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Considerable work, part of it summarized in Sally's book 115], has been concerned with 
the number of generators needed for ideals in a commutative ring R. If there is a fixed 
bound n, valid for all ideals, on the number of generators needed, R is said to have 
the n-generator property. That means, each ideal of R- IS n-generated (Le. can b~ 
generated by n elements). Ifdim R > 1, no such bound exists. Considerable interest has 
been shown in rings with the n-generator property. See for example [4], [11], [15] and 
[16]. 

LetG be an abelian group. The group ring associated to Rand G, denoted by R[G], 
is the ring of elements of the form ~9EG agXg ,'where {agl 9 E G} is a family of elements 
of R which are almost all zero. We refer to 15] ,for elementary properties of group rings. 
Of particular interest is the study of the question of when R[GJ has the n-generator 
property. This question, either in general or for specific choice of n, has· received further 
attention by several authors. See [1],[3], [~], [10], [13], [14] and [17]. 

F\'om the restriction on Krull dimension, we have 1 ::: dimR[G] = dimR + T, where 
T denotes the torsion free rank of G. If r = 0, then G must be a finite group. If r = 1, 
then G ~ 7L Ell H, where H is a finite abelian group and 7L denotes the group of the 
integers. We will focus on the case in which R is Artinian and 1" = 0, i.e. G is a finit,e 
abeliat(group, since the case r = 1 was considered by Okon and Vicknair in [14, Theorem 
5.1]. Furthermore, [I] is entirely devoted to n = 3. However, for n ::: 4 and under our 
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assumptions, the problem of when R[G] has the n-generator property ~emains open. 
In this note' we consider the problem of determining when a group rmg R[G] has the 

4-generator Pl:operty, when R is an Artinian principal ideal ring and G is a finite group. 
Throughtout this note rings and groups are taken to ~e commutative and the gro~ps 

are written additively. If p is a prime integer, then the p-sylow subgroup of the fimte 
abelian group G will be denoted Gp • When I is an ideal of R, we shall use p.(I) to 
denote the number of generators in a minimal basIS for I. Fmally, recall that If I 18 

an n-generated ideal in a local ring,' then the n generators of I may be chosen from 
elements of a given set of generators of I (cf. [12, (5.3), p. 14]). 

PROPOSITION 1 Assume that G is a nontrivial finite 2-group, (R, M) is an Ar­
tinian local principal ideal ring which is not a field and 2 E M. Then R[G] has the 
4-generator property if and only if 
A) (i) G '" 'l/2'l EIl'l/2i 'l with i 2: 1 

(ii) when M Z # 0, then G '" 'l/2'l EIl'l/2'l. 
B) (i) G is a cyclic group 

(ii) When M4 # 0, then 
(a) G'" 71./2i 'l, where 1 :S i:S 2, if2 E M Z 

(b) G '" 71./2i 'l, where 1 :S i:S 3, if2 E M \ MZ. 

Before proving this proposition we establish a lemma which will be used frequently 

in the sequel. 

LEMMA 2 Assume that (R, M) is a local principal ideal ring and G is a finite cyclic 
group. Let N be the maximal ideal o!the local ring R[G]. Then R[G] has the 4-generator 
property if and only if N, N Z, N3 and N 4 are. 4-generated. ~ 

Proof. R[G] is local with maximal ideal N = (r, 1- X g
), where r generates M in R an 

g is the generator of G. Suppose that N, N Z, N 3 and N 4 are 4-generated. W~ need to 
prove that each proper ideal I of R[G] is 4-generated. By [16, Corollary 4.2.1], It suffices 
to consider the case where I <t- N 3

. Let x E 1\ N 3
, 

If x E N Z, x = Arz + W(1 - X 9) + 6(1 - x9 j2 for some A, p., 6 E R[G]. ~ince 
x ¢ N 3, then A or p. or 6 is a unit; Therefore N Z = (x, r(1 - zX9), (1 -; X 9) ) or 
NZ = (rz,:i:, (1- X9)Z) or N Z = (rZ, r(l- X 9), x). Hence p.((N/(x)) ) = p.(N /(x)) :S 2. 
By [11, Theorerm 1, 6 * 11, R[G]/(x) has the 2~generator property. Then p.(I/(x)) :S 2. 

Therefore I is 4-generated. 
If x ¢ NZ,x E N because R[G] is local with maximal ideal N. By [8,Theorem 

159], p.(N/(x)) = p.(N) - 1 = 1. So R[G]/(x) is principal then p.(I/(x)) = 1, and hence 
p.(I) :S 2. Consequently RIGI has the 4-generator property. <) 

Proof of Proposition 1. *1 Assume G '" 'l/2t ,'l Ell 'l/2"71. Ell'" Ell 'l/2"71. wher~ ° < 
tl < tz :S ... :S t,. If R[G] has the 4-generator property, then the homomorphIc Image 
(R/M)[G] does also. By [14, Corollary 2.2], s :S 3. . 

We first show that the case of s = 3 does not hold. Indeed, if R['l/2"71. Ell 71./2"71. Ell 
'l/2"71.] has the 4-generator property, then the homomorphic image R['l/271. EIl71./2'l. Ell 
71./271.1 does also. Since R is a local ring with residue field of charac~enstIc 2. R['l/271. Ell 
'l/2'l Ell 71./271.] is local with maximal ideal N := (r,1 - X 9, 1 - X ,1 - X ), whele r 
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generates M in Rand < 9 > Ell < h > Ell < k >= 71./271. EIllL/2'l EIl71./2'l (cf. [5, Theorem 
19.1.and Corollary 19.2]). Since I < 9 > I = 2, ((1 - X9)Z = 2(1 - X 9) E (r(l - X9)). 
Likewise for (1 - Xh)Z and (1 - Xk)Z. Hence N Z = (rZ,r(1 - X9),r(1 - X h),r(1-
X k), (1- X9)(1- X h), (1- X 9)(I- X k), (1- Xh)(l- Xk)). The four generators of NZ 
can be chosen from the original generators of N 2 . 

