3}$ and $M^{3} \subset\left(p^{2}\right)$, since M^{3} is a principal ideal, it is easy to verify that $\left(M^{4}=(\gamma)\right)$ is a principal ideal. So that $\dot{N}^{4}=\left(\gamma, \mu\left(1-X^{g}\right), v^{2}\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$.

Since $p\left(1-X^{g}\right) \in\left(\left(1-X^{g}\right)^{2}\right)$ and $\mu \in\left(p^{3}, p^{2} v\right)\left(M^{3}=(\mu) \subset\right.$ $\left(p^{2}\right)$), then $\mu\left(1-X^{g}\right) \in\left(v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$. Therefore $N^{4}=$ $\left(\gamma, v^{2}\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$.

Step 2. Let I be an ideal of $R[G]$, we claim that I is 4-generated.
deed, Indeed,
If $M^{3}=0$, then the proof is similar to the one given for $\mathrm{p}=2$.
If $M^{3} \neq 0$, as in the proof of Proposition 1 (cases (2) and (3) case1), we may assume $N^{3} \subset I$.

CaseI: Suppose that there exists $x \in I \backslash N^{2}$. Via the proof of Proposition 1, it suffices to consider the case $I=N^{3}+(x)$.
$\left(b_{1}\right)$ Assume $M^{2}=(\alpha)$ is a principal ideal and $M^{3} \neq 0$.
(α_{1}) We got from step 1 that $N^{3}=\left(\mu, \alpha\left(1-X^{g}\right), u\left(1-X^{g}\right)^{2}, v(1-\right.$ $\left.\left.X^{g}\right)^{2}\right)$. Since $x \in N=\left(u, v, 1-X^{g}\right), x=\lambda u+\beta v+\gamma\left(1-X^{g}\right)$ for $\stackrel{\text { some }}{N} \lambda, \beta, \gamma \in R[G]$, where λ or β or γ is a unit. If γ is a unit, $\frac{N}{(x)}=(\bar{u}, \bar{v})$. We conclude in the same way as in the case $\mathrm{p}=2$ step 2 page 7 .

If γ is not a unit, necessarily, λ or β is a unit, say λ. Clearly, $u \in\left(x, v, 1-X^{g}\right)$, then $u\left(1-X^{g}\right)^{2} \in\left(x, v\left(1-X^{g}\right)^{2}, 3\left(1-X^{g}\right)\right) \subset$ $\left(x, v\left(1-X^{g}\right)^{2}, \alpha\left(1-X^{g}\right)\right)$, since $|<g>|=3$ and $3 \in M^{2}$. Therefore $I=\left(x, \mu, v\left(1-X^{g}\right)^{2}, \alpha\left(1-X^{g}\right)\right)$.
(α_{2}) Assume $p=3 \in M \backslash M^{2}$ and $p^{2} \in M^{2} \backslash M^{3}$. We got from step1 that $N^{3}=\left(\mu, p\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. Since $x \in N=\left(p, v, 1-X^{g}\right), x=\lambda p+\beta v+\gamma\left(1-X^{g}\right)$, where λ or β or γ is a unit ($x \notin N^{2}$). In each case, it is easy to verify that $I=N^{3}+(x)$ is 4-generated.

Now, assume $9 \in M^{3}$ and $G=Z / 3 Z$. If $M^{2} \subset(3)$, we are done via [1, Proposition 2.1]. Let's suppose $M^{2} \not \subset(3)$. We have $N^{3}=\left(\mu, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2}, 3\left(1-X^{g}\right)\right)$. Since $x \in N \backslash N^{2}$, $x=3 \lambda+\beta v+\gamma\left(1-X^{g}\right)$ for some $\lambda, \beta, \gamma \in R[G]$, with λ or β or γ is a unit. The cases in which β or γ is a unit are straightforward.

