Group Rings $R[G]$ with 4-Generated Ideals When R Is an Artinian Principal Ideal Ring

SOUAD AMEZIANE HASSANI Département de Mathématiques, Faculté des Sciences Fès-Saïss, Université de Fès, Fès, Morocco.

SALAH-EDDINE KABBAJ Département de Mathématiques et Informatique, Faculté des Sciences Dhar Al-Mehraz, Université de Fès, Fès, Morocco.

Considerable work, part of it summarized in Sally's book [15], has been concerned with the number of generators needed for ideals in a commutative ring R. If there is a fixed bound n, valid for all ideals, on the number of generators needed, R is said to have the n-generator property. That means, each ideal of R is n-generated (i.e. can be generated by n elements). If $\operatorname{dim} R>1$, no such bound exists. Considerable interest has been shown in rings with the n-generator property. See for example [4], [11], [15] and [16].

Let G be an abelian group. The group ring associated to R and G, denoted by $R[G]$, is the ring of elements of the form $\sum_{g \in G} a_{g} X^{g}$, where $\left\{a_{g} / g \in G\right\}$ is a family of elements of R which are almost all zero. We refer to [5] for elementary properties of group rings. Of particular interest is the study of the question of when $R[G]$ has the n-generator property. This question, either in general or for specific choice of n, has received further attention by several authors. See [1],[3], [9], [10], [13], [14] and [17].

From the restriction on Krull dimension, we have $1 \geq \operatorname{dim} R[G]=\operatorname{dim} R+r$; where r denotes the torsion free rank of G. If $r=0$, then G must be a finite group. If $r=1$, then $G \cong \mathbb{Z} \oplus H$, where H is a finite abelian group and \mathbb{Z} denotes the group of the integers. We will focus on the case in which R is Artinian and $r=0$, i.e. G is a finite abeliañ group, since the case $r=1$ was considered by Okon and Vicknair in [14, Theorem 5.1]. Furthermore, [1] is entirely devoted to $n=3$. However, for $n \geq 4$ and under our
assumptions, the problem of when $R[G]$ has the n-generator property remains open. In this note, we consider the problem of determining when a group ring $R[G]$ has the 4-generator property, when R is an Artinian principal ideal ring and G is a finite group

Throughtout this note rings and groups are taken to be commutative and the groups written additively. If p is a prime integer, then the p-sylow subgroup of the finite When I is an ideal of R, we shall use $\mu(I)$ to
别 n, the n generators of I may be chosen from elements of a given set of generators of I (cf. [12, (5.3), p. 14])

PROPOSITION 1 Assume that G is a nontrivial finite 2-group, (R, M) is an Ar tinian local principal ideal ring which is not a field and $2 \in M$. Then $R[G]$ has the 4-generator property if and only if
(i) $G \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2^{i} \mathbb{Z}$ with $i \geq$
(ii) when $M^{2} \neq 0$, then $G \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
B) (i) G is a cyclic group
(ii) When $M^{4} \neq 0$, then
(a) $G \cong 2 / 2$, where $1 \leq i \leq 2$, if $2 \in M^{2}$
(b) $G \cong \mathbb{Z} / 2^{i} \mathbb{Z}$, where $1 \leq i \leq 3$, if $2 \in M \backslash M^{2}$

Before proving this proposition we establish a lemma which will be used frequently in the sequel.

LEMMA 2 Assume that (R, M) is a local principal ideal ring and G is a finite cyclic roup. Let N the the local ring $R[G]$. Then $R[G]$ has the 4-generator property if and only if N, N^{2}, N^{3} and N^{4} are 4-generated.
Proof. $R[G]$ is local with maximal ideal $N=\left(r, 1-X^{g}\right)$, where r generates M in R and g is the generator of G. Suppose that N, N^{2}, N^{3} and N^{4} are 4-generated. We need to is prove that each proper ideal $I \not \subset N^{3}$. Let $x \in I \backslash N^{3}$,

If $x \in N^{2}, x=\lambda r^{2}+\mu r\left(1-X^{g}\right)+\delta\left(1-X^{g}\right)^{2}$ for some $\lambda, \mu, \delta \in R[G]$. Since If $x \in N^{2}, x=\lambda r^{2}+\mu r\left(1-X^{g}\right)$ Therefore $N^{2}=\left(x, r\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right)$ or $x \notin N^{2}$, then $=\left(r^{2}, \dot{x},\left(1-X^{g}\right)^{2}\right)$ or $N^{2}=\left(r^{2}, r\left(1-X^{g}\right), x\right)$. Hence $\mu\left((N /(x))^{2}\right)=\mu\left(N^{2} /(x)\right) \leq 2$. By $[11$, Theorerm $1,6 \Rightarrow 1], R[G] /(x)$ has the 2 -generator property. Then $\mu(I /(x)) \leq 2$. Therefore I is $4-$ generated.