If r(1 - X9) is a redundant generator, then under the augmentation map R[< 9 > 
][< h> Ell < k >1----> R[< 9 >], r(1- X9) E (rZ)RI< 9 >]. Hence Rr = Rr', a 
contradiction. Likewise for r(l - Xh) and r(1 - Xk) . 

. If (1 - X9)(1 - Xh) is redundant, then applying the augmentation map R[< 9 > 
Ell < h >][ < k >] ----> RI < 9 > Ell < h >] and passing to the homomorphic image 
R/(r)[< 9 > Ell < h >] yields (1- X9)(1 - Xh) = 0. Hence 1 ERr, a contradiction. 
Likewise for (1 - X9)(1- Xk) and (1 - Xh)(l - Xk). Therefore N Z needs more than 
four generators. Consequently 8 :S 2. 

A) (i) Assume G '" 'l/2"71. Ell 71./2"71. where tl > 1. So the homomorphic image 
R[71./471. EIllL/4'l] has the 4-generator property. Then N Z is 4-generated, where N = 
(r,1 - X9, 1 - Xh) where r generates M in Rand < 9 > Ell < h >= 'l/471. Ell 71./471.. 

It is easy to see that (1- X9)Z and (1- Xh)Z are required as generators of NZ. Now 
assume that r(1 - X9) is a redundant generator, then applying the augmentation map 
R[< 9 > Ell < h >]----> RI< 9 >] and passing to the homomorphic image R/(rZ)I< 9 >], 
yields r(1 - X9) E ((1 - X9)Z)R/(rZ)[< 9 >]. By [1, Lemma 1.5], r = 4A for some 
A E R/(rZ). This forces Rr = Rr', a contradiction. Likewise for r(I-Xh). Consequently, 

N Z = (r(1 - X9), r(l - X h), (1 _ X9)Z, (1 _ Xh)Z). 

Since (1- X9)(1 - Xh) EN', then passing to the homomorphic image R/(r)[< 9 > 
Ell <h>] yields (1-X9)(1-Xh) E ((I-X9)Z,(1_Xh)Z)R/(r)[<.g > Ell < h>l. Thus 
(1 - X9)3(1 - Xh)3 E ((1 - X9)\ (1 - Xh)4) = (0) in R/(r)[< 9 > Ell < h >], since 
(1 - X9)4 = 2(1 - 2Xh + 3XZh) and 2 E (r). Then 1 E (r), a contradiction. Therefore 
NZ needs more than four generators. Consequently, G '" 'l/271. EIl'l/2i 71. where i 2: 1. 

(ii) Assume G'" 'l/2'l EIl'l/2i 71. with i > 1 and MZ # 0. Then RI'l/271. Ell 71./471.] has 
the 4-generator property. Therefore N Z is 4-generated, where N = (r,1 - X9, 1- Xh), 
r generates M in Rand g, h are the generators of 'l/271., 71./4lL, respectively. Since (1 -
X9)Z = 2(1- X9), then 

N' = (r2, r(l - X9), r(1 '- X h), (1 - X9)(1 _ X h), (1 _ Xh)Z). 

Since MZ # ° and I < h > I > 2, it is clear that rZ and (1 - Xh)Z are required as 
generators of N 2

. Furthermore, using arguments similar to ones used above, we obtain 
. that r(1-X9), r(l-Xh) and (I-X9)(1_Xh) also are required as generators of NZ, Then 

NZ needs more than four generators, a contradiction. Consequently, G '" lL/271. Ell 71./2'l 
when M2 #0. 

¢ol (i) Assume M Z = ° and G '" 71./271. Ell 71./2i 71. with i> 1. Then R['l/271. Ell 71./2i 'l] 
is a local ring with maximal ideal N = (r,1 - XY, 1- XhL where r generates M in R 
and < 9 > Ell < h >= 7i./2'l EIl'l/2i 'l. Since r' = 0, I < 9 > I = 2 and 2 E (r) we get 
NZ = (r(1 - X9),r(1 - Xh), (1 - X9)(1 - Xh), (1 - Xh)Z) and N 3 = (r(1 - X9)(I­
Xh),r(l- Xh)Z, (1 - X9)(1 - Xh)', (1- Xh)3). 

3 
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Let I be a proper ideal of R[G]. Since N 3 = (1- Xh)N2, [11, Lemma 2] implies that 
1-'(1) :0; 1-'(1 + N 2). In order to show that I is 4-generated, we may assume N

2 
C I. Let 

x E 1\ N 2, X E N. By [8, Theorem 159], I-'(N/(x)) = I-'(N) - 1 = 2. Let us show that 
1-'((N/(X))2) :0; 2. Since I-'(N/(x)) = 2, we have N = (r, x, 1 - X9), N = (r, x, 1- Xh) or 

N = (x, 1 - X9, 1- Xh). 
If N = (r, x, 1 - X9) then N/(x) = (1', 1 - X9), where bars denote images under the 

natural map R[G] ---> R[G]/(x). Since r2 = 0 then (N/(X))2 = (r(1 - X9), (1 - X9)2), 

and hence I-' ((N/(X))2) :0; 2. The argument for N = (r, x, 1 - Xh) is similar. 