We assume then that β and γ are not units. Then $x=3 \lambda^{\prime}+\beta^{\prime} v^{2}+$ $\mu^{\prime} v\left(1-X^{g}\right)+\gamma^{\prime}\left(1-X^{g}\right)^{2}$ for some $\lambda^{\prime}, \beta^{\prime}, \mu^{\prime}, \gamma^{\prime} \in R[G]$. Clearly, λ^{\prime} is a unit. Therefore $x\left(1-X^{g}\right)=3 \lambda^{\prime}\left(1-X^{g}\right)+\beta^{\prime} v^{2}\left(1-X^{g}\right)+\mu^{\prime} v(1-$ $\left.X^{g}\right)^{2}+\gamma^{\prime}\left(1-X^{g}\right)^{3}$.

If μ^{\prime} or β^{\prime} is a unit, it is easy to see that $I=\left(x, \mu, v^{2}\left(1-X^{g}\right), 3(1-\right.$ $\left.X^{g}\right)$) or $I=\left(x, \mu, v\left(1-X^{g}\right)^{2}, 3\left(1-X^{g}\right)\right)$.

If μ^{\prime} and β^{\prime} are not units, since $I=N^{3}+(x)$, we can take $x=3 \lambda^{\prime}+\gamma^{\prime}\left(1-X^{g}\right)^{2}$. Furthermore, if γ^{\prime} is not a unit, we may take $x=3$, whence $I=\left(3, \mu, \dot{v}^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2}\right)$. If γ^{\prime} is a unit, then $\left(1-X^{g}\right)^{2} \in(3, x)$, hence $v\left(1-X^{g}\right)^{2} \in(3 v, x) \subset(\mu, x)$ since $3 v \in M^{3}=(\mu)$ (Recall M^{2} is a principal ideal and $\left.M^{2} \not \subset(3)\right)$. Thus, $I=\left(x, \mu, v^{2}\left(1-X^{g}\right), 3\left(1-X^{g}\right)\right)$.
$\left(b_{2}\right)$ Assume M^{2} is not a principal ideal, $p=3 \notin M^{2}$ and $G=$ $Z / p Z$.

If $M^{2} \subset(p)$, we have $N^{3}=\left(p^{3}, p^{2} v, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. Since, $p\left(1-X^{g}\right) \in\left(\left(1-X^{g}\right)^{3}\right)$, we easily show that $I=N^{3}+(x)$ is 4-generated.

If $M^{2} \not \subset(p)$, we have $N^{3}=\left(\mu, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. Similarly, $x=\lambda p+\beta v+\gamma\left(1-X^{g}\right)$ for some $\lambda, \beta, \gamma \in R[G]$, with λ or β or γ is a unit. We can assume that β and γ are not units, hence, there exist $\lambda^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime} \in R[G]$ such that $x=\lambda^{\prime} p+\beta^{\prime} v^{2}+\gamma^{\prime} v(1-$ $\left.X^{g}\right)+\delta^{\prime}\left(1-X^{g}\right)^{2}$, where λ^{\prime} is a unit.

If β^{\prime} or γ^{\prime} is a unit, it is easy to verify that $I=(x)+N^{3}$ is 4-generated.

If β^{\prime} and γ^{\prime} are not units, since $I=(x)+N^{3}$, we can suppose that $x=\lambda^{\prime} p+\delta^{\prime}\left(1-X^{g}\right)^{2}$, whence $p^{2} \in\left(x, p\left(1-X^{g}\right)^{2}\right) \subset(x,(1-$ $\left.X^{g}\right)^{3}$) and $p v \in\left(x, v\left(1-X^{g}\right)^{2}\right)$. Furtheremore, under the present hypotheses, one may check that $M^{3}=(\mu) \subset(b)$ where $b \in\left\{p^{2}, p v\right\}$. Hence, $\mu \in\left(x, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. Therefore $I=\left(x, v^{2}(1-\right.$ $\left.\left.X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$.

CaseII Suppose $\left(N^{3} \subset\right) I \subseteq N^{2}$. Using step1 and arguments similar to ones used above, we show that there exists $x \in I \backslash N^{3}$ such that $\mu\left(\left(\frac{N}{(x)}\right)^{3}\right) \leq 3$.