If N = (x, l-X9, I_Xh) then (N/(X))2 = ((1- X9)(1 - Xh), 2(1 - X9),7(1~_~X"-h'")2). 
If 2 E M2 = (0), we're finished. Otherwise, M = (r) = (2). Clearly 2 E N. Then 
2 = AX + 1-'(1- X9) + 6(1- Xh) for some A, 1-',6 E R[G]. Furthermore, we may assume 
that I-' and 6 are not invertible. So A, 6 E N, hence 2 = Xx + 1-"(1- X9)(I-Xh) + {3'(1-
X9)2 +6'(1- Xh)2 = A'X + 1-"(1- X9)(I- Xh) + 2{3'(1- X9) + 6'(1 - Xh)2, for some 
X, 1-", {3', 6' E R[G]. Then 2(1 - {3'(1 - X9)) = Xx + 1-"(1 - X9)(1 - Xh) + 6'(1 - Xh)2. 

Since 1 _ {3'(1 - X9) is a unit in R[G], "2 E ((1 - X9)(1 - Xh), (1 - Xh)') and so 

does 2(1 _ X9). Consequently, (N/(X))2 = ((1- XB)(1 - Xh), (1- Xh)2), and hence 

I-' ((N/(X))2) :0; 2. 
By [11, Theorem 1 (6,* 1)], R[G]/(x) has the 2-generator property. Then I/(x) is 

2-generated, and hence I is 4-generated. This completes the proof of (i). 

¢o ] (ii) Assume G ~ lL/2lL 6l lL/2lL and M2 I' O. Then R[lL/2lL 6l lL/2lL] is a local 
ring with maximal ideal N = (r,1 - X9, 1 - Xh), where r generates M in Rand < 
9 > 6l < h >= lL/2lL 6llL/27L. Since I < 9 > I = I < h > I = 2 and 2 E (r), we get \ 
N 2 = (r2,r(l- X9),r(l- Xh),(I- X9)(1- Xh)) and N 3 = (r3,r

2
(1-'- X9),r

2
(1-

Xh),r(l- X9)(I- Xh)). 
Let I be a proper ideal of R[G]. Since N 3 = r N 2

, [11, Lemma 2] implies that 
1"(1) :0; 1-'(1 + N 2). As before, we may assume that N 2 c I. Let x E 1\ N 2

, X E N. 
By [8, Theorem 159], I-' (N/(x)) =I-'(N) - 1 = 2. Thus N = (r, x, 1 - X9) or N = 
(r, x, 1 _ Xh) or N = (x, 1 - X9, 1 - Xh). It is easly seen that for the two first cases we 
have I" ((N/(X))2) :0; 2. Now let consider the remaining case, Le. N = (x, 1-X9, 1-Xh). 

Then (N/(X))2 = ((1- X9)(1 - Xh), 2(1 - XB), 2(1 - Xh) ). 

If 2 E M2 = (r2), since l' E N/(x), then "2 = A2(1 - X9) + 1-'(1 - X9)(1 - Xh) + 
62(1 -'- Xh) for some A, I" and 6 E R[G]. We get, by induction, 

(N/(X))2 = ((1- X9)(1- Xh)) + (N/(X))3, 

= ((1- X9)(I- Xh)) + (N/(x))4, 

= ((1- X9)(1 - Xh)) + (N/(x))n, for each n ~ 3. 

Since R[G] is a local Artinian ring, there exists no E N such that (N/(x))n = 0 for each 

n ~ no. Therefore (N/(X))2 = ((1- Xg)(l- Xh)), and hence I-' ((N/(X))2) :0; 2. 

If 2 E M \ M2 then M = (r) = (2). Clearly 2 E N. Then 2 = AX + 1-'(1 -
X9) + 6(1- Xh) for some A, 1-', 6 E R[G]. Applying arguments used above for (i), we 
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see that "2: ((1- X9)(I- Xh)), and so do 2(1- X9) and 2(1- Xh). Consequently 

I-'((N/(x))) ~2. As before, we conclude that 1-'(1/(x)) <2. Thereforelis4- . t d' 
as desIred. ThIS completes the proof of (ii). - genela e , 

B) Suppose that G is a cyclic group (s = 1). Let 9 be the generator of G. we have 

N = (r,I-XB); 

N 2 = (r2, r(1 - XB), (1 _ XB)2); 

N 3 = (r3, r2(1 - XB), r(l- XB)2, (1- XB)3); 

N 4 = (r4, r3(1 - XB), r2(1- X9)2, r(1 _ XB)3, (1 _ X9)4). 

(i) Assume M4 = O. Applying Lemma 2, we concl';de that R(G] has the 4-generator 
property. 

(ii) (a) Assume M4 I' 0 and 2 E M2. In order to conclude, it suffices to show that 
~[lL/47L] has the 4-generator property while R(7L/87L] does not. Suppose that R(lL/87L] 

as the 4-g:nerator property. Then N4 is 4-generated. 
Smce M I' 0 a

4
nd I < 9 > I > 4, it is easily seen that r4 and (1 - X9)4 are required 

as generators of N . 
If~3(I-XB) is a redundant generator of N., then passing to the homomor hic ima e 

. (~~r ))« 9 >], yields r3(1 - XB) E ((1 - XB)2)(R/(r4))« 9 >]. B [1 L:mma 1. j 

5 

r If~; ior s~~eA E R/(r4). It follows that r3 = 0 in R/(r4),a contr:di~tion. 5, 
( -X ) IS redundant, then by passing to the :7momorphic image (R/(r3 ))« 9 > ], 

we obtain that r2(1- XB)2 = a(l- X9)3 with a = ~a·XiB h R/( 3) , L.J~ ,wereaiE r.After 

setting corresponding terms equai, we obtai~ the foll~~ing equations: 