Actually, it remains to handle the following case : Assume M^{2} is not principal, $p=3 \notin M^{2},<g>=Z / p Z, M^{3}=(\mu)$ is a nonzero principal ideal, and $M^{2} \not \subset(p)$. we got by step1 that $N^{2}=$ $\left(v^{2}, b, v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right)$, and $N^{3}=\left(\mu, v^{2}\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},(1-\right.$
$\left.X^{g}\right)^{3}$), where $b \in\left\{p^{2}, p v\right\}$. Let $x \in I \backslash N^{3}, x=a_{x} v^{2}+b_{x} b+c_{x} v(1-$ $\left.X^{g}\right)+d_{x}\left(1-X^{g}\right)^{2}$ for some $a_{x}, b_{x}, c_{x}, d_{x} \in R[G]$, with a_{x} or b_{x} or c_{x} or d_{x} is a unit.
If a_{x} or c_{x} or d_{x} is a unit, easily we check that $\mu\left(\left(\frac{N}{(x)}\right)^{3}\right) \leq 3$. Otherwise, since b_{x} is a unit, $x \notin N^{3}$, and hence $b \in(x)+N^{3}$. Therefore $N^{3}+(x)=N^{3}+(b)$. Since $b \notin N^{3}$ and $M^{3}=(\mu) \subset(b)$, then $\mu\left(\frac{N}{(b)}\right)^{3}=\mu\left(\frac{N^{3}+(b)}{(b)}\right) \leq 3$.

By the same proof for $p=2$, we claim that I is 4 -generated. \diamond
PROPOSITION 3 Assume that G is a non trivial finite $p-g r o u p$, (R, M) is an Artinian local ring with the 2-generator property but R is not a principal ideal ring and that $p \in M$. Then $R[G]$ has the 4-generator property if and only if
(a) G is a cyclic group.
(b_{1}) When M^{2} is a principal ideal and $M^{3} \neq 0$ then (α_{1}) If $p \in M^{2}$, then $G \cong Z / p Z, p \notin M^{3}$, and M^{3} is a principal ideal.
(α_{2}) If $p \in M \backslash M^{2}$, then $G \cong Z / p^{i} Z$ with $1 \leq i \leq 2$, moreover, if $p^{2} \in M^{3}$ then $G \cong Z / p Z$ and either $M^{2} \subset(p)$ or $M^{3} \subset(p)$.
(b_{2}) When M^{2} is not a principal ideal, then $p \notin M^{2}, G \cong Z / p Z$, moreover, if $M^{3} \neq 0$ and $M^{2} \not \subset(p)$ then M^{3} is a principal ideal and
(θ_{1}) If $p^{2} \in M^{2} \backslash M^{3}$ then $M^{3} \subset\left(p^{2}\right)$.
(θ_{2}) If $p^{2} \in M^{3}$ then $M^{3}=p M^{2}$.
Proof of Proposition 3. It is almost similar to the proof of Proposition 2. Here the main fact is that $|<g\rangle \mid=p>3$. The remaining two cases are : $\left(\alpha_{1}\right)$ and (α_{2}) when $p^{2} \in M^{3}$.
\Rightarrow] $\left(\alpha_{1}\right)$ Assume $p \in M^{2}$. If M^{3} is not a principal ideal or $p \in M^{3}$ or $G=Z / p^{m} Z$ with $m>1$, by the same proof given for Proposition $2\left(\alpha_{1}\right)$ we verify that N^{3} is not 4 -generated in $R\left[Z / p^{m} Z\right]$ where $N=\left(u, v, 1-X^{g}\right), M=(u, v)$, and $\langle g\rangle=Z / p^{m} Z$.
(α_{2}) Assume $p \in M \backslash M^{2}$ and $p^{2} \in M^{3}$. Necessarily, $\langle g\rangle=$ $Z / p Z$. Let's suppose $M^{2} \not \subset(p)$ and $M^{3} \not \subset(p)$. Let $I=(p, \mu(1-$ $\left.\left.X^{g}\right), \alpha\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$.