XO 
X9 

X 2B 

X3B 

X 49 

X'9 
XSB 

ao - a5 + 3aB - 39-7 = r2 

-3ao + a, - as + 3a7 = 0 

3ao - 3al + a2 - a7 = r2 

-ao + 3al - 3a2 + a3 = a 
-a, + 3a2 - 3a3 + a4 = 0 

-a2 + 3aa - 3a4 + as = 0 

-a3 + 3a4 - 3as + as = 0 

-a4 + 3as - 3as + a7 = 0 

This yields r2 = 0 in R/(r3). Hence Rr3 = Rr2 a contradiction 
If r(1.- XB)3 is redundant, then by passing to ~he homomorphi~ image (R/(r2))« >] 

we obtam that r(1 - X9)3 E ((1 - XB)4)(R/(r2))« >] S' 2 M2 9 2 ' 
r(I-XB)7 _ O' ( /( 2 • 9 . mce E = (r ), 

4 - III R r)) « 9 >]. ThIS forces Rr = Rr2, a contradiction. Conse uentl 
N ;eeds more than four generators, contradicting the fact that N 4 is 4-genera~ed y, 

. M2 :'.w( ;e)t us show that R(7L/47L] has the 4-generator property. If 2 E M2 \ M3 ~hen 
. - r = (2). We have 

1 = (1 - XB + XB)4 

= 1 + 4(1 - X9)X 3B + 6(1 - XB)2 X 29 + ;(1 - X9)3 X9 + (1 _ X9)4 

\ 
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Then 2(1 _ X9)2 E (4(1 _ X9), (1 _ X9)4) C (r" (1 - X9)4). Therefore r2(1 - X9)2 E 

(r" (1- Xy)4). Consequently, N 4 is 4-generated. If 2 E M
3
, we get 

(1 _ X9)4 1 - 4XY + 6X29 - 4X39 + X 4
9 

= 2 - 4X9 + 6X29 - 4X39 

2 _ 2X9 _ 2X. + 2X29 + 4X29 - 4X39 

= 2(1 _ X9) - 2X9(1 - X9) + 4X29(1 - X9) 

= 2(1 - X9)(1 - X9 + 2X29). 

Then (1 _ X9)4 E (2(1 _ X9)) C (r3(1 - X9)). Hence N 4 is 4-generated. Lemma 2 

completes the proof. 
b) Assume M4 oF 0 aud 2 E M \ M2. It suffices to prove that R[l/8l] has the 

4-generator property while R[l/16l] does not. Clearly M = (r) = (2) and 
N4 = (16,8(1 _ XY), 4(1 - X9)2, 2(1 - X9)". (1 - Xy)4). 

Assume < 9 >= l/8l. We have 
1 (1 - XY + X9)8 

= ~ e) (1- X9)i X(S-i)9 

~=o '35 
= 1 + 8(1 _ X9)X79 + 28(1 - X9)2 X 69 + 56(1 - X9) x 9 

+ (1 - X9)4 (~ m (1 - xy)(i-4) X(8-i)9) . 

Then 8(1- X9) E (4(1- xy)2, (1- Xy)4), and hence N 4 is 4-generated. Thus R[l/8l] \ 

has the 4-generator property. . 
Assume < 9 >= l/16l. Let prove that N 4 is not 4-generated. It IS clear that 16 

and (1 - X9)4 are required as generators of N
4

.. . . 
If 8(1 _ XY) is redundant, then passing to the homomorphIc Image (R/(16))[< 9 >], 

yields 8(1 _ X9) E ((1 _ X9)2)(R/(16))[< 9 >]. By [1, Lemma 1.5], 8 = 16'>' for some .>. 
in R/(16). Hence 8 = 0 in R/(16), a contradiction. . . 

If 2(1- Xy)3 is redundant, then by passing to the homomorphIc Image (R/(4))[< 9 >], 
. ~u 

we obtain that 2(1- X9)3 = a(1 - X9)4 with a = I: aiXiy, where ai E R/(4). 
i=O 

After setting corresponding terms equal, we obtain among other equations the follQw-

ing : 
XO . ao + a12 + 2a 14 2 

X 29 2ao + a2 + a14 2 

X 49 ao +2a2+ a4 0 

X 69 a2+ 2a4+ a6 = 0 

X 89 a4+ 2a6+ as = 0 

X 10g a6 +2as +alO = 0 

X 12g as + 2alO + a12 = 0 

X 14g alO + 2a12 + a14 = O. 

Group Rings R[G]: R anArtillian Principalldeal Ring 

After resolving this system, we obtain 2 = 0 in R/(4), then 2 E M2, a contradiction. 
If 4(1 - X9)2 is redundant, then passing to the homomorphic image (R/(8))[< 9 >], 

yields 4(1 - X9)2 = all - XY)3) where a E (R/(S))[< 9 >]. As before, we obtain a 
sy~t.em of 16 linear equations in 16 unknowns. After resolving this system, we obtain 
4 = 0 in R/(S), a contradiction (M4 oF 0). 

It follows that N4 needs more than four generators. Hence R[l/16l] does not have 
the 4,-generator property. This completes the proof of Proposition 1. (j 

PROPOSITION 3 Assume that G is a nontrivial finite 3-group, (R, M) is an Ar­
tinian local principal ideal ring which is not a field and 3 E M. Then R[G] has the 
4~ generator property if and only if 
A) G~ l/3l Ell l/3l, 3 E M \ M2 and M2 = O. 
B) (i) G is a cyclic group 

(ii) When M4 oF 0, then 
(a) G~l/3l, if3 E M2 
(b) G ~ l/3il, where 1 :S i :S 3, if 3 E M \ M2 

LEMMA 4 Let (R, M) be a local ring such that Mn is n-generated, where n is a 
positive integer. Then for each ideal I of R, 1"(1) :S 1"(1 + M n

-
1
). 