Since $p \in M \backslash M^{2}$ and $|<g\rangle \mid>4$, then p and $\left(1-X^{g}\right)^{4}$ are required as generators of I.

If $v\left(1-X^{g}\right)^{3}$ is redundant then by passing to the homomorphic image $R /(\alpha, p)[<g>]$, we obtain that $v\left(1-X^{g}\right)^{3} \in(1-$ $\left.X^{g}\right)^{4} R /(\alpha, p)[<g>]$, and whence $v\left(1-X^{g}\right)^{p-1}=0$ in $R /(\alpha, p)[<$ $g>]$. Therefore $M=(p, v)=\left(p, v^{2}\right)=\cdots \cdots=(p)$, a contradiction.

If $\mu\left(1-X^{g}\right)$ is a redundant generator then by passing to the homomorphic image $R /(p)[<g \cdot>]$, we obtain that $\mu\left(1-X^{g}\right) \in$ $\left(1-X^{g}\right)^{2} R /(p)[<g>]$. By [1, Lemma 1.4], we get $\mu=\lambda p$ for some $\lambda \in R /(p)$. Hence $M^{3}=(\mu) \subset(p)$, a contradiction.

If $\alpha\left(1-X^{g}\right)^{2}$ is redundant, then by passing to the homomorphic image $R /(p, \mu)[<g>]$, we obtain that $\alpha\left(1-X^{g}\right)^{2} \in(1-$ $\left.X^{g}\right)^{3} R /(p, \mu)[<g>]$. By [1, Lemma 1.7], we get $\alpha=\lambda p$ for some $\lambda \in R /(p, \mu)$, whence $v^{2} \in\left(p, v^{3}\right)$. Hence $\left(p, v^{2}\right)=\left(p, v^{3}\right)=\cdots=$ (p), so that $M^{2}=\left(v^{2}, p^{2}, p v\right) \subset(p)$, a contradiction.

Consequently, I is not 4-generated.
$\Leftrightarrow \quad$ Now, we know that $R[G]$ is a local ring with maximal ideal $N=\left(u, v, 1-X^{g}\right)$, where u and v are the generators of M and g is a generator of the cyclic group G.

Step : 1. We claim that N, N^{2}, N^{3}, and N^{4} are 4-generated. Indeed,
α_{1}) Assume $p \in M^{2}, G=Z / p Z, p \notin M^{3}$, and M^{3} is a principal ideal. Necessarily, $M^{2}=(p)$.

Since $p\left(1-X^{g}\right) \in\left(\left(1-X^{g}\right)^{3}\right)$, we get

$$
\begin{aligned}
N & =\left(u, v, 1-X^{g}\right) ; \\
N^{2} & =\left(p, u\left(1-X^{g}\right), v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) ; \\
N^{3} & =\left(\mu, u\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right) ; \\
N^{4} & =\left(p^{2}, u\left(1-X^{g}\right)^{3}, v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right) .
\end{aligned}
$$

(α_{2}) Assume $p \in M \backslash M^{2}, p^{2} \in M^{3}, G \cong Z / p Z$, and either $M^{2} \subset(p)$ or $M^{3} \subset(p)$. We have

$$
\begin{aligned}
N & =\left(p, v, 1-X^{g}\right) ; \\
N^{2} & =\left(\alpha, v\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) \text { where } M^{2}=(\alpha) ; \\
N^{3} & =\left(\mu, \alpha\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right) \text { where } M^{3}=(\mu) ; \\
N^{4} & =\left(\alpha^{2}, \mu\left(1-X^{g}\right), \alpha\left(1-X^{g}\right)^{2}, v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)
\end{aligned}
$$

If $M^{2} \subset(p)$ then $\alpha\left(1-X^{g}\right) \in\left(p^{2}\left(1-X^{g}\right), p v\left(1-X^{g}\right)\right) \subset(v(1-$ $\left.\left.X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$, whence $N^{4}=\left(\alpha^{2}, \mu\left(1-X^{g}\right), v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$.