Proof. We may assume that R has an infinite residue field (see [15, p.l0]). Since Mn is 
n-generated, then [15, Theorem 2.3, p.36] implies that Mn = yMn-I for some y E M. 
By [11, Lemma 2], 1"(1) :S 1"(1 + Mn-I) for each ideal I of R. (j 

LEMMA 5 Let (R, M) be a local ring such that M2 is 3-generated, I a proper ideal 
of R and x E 1\ M3 such that x E M2. Then I"(1/(x)):S I"(M/(x)). 

p'roof.· M2 is 3-generated and x E M2 \ M3 implies that I"((M/(X))2) = I"(M2/(X)) :S 
I"(M2) -1 = 2. By applying Lemma 4 to R/(x), We get I"(I/(x)) :S I"(1/(x) +M/(x)) = 

I"(M/(x)). (j 

. Proof of Proposition 3 .. By hypothesis, G ~ l/3';l Ell l/3"l Ell ... Ell l/3'~l where 
o < tI :S t2 :S ... :S t,. Suppose that R[G] has the 4-generator property, then the 
homomorphic image (R/M)[G] does also. By [14, Corollary 2.2], s:S 2. 

A) *] If s = 2, [14, Proposition 2.1(a)] implies that G ~ l/3l Ell l/3i l with i 2: 1. 
Assume 3 E M2. Let N = (r,1 - XY, 1 - Xh), where I' generates M in Rand 

< g > Ell < h >= l/3l Ell l/3l. We have 

N 2 = (r2, r(1 - X9), r(1 - X h), (1 - X9)(1 - X h), (1 _ X9)2, (1 _ Xh)2). 

Using arguments similar to ones used above it is easy to check that r(1 - X9), r(1 -
Xh), (1- X9)(1 - Xh), (1- X9)2 aud (1- Xh)2 Ill'e required as generators of N 2. Thus 
R[l/3l EIll/3l] does not have the 4-generator property, a contradiction. Consequently, 
3 E M \ M2 and hence M = (r) = (3). 

Now assume M2 = (9) oF O. Let N = (3,1 - XY, 1 - Xh) be the maximal ideal of 
R[l/3l Ell l/3l]. Consider the ideal I = (9) + N3. Then 

7 



8 Amezlane Hassani and Kabbaj 

It is easily seen that all these elements are required as generators of I. Thus R[Z/3Z Ell 
Z/3Z] does not have the 4-generator property, a contradiction. Consequently, M2 = o. 

We claim that R[Z/3Z Ell Z/32Z] does not have the four generator property. Let N be 
its maximal ideal and g, h the generators of Z/3Z and Z/32Z, respectively. Then we have 

N 2 = (3(1- X"), (1- X9)(1- X"), (1- X9)2, (1- X")2) 

N 3 = (3(1 _ X9), 3(1 _ X")2, (1 _ X9)2(1 - X"), (1 - X9)(1 - X")2, (1 - X")3). 

If 3(1- X")2 is a redundant generator of N 3 , then by applying the augmentation map 
R[< h >JI< 9 >] ----> R[< h >], we get 3(1- X")2 E (1- X")3 R[< h >]. By [1, Lemma 
1. 7], 3 = 9.\ for some .\ E R. Then M = (3) = (0), a contradiction. The arguments for 
3(1- X9), (1- X9)2(1- Xh), (1- X9)(1- X")2 and (1- Xh)3 are similar to ones used 

above. Hence J1o(N3
) > 4. 

<=] Assume G '" Z/3Z Ell Z/3Z, 3 E M \ M2 and M2 = O. Let us show that R[G] has 
the 4-generator property. Let N be the maximal ideal of R[G] and < 9 > Ell < h >= 
Z/3Z Ell Z/3Z. We have 

N= (3,1-X9,1-X") 

N 2 = ((1- X9)2, (1- Xh)2, (1- xg)(1- X")) 

N 3 = (3(1 _ X9), 3(1 - Xh), (1 - X9)2(1- Xh), (1 - X9)(1 - X")2) 

N4 = (3(1- X9)2, 3(1 - Xh)', 3(1 - X9)(1 - X"), (1 - X9)2(1 - X")2). 

Let I be a proper ideal of R[G], we need to prove that I is 4-generated. Applying 
Lemma 4 to N4, yields J1o(I) :S J1o(I + N 3 ). Since N 3 is 4-generated, we may assume 
N 3 C I. Let x E 1\ N3. If x E N2, since N2 is 3-generated, Lemma 5 implies the \ 
desired conclusion. If x ¢ N 2 ; by [8,Theorem 159], it follows that N = (3, x, 1 - xg) 
or N = (3, x, 1 - X") or N = (x, 1 - xg, 1 - Xh). If N = (3, x, 1 - X9) then NI(x) = 

(3, 1- X9) and (NI(x))2 = ((1- X9)2), where bars denote images under the natural 

map R[G] --> R[GJI(x). As in the proof of Lemma 2, we conclude via part (6) of [11, 
Theorem 1]. Likewise for N = (3, x, 1 - X"). 

IfN=(x,1-X9,1-X"),then c~)r = 

separately two cases : 

N3 + (x) 
(x) 

c (~). We consider 

(
N)3 I I (N)3 If (x) c (x)' choose z E I such that z E (x) \ (x) . Assume z E 

Since ((~)) 2 is 3-generated, Lemma 5 yields 

J10 cX~Z)) = CI(X)) 
J10 (z) 

:S (NI(x) ) 
J10 (z) 

< J10 (rx)) 
:S 2. 
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Therefore I is 4-generated. Now assume z ¢ ((~)) 2. Then 

(
NI(x)) 

J10 (z) 

J1oc~)) -1 

2-1 

1. 