If $M^{3} \subset(p)$. Since $p \in M \backslash M^{2}, \mu \in\left(p^{2}, p v\right)$. Further, $p^{2}(1-$ $\left.X^{g}\right) \in\left(\left(1-X^{g}\right)^{4}\right)$ and $p v\left(1-X^{g}\right) \in\left(v\left(1-X^{g}\right)^{3}\right)$. Then $\mu\left(1-X^{g}\right) \in$ $\left(v\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$. Therefore $N^{4}=\left(\alpha^{2}, \alpha\left(1-X^{g}\right)^{2}, v(1-\right.$ $\left.\left.X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$.

Step : 2 Let I be an ideal of $R[G]$, we claim that I is 4-generated. As in Proposition 1, we may assume that $N^{3} \subset I$.

Case I: Suppose that there exists $x \in I \backslash N^{2}$. As above, it suffices to consider the case $I=N^{3}+(x)$.
$\left(\alpha_{1}\right)$ By step1, it is easily seen that $I=N^{3}+(x)$ is 4-generated.
$\left(\alpha_{2}\right)$ Assume $p \in M \backslash M^{2}, p^{2} \in M^{3}, G \cong Z / p Z$, and either $M^{2} \subset(p)$ or $M^{3} \subset(p)$. By step $1, N^{3}=\left(\mu, \alpha\left(1-X^{g}\right), v(1-\right.$ $\left.\left.X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. Since $x \in N \backslash N^{2}$ then $x=\lambda p+\beta v+\gamma\left(1-X^{g}\right)$ for some $\lambda, \beta, \gamma \in R[G]$, with λ or β or γ is a unit. We can assume that β and γ are not units. Therefore $p \in\left(x, v, 1-X^{g}\right)$.

If $M^{2} \subset(p), \alpha \in\left(p^{2}, p v\right)$. Hence $\alpha\left(1-X^{g}\right) \in\left(p^{2}\left(1-X^{g}\right), p v(1-\right.$ $\left.\left.X^{g}\right)\right) \subset\left(\left(1-X^{g}\right)^{3}\right)$. So that $I=\left(x, \mu, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$.

If $M^{3} \subset(p), x=\lambda^{\prime} p+\beta^{\prime} \alpha+\gamma^{\prime} v\left(1-X^{g}\right)+\delta^{\prime}\left(1-X^{g}\right)^{2}$ for some $\lambda^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime} \in R[G]$. Clearly λ^{\prime} is a unit $\left(x \notin N^{2}\right)$.

If β^{\prime} or γ^{\prime} is a unit, we verify that I is 4-generated.
Otherwise, since $I=N^{3}+(x)$, we can suppose that $x=\lambda^{\prime} p+$ $\delta^{\prime}\left(1-X^{g}\right)^{2}$. By hypothesis, $M^{3}=(\mu) \subset(p)$. Then $\mu=\theta p$ for some $\theta \in M\left(p \notin M^{2}\right)$, hence $x \theta=\lambda^{\prime} \mu+\delta^{\prime} \theta\left(1-X^{g}\right)^{2}$. Therefore $\mu \in$ $\left(x, v\left(1-X^{g}\right)^{2}, p\left(1-X^{g}\right)^{2}\right) \subset\left(x, v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$. Consequently, $I=\left(x, \alpha\left(1-X^{g}\right), v\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right)$.

CaseII: Suppose $\left(N^{3} \subseteq\right) I \subset N^{2}$. The proof is the same as in Proposition 2. \diamond