Th R[G]. .. I·d al . I us -( -) IS a prmClpa 1 e rmg, and hence -- is principaL Consequently, I is 
x,z (x,z) 

4-generatcd. 

If (.!!.-)3 _ N 3 + (x) _ I 3 . 
(x) - (x) - (x)' then I = N + (x). More preClsely, 

I = (x, 3(1 - X9), 3(1 - X"), (1 - X9)2(1 - Xh), (1 - Xg)(l _ X")2) 

x E N \ N 2, then x = 3a + b(l - X9) + c(l - X") for some a, b, c E R[G]. Moreover, 
we may assume that band c are not units of R[G]. Hence there exist a', b', c', d' E R[G] 
suchthatx=3a'+b'(1-X9)2+ c'(1-X")2+d'(1-Xg)(1-Xh) Cle I· "N2 

, • • I • ar y, smce x 'F- , 
a IS a umt. If bEN, then 3(1- X9) E (x, (1- X9j2(1- X"), (1 - X9)(1- X")2) since 
x(1-:- X9) = (a' - b' X9)3(1- X9) + c'(l - X9)(1 - X")2 + d'(l - X9)2(1_ X"). If b' is 
a ~mt" th:n (1 - X9)2(1 - X") E (x, 3(1 - Xh), (1 - X9)(1 - Xh)2) since x(l _ X") = ia - cX )3(1-; Xh) + b'(l- Xg)2(1- Xh) + d'(l- X9)(1 - Xh)2. In either case, I is 
-generated. Consequently, R[Z/3ZEIlZ/3Z] has the 4-generator property, as we wished 

to show. 

B) Assume that G is a cyclic group (8 = 1). Let 9 be the generator of G. To show 
that RlG] has the 4-generator property, by Lemma 2, it suffices to prove that N, N 2, N3 
and N m·e 4-generated, where N denotes the maximal ideal of R[G]. We have 

N = (1',1- X9) 

;. . N 2 = (T2, T(l - X9), (1- X9)2) 

N 3 = (1'3, T2(1 - X9), 1'(1 _ X9)2, (1 _ Xg)3) 

N 4 = (T4, T3(1 - X9), 1'2(1 _ X 9)2, T(l _ X9)3, (1 _ X9)4). 

(i) it is clear that N, N 2, N3 and N4 are 4-generated when M4 = O. Then R[G] has 
the 4-generator property. 

(ii) (a) Assume M4 oF 0 and 3 E M2. In order to conclude, it suffices to prove that 
R[Z/3Z] has the 4-generator property while R[Z/9Z] does not. 

Assun.:eG = Z/3Z. Since [ < 9 > [ = 3, r(1-X9)3 = -3rX9(1-X9) E (r3(1-X9)). 
Hence N IS 4-generated. It follows that R[Z/3Z] has the 4-generator property, as 
asserted. 

Assu~e G = Z/9Z. Since M4 oF 0 and [ < 9 > [ > 4, it is clear that T4 and 
(I - xg) are reqUIred as generators of N 4 • If T 3 (1 - X9) is redundant, then passing to 

9 
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the homomorphic image (R/(,.4))[< 9 >] and applying [1, Lemma 1.5], yields 1'3 = 0 in 
R/(r4), a contradiction. If 1'(1- X 9)3 is redundant, then by passing to the homomorphic 
image (R/(r2))[< 9 >], we get 1'(1 - X9)3 E ((1 - X9)4)(R/(r

2
))[< 9 >], then r(l -

X9)8 = 0 in (R/(r2))[< 9 >]. So l' = 0 in R/(r2), a contradiction .. If 1'2(1 - X9j2 is 
redundant, then passing to the homomorphic image (R/(r

3 ))[< 9 >] and applying, [1, 
Lemma 1.7] yields r2 = 0 in R/(r3); a contradiction. In conclusion, N

4 
needs more than 

four generators, and hence R[I/91] does not have the 4-generator propei·ty. 
b) Assume M4 of 0 and 3 E M\M2. Let us prove that R[I/271] has the 4-generator 

property while R[I/81l] does not. . 
Assume G = 1/271. Clearly, N = (3,1 - X9) and N

4 
= (81,27(1 - X9), 9(1 -

X9)2, 3(1 - X9)3, (1 - X9)4). We have 

1 = (1 - xg + X9)27 

= i~ (2i7) (1 _ X9)i X(27-i)9 

1 + 27(1 _ X9)X269 + (27 x 13)(1 - X9)2 X 259 + (9 x 13 x 25)(1 - X9)3 X
24

9 

+ (1 - X9)4 C~ (2n (1 - X9)(i-4) X(27-i)9) , 

Then 27(1 _ X9) E (9(1 - X9j2, 3(1 - X9)3, (1 - X9)4). Therefore N
4 

i14-generated. 

Lemma 2 allows us to conclude. 
Assume G = 71../8171... Using techniques similar to ones used above, one can easily 

check that 81,27(1 _ X9), 9(1 - X9)2 and (1 - X9)4 are required as generators of N
4
. 

Moreover, if 3(1- Xg)3 is a redundant generator, then passing to the homomorphic image 
i=80 

(R/(9))[< 9 >], we get 3(1- X9)3= a(l- X9)4 with a = ~ ai
Xi9

, where ai E R/(9). 
i=o 

Thus setting corresponding terms equal, we obtain Ii system" of 81 linear equations in 81 
unknowns. After resolving this system (with the use of a computer), we obtain 1 = 0 in 
R/(9), a contradiction. Consequently, R[I/81l] does not have the 4-generator property, 
as desired. This completes the proof of Proposition 3. <:.> 

PROPOSITION 6 Let (R, M) be a local Artinian principal ideal ring which is not a 
field, p a prime integer such that p > 3 and p EM. Let G be a nontrivial finite p- group. 
Then R[G] has the 4-generator property if and only if 

(i) G is a cyclic group 
(ii) If M4 of 0, then p 'Ie M4 and 

(a) G ~ l/pl, ifp E M2 
(b) G ~ l/pil, where 1 ~ i ~ 3, ifp EM \ M2. 