THEOREM. Let R be an Artinian ring with the 2-generator property and let G be a finite abelian group. Then $R[G]$ has the 4-generator property if and only if $R=R_{1} \oplus R_{2} \oplus \cdots \oplus R_{s}$ where, for each $j,\left(R_{j}, M_{j}\right)$ is a local Artinian ring with the $2-$ generator property subject to :
(I) Assume R_{j} is a field of characteristic $p \neq 0$.
(α) when $p=2$, then G_{p} is a homomorphic image of $Z / 2 Z \oplus Z / 2 Z \oplus$ $Z / 2^{i} Z$ or $Z / 4 Z \oplus Z / 2^{i} Z$ where $i>0$
(β) when $p=3$, then G_{p} is a homomorphic image of $Z / 3 Z \oplus Z / 3^{i} Z$ where $i>0$
(γ) when $p>3$, then G_{p} is a cyclic group.
(II) Assume $\left(R_{j}, M_{j}\right)$ is a principal ideal ring which is not a field, and p a prime integer such that p divides $\operatorname{Ord}(G)$ and $p \in M_{j}$, then
(α) Assume $p=2$,
A) (i) $G_{p} \cong Z / 2 Z \oplus Z / 2^{i} Z$ with $i>1$
(ii) when $M_{j}^{2} \neq 0$, then $G_{p} \cong Z / 2 Z \oplus Z / 2 Z$.
B) (i) G_{p} is a cyclic group
(ii) When $M_{j}^{4} \neq 0$, then
(a) $G_{p} \cong Z / 2^{i} Z$, where $1<i<2$, if $2 \in M_{j}^{2}$
(b) $G_{p} \cong Z / 2^{i} Z$, where $1<i<3$, if $2 \in M_{j} \backslash M_{j}^{2}$.
(β) Assume $p=3$,
A) $G_{p} \cong Z / 3 Z \oplus Z / 3 Z, 3 \in M_{j} \backslash M_{j}^{2}$ and $M_{j}^{2}=0$.
B) (i) G_{p} is a cyclic group
(ii) When $M_{j}^{4} \neq 0$, then
(a) $G_{p} \cong Z / 3 Z$, if $3 \in M_{j}^{2}$
(b) $G_{p} \cong Z / 3^{i} Z$, where $1<i<3$, if $3 \in M_{j} \backslash M_{j}^{2}$.
(γ) Assume $p>3$,
(i) G_{p} is a cyclic group
(ii) If $M_{j}^{4} \neq 0$, then $p \notin M_{j}^{4}$ and
(a) $G_{p} \cong Z / p Z$, if $p \in M_{j}^{2}$
(b) $G_{p} \cong Z / p^{i} Z$, where $1<i<3$, if $p \in M_{j} \backslash M_{j}^{2}$.
(III) Assume $\left(R_{j}, M_{j}\right)$ has the $2-$ generator property but is not a principal ideal ring and p a prime integer such that p divides $\operatorname{Ord}(G)$ and $p \in M_{j}$, then
(α) Assume $p=2$,
$G_{p} \cong Z / 2^{i} Z$,
(1) $i \geq 1$ if M_{j}^{2} is a principal ideal and $M_{j}^{3}=0$.
(2) $1 \leq i \leq 2$ if M_{j}^{2} is a principal ideal, $M_{j}^{3} \neq 0$, and $M^{2} \subset(2)$.
(3) $i=1$ otherwise.
(β) Assume $p=3$,
(a) G_{p} is a cyclic group
(b_{1}) When M_{j}^{2} is a principal ideal and $M_{j}^{3} \neq 0$ then
(α_{1}) If $3 \in M_{j}^{2}$, then $G_{p} \cong Z / 3 Z$ and M_{j}^{3} is a principal ideal.
(α_{2}) If $3 \in M_{j} \backslash M_{j}^{2}$, then $G_{p} \cong Z / 3^{i} Z$ with $1 \leq i \leq 2$, moreover, if $9 \in M_{j}^{3}$
then $G_{p} \cong Z / 3 Z$.
(b_{2}) When M_{j}^{2} is not a principal ideal, then $3 \notin M_{j}^{2}, G_{p} \cong$ $Z / 3 Z$, moreover, if
$M_{j}^{3} \neq 0$ and $M_{j}^{2} \not \subset(3)$ then M_{j}^{3} is a principal ideal and
(θ_{1}) If $9 \in M_{j}^{2} \backslash M_{j}^{3}$ then $M_{j}^{3} \subset(9)$.
(θ_{2}) If $9 \in M_{j}^{3}$ then $M_{j}^{3}=3 M_{j}^{2}$.
(γ) Assume $p>3$,
(a) G_{p} is a cyclic group
(b) (b_{1}) When M_{j}^{2} is a principal ideal and $M_{j}^{3} \neq 0$ then (α_{1}) If $p \in M_{j}^{2}$, then $G_{p} \cong Z / p Z, p \notin M_{j}^{3}$, and M_{j}^{3} is a principal ideal.
(α_{2}) If $p \in M_{j} \backslash M_{j}^{2}$ then $G_{p} \cong Z / p^{i} Z$ with $1 \leq i \leq 2$, moreover, if $p^{2} \in M^{3}$,
then $G_{p} \cong Z / p Z$ and either $M_{j}^{2} \subset(p)$ or $M_{j}^{3} \subset(p)$
$\left(b_{2}\right)$ When M_{j}^{2} is not a principal ideal, then $p \notin M_{j}^{2}, G_{p} \cong$ $Z / p Z$, moreover, if
$M_{j}^{3} \neq 0$ and $M_{j}^{2} \not \subset(p)$ then M_{j}^{3} is a principal ideal and $\left(\theta_{1}\right)$ If $p^{2} \in M_{j}^{2} \backslash M_{j}^{3}$ then $M_{j}^{3} \subset\left(p^{2}\right)$.
$\left(\theta_{2}\right)$ If $p^{2} \in M_{j}^{3}$ then $M_{j}^{3}=p M_{j}^{2}$.
Proof. We appeal to [2, Theorem], Propositions 1, 2, and 3, and similar techniques used in the proof of [1, Theorem]. \diamond

REFERENCES

[1] S. Ameziane Hassani, M. Fontana and S. Kabbaj. Group rings $R[G]$ with 3-generated ideals when R is an Artinian, Communications in Algebra 24(4) (1996) 1253-1280.
[2] S. Ameziane Hassani, and S. Kabbaj. Group rings $R[G]$ with 4-generated ideals when R is an Artinian principal ideal ring, Lecture Notes of Pure and Applied Mathematics, Marcel Dekker, New York, 185 (1997) 1-14.
[3] J. T. Arnold and R. Gilmer. The dimension theory of commutative semigroup rings, Houston J. Math. 2 (1976) 299-313.
[4] J. T. Arnold and R. Matsuda. The n-generator property for semigroup rings, Houston J. Math. 12 (1986) 345-356.
[5] I. S. Cohen. Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950) 27-42.
[6] R. Gilmer. Commutative Semigroup Rings, University of Chicago Press, Chicago, 1984.
[7] R. Gilmer. Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[8] N. Jacobson. Basic Algebra. Freeman, 1985 and 1989.
[9] I. Kaplansky. Commutative Rings, University of Chicago Press, Chicago, 1974.
[10] R. Matsuda. Torsion free abelian semigroup rings V, Bull. Fac. Sci. Ibaraki Univ. 11 (1979) 1-37.
[11] R. Matsuda. n-Generator property of a polynomial ring, Bull. Fac. Sci., Ibaraki Univ., Series A Math. 16 (1984) 17-23.
[12] K. R. McLean. Local rings with bounded ideals, Journal of Algebra 74 (1982) 328-332.
[13] M. Nagata. Local Rings. Interscience, New York, 1962.
[14] J. Okon, D. Rush and P. Vicknair. Semigroup rings with twogenerated ideals, J. London Math. Soc. 45 (1992) 417-432.
[15] J. Okon and P. Vicknair. Group rings with n-generated ideals, Comm. Algebra 20 (1) (1992) 189-217.
[16] J. D. Sally. Number of Generators of Ideals in Local Rings, Lecture Notes in Pure and Applied Mathematics 35, Marcel Dekker, New York, 1978.
[17] A. Shalev. On the number of generators of ideals in local rings, Advances in Math. 59 (1986) 82-94.
[18] A. Shalev. Dimension subgroups, nilpotency indices and the number of generators of ideals in p-group algebras, J. Algebra 129 (1990) 412-438.