Proof. If R[G] has the 4-generator property, by [14, Proposition 3.5], G is a cyclic group, 

and if in addition M4 of 0 then G ~ l/pil with i ~ 3. 
Let 9 be the generator of G and N = (r,l - X9) the maximal ideal of R[G]. As 

before, to show that R[G] has the 4-generator property, by Lemma 2 it suffices to prove 

that N 4 is 4-generated. We have 

N4 = (r4, r3(1 _ X9), r2(1 _ X9)2, r(1 - X9)3, (1 - X9)4). 
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(i) Clearly, if M4 = 0 then N 4 is 4-generated. 

(il) If M: oj 0, let us show that R[l/pl] does not have the 4-generator pro ert 
. when p EM. Indeed, it is stralghtforward to check that 1'4 and (1 X9)4 P d

Y 

as gen t f N4 If 3( . - are reqUIre 
:ra ors 0 . -: 1 - x g ) IS redundant, then passing to the homomorphic ima e 

(R/(r pI; 9 >] and applying [1, Lemma 1.5], yields 1'3 = AP for some A E R/(r4) S· g 
p EM, l' = 0 m R/(r4), a contradiction. If r2(1 _ X9)2 . d d .. mce 

:~; !,:0~0~p~/t~)ageS(R/(r3))[< ~ >] and applying [1,lsL::':::'a ~~i, t~i:7d~a:~I:S 1; 
r(1 _ X9)3 is r d rd· t l~hce PbE M '. r2 = 0 m R/(r

3
), a contradiction. Finally, If 

e un an, en y passmg to the homomorphic ima (R/( 2))[ ] 
we get 2r(1 - X9)3 E ((1- X9)4)(R/(r2)),[< 9 >]. So r(I - X9 p!l

e 
E ; - X~ ~ > , 

p(R/(r ))[< 9 >]. Since p E M4, r(l - X9)p-l = 0 in (R/()))[< ((] Th) £) C 
M - (1') - 0 a t d· t· T 4 9 > . me ore - -, con ra IC IOn. hus N needs more than four generators. 

a) Suppose p E M2 Let sh th t R[l/ I] h R[I/p21] d tId· d ow a p as the 4-generator property while 
oes no. n ee ,assume G = 7J../p7J... Then 

1 = (1 - X9 + X9)P 
i=p 

~ (~)(1- X9)iX(P-i)9 

1 + p(1- X9)X(p-l)9 + p(p; 1) (1 _ X9)2 X(p-2)9 

+ p(p - l~(P - 2) (1 _ X9)3 X(p-3)9 

+ (1 - X9)4 (~ (~) (1 _ X9)(i-4) X(P-i)9) . 

Hence, since p > 3, p(1 - X9) E (p(l - X9)2, (1- X9)4). If p E M3 then M3 = 3_ 
(p). Therefore r3(1 _ X9) E (1'2(1 - X9)2 (1 _ X9)4) 0 h .'. (1' ) -
M2 _ (1'2) _ (P) S 2 1 2' . t erWlse, If p E M2 \ M3 
(1'2(1- X

9
r (1· ;.;A -X( 9() E (1' (1 - X9)2, (1 - X9)4), and hence 1'2(1 - X9)2 ~ 

Con ' -. C l' 1 - X9)3, (1 - X9)4). Therefore N4 is 4-generated 
sequently, R[l/pl] has the 4-generator property, as desired. . 

see ~~ 0s~:."~ c:.;9 1/~2~._ ~9b,;fore, and ~sing the fact that p E M2, one can easily 
of N4 Th~n ~[l/ 2i]'dr ( ) ,r(1 - X9) and (I - X9)4 are required as generators 

. p oes not have the 4-generator property. 

b) Suppose p E M \ M2 It remains to show th t R[l/ 31] . 
property. Clearly, M = (1') = (p) and a p has the 4-generator 

N 4 = (p\p3(1_ X9),p2(1_ X9)2,p(I_ X9)3, (1- X9)4). 
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We have 

1 = (1 - X g + X9)P' 
. , 
~ (~3) (1- X9)iX(p'-i)9 
t=o 

1 + (~3) (1 _ X9)X(P'-,)g + (p;) (1 _ Xg)2 X(p'-2)9 

+ (p;) (1 _ Xg)3 X(P'-3)9 + (1 _ Xg)4 ('~ (~3) (1 _ X9)(i-4) X(P'-i)9) . 

Itis straightforward that p3(1_ X9) E (p3(1_ X9)2,p3(1_ X9)3, (1- X9)4) C (p2(1-
xy)2,p(1 - Xg)3, (1 - X9)4). Hence N 4 is 4-generated. This completes the proof of 
Proposition 6. ¢ 

The previous propositions were steps to state the following theorem. 

THEOREM Let R be an Artinian principal ideal ring and G a nontrivial finite abelian 
group. Then R[G] has the 4-generator property if and only if R = R, (f! tl2 (f! ... (f! R, 
where, for each j, (Rj} Mj) is a local' Artinian principal ideal ring 8ubject\to : 
(I) Assume R j is a field of characteristic p i 0. . . 
(a) when p = 2, then Gp is a homomorphic image of7L/27L(f!7L/27L(f!7L/2'7L or 7L/47L(f!7L/2'7L 
where i 2: 0 
(fJ) when p = 3, then Gp is a homomorphic image of 7L/37L (f! 7L/3i 7L where i ::> ° 
h) when p > 3, then Gp is a cyclic group. 

(II) Assume (Rj , Mj)is a principal ideal ring which is not a field and p a prime integer 
such that p divides Ord{G) and p E Mj 
(a) Assume p = 2, 
A) (i) Gp '" 7L/27L (f! 7L/2i 7L with i ::> 1 

(ii) when MJ i 0, then Gp '" 7L/27L (f! 7L/27L. 
B) (i) Gp is a cyclic group 

(ii) When Mf i 0, then 
(a) Gp '" 7L/2i 7L, where 1:S i:S 2, if2 E MJ 

(b) Gp '" 7L/2i 7L, where 1 :S i:S 3, if2 E Mj \ MJ. 
(fJ) Assume p = 3, 

A) Gp '" 7L/37L (f! 7L/37L, 3 E Mj \ MJ and MJ = 0. 
B) (i) Gp is a cyclic group 

(ii) When Mf i 0, then 
(a) Gp '" 7l./37L, if 3 E MJ 
(b) Gp '" 7L/3 i 7L, where 1 :S i :S 3, if 3 E Mj \ MJ. 

(y) Assume p > 3, . 
(i) Gp is a cyclic group 
(ii) If Mf i 0, then p ¢ Mf and 

(a) Gp '" 7L/p7L, if p E MJ 
(b) Gp '" 7L/pi 7L, where 1 :S i :S 3, if p E Mj \ MJ. 
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Proof. If R is an Artinian principal ideal ring, then R = Rl EB ... EB RSl where each 
(Rj, Mj ) is a local Artinian principal ideal ring (ef. [7, Vol.II, Theorem 7.15]). It is 
easy to see that R[G] has the n-generator property if and only if each Rj[G] has the 
n-generator property. 

(I) If R j is a field, it suffices to apply [1, Remark 1.2 (1)] and [14, Example 2.6]. 
(II) Assume that R j is not a field. It is stated in [5, Theorem 19.15] that when.the 

order of G is a unit of Rj and Rj is a principal ideal ring then so is Rj [G]. Therefore, 
we'may suppose, without loss of generality, that the order of G is not a unit of R j . For 
simplicity, let us denote (Rj , M j ) by (R, M). So Ord(G) = pf'p~' ... p~. E M, where 
each Pi is a prime integer. Hence, ther~ exists P E {PbP2,··· ,Ps} such that P ,E M. 

,Whence p is the characteristic of R/M . Let G = Gp Ell H, where H is a finite group and 
p does not divide Ord(H). Clearly, the order of H is a unit of R. 

('*) If R[G] has the 4-generator property, then its homomorphic image R[Gp ] does 
as well. To conclude, it suffices to apply Propositions 1, 3 and 6. 
. (~) For the case G = Gp , it suffices to apply Propositions 1, 3 and 6. For the general 
case, R[G] = R[H][Gp ]. We notice that R[H] is an Artinian ring [5, Theorem 20.7]. By 
[5, Theorem 19.15], R[H] is a principal ideal ring; and hence R[H] = A, Ell··· (f!Aq where 
each (Ai,Ni ) is a local Artinian principal ideal.ring, 1:S i:S q. Furthermore, MR[H] is 
equal to the nilradical of R[H] by [5, Corollary 9.18], and for k ::> 2 , Mk = ° implies that 
Nik = 0, for each i (see the proof of [1, Theorem 1]). Consequently, for each i, AdGp] 
has the 4-generator property by Propositions 1, 3, 6 and [14, Example 2.6]. Hence R[G] 
has the 4-generator property. ¢ 

We wish to acknowledge the help oE Omar Ameziane Hassani in resolving with the 
. use of a computer the system of 81 linear equations in 81 unknowns which arises in the 
proof oE Proposition 3. 
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)UI)tients of Unit Groups of Commutative Rings 

, ANDERSON, Department of Mathematics, The University of Iowa, Iowa City, 

Rlj~R1I[ADI,T'rE MULLINS, Department of Mathematics, The University ofIowa, Iowa 

For a commutative ring R with identity, let T(R) denote its total quotient ring 
and U(R) its group of units. For an extension of commutative rings R <:: S we can 
form U(S)IU(R), the quotient of the unit groups. In the case where R is an integral 
domain with quotient field K, then U(K)IU(R) = K'IU(R) is the group of divisibility 
of R and is denoted by G(R). Here K' = K - {O} is the multiplicative group of K . 

. We will be particularly interested in the following two questions. 
(1) When is U(S)IU(R) finite or finitely generated? 
(2) When does U(S)IU(R) finite or finitely generated imply that S is a finitely 

generated R-module? 
First, suppose that K = R <:: S = F are both fields. Brandis' Theorem [4J or [8, 

Theorem 4.3.11J answers both questions. . 

BRANDIS' THEOREM. Let K <:: F be a field extension. Then F' I K' is finitely 
generated if and only if (1) K = F or (2) K is finite and [F :.KJ < 00. 

Actually, a stronger result due to L. Avramov and Davis and Maroscia [6J is 
true. Let K <:: F be a field extension and let ro(F'IK') = diIllQ((F'IK') 01Q1) 
be the torsion-free rank of F* / K"'. Then the following statements are equivalent: 
(a) ro(F' I K') < 00, (b) rolF' I K') = 0, (c) char K =' p > 0 and either F is algebraic 
over Zp or F is purely inseparable over 1(. For a simpler proof of this result and for a 
discussion of the group F' I K', the reader is referred to [5J. 

Here, in the eJdreme case where R <:: S are both fields, U(S)IU(R) is finitely 
generated if and only if it is finite, and in this case S is a finitely generated R-module. 
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