If $x \notin N^{2}, x \in N$ because $R[G]$ is local with maximal ideal N. By [8, Theorem 159]; $\mu(N /(x))=\mu(N)-1=1$. So $R[G] /(x)$ is principal then $\mu(I /(x))=1$, and hence $\mu(I) \leq 2$. Consequently R[G] has the 4-generator property. \diamond

Proof of Proposition 1. \Rightarrow] Assume $G \cong \mathbb{Z} / 2^{t_{1}} \mathbb{Z} \oplus \mathbb{Z} / 2^{t_{2}} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / 2^{t_{s}} \mathbb{Z}$ where $0<$ $t_{1} \leq t_{2} \leq \cdots \leq t_{s}$. If $R[G]$ has the 4-generator property, then the homomorphic image $t_{1} \leq t_{2} \leq \cdots \leq t_{s}$.
$(R / M)[G]$ does also. By [14, Corollary 2.2]; $s \leq 3$.

We first show that the case of $s=3$ does not hold. Indeed, if $R\left[\mathbb{Z} / 2^{t_{1}} \mathbb{Z} \oplus \mathbb{Z} / 2^{t_{2}} \dot{\mathbb{Z}} \oplus\right.$ $\left.\mathbb{Z} / 2^{t_{3}} \mathbb{Z}\right]$ has the 4-generator property, then the homomorphic image $R[\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus$ $\mathbb{Z} / 2 \mathbb{Z}]$ does also. Since R is a local ring with residue field of characteristic $2, R[\mathbb{Z} / 2 \mathbb{Z} \oplus$ $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}]$ is local with maximal ideal $N:=\left(r, 1-X^{g}, 1-X^{h}, 1-X^{k}\right)$, where r
generates M in R and $\langle g\rangle \oplus\langle h\rangle \oplus<k\rangle=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ (cf. [5, Theorem 19:1 and Corollary 19.2]). Since $|<g>|=2,\left(\left(1-X^{g}\right)^{2}=2\left(1-X^{g}\right) \in\left(r\left(1-X^{g}\right)\right)\right.$ Likewise for $\left(1-X^{h}\right)^{2}$ and $\left(1-X^{k}\right)^{2}$. Hence $N^{2}=\left(r^{2}, r\left(1-X^{g}\right), r\left(1-X^{h}\right), r(1\right.$ $\left.\left.X^{k}\right),\left(1-X^{g}\right)\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{k}\right),\left(1-X^{h}\right)\left(1-X^{k}\right)\right)$. The four generators of N^{2} can be chosen from the original generators of N^{2}.

If $r\left(1-X^{g}\right)$ is a redundant generator, then under the augmentation map $R[<g\rangle$ $][<h>\oplus<k>] \longrightarrow R[<g>], r\left(1-X^{g}\right) \in\left(r^{2}\right) R[<g>]$. Hence $R r=R r^{2}$, a contradiction. Likewise for $r\left(1-X^{h}\right)$ and $r\left(1-X^{k}\right)$.

If $\left(1-X^{g}\right)\left(1-X^{h}\right)$ is redundant, then applying the augmentation map $R[<g\rangle$ $\oplus<h>][<k>] \longrightarrow R[<g>\oplus<h>]$ and passing to the homomorphic image $R /(r)[<g>\oplus<h>]$ yields $\left(1-X^{g}\right)\left(1-X^{h}\right)=0$. Hence $1 \in R r$, a contradiction Likewise for $\left(1-X^{g}\right)\left(1-X^{k}\right)$ and $\left(1-X^{h}\right)\left(1-X^{k}\right)$. Therefore N^{2} needs more than four generators. Consequently $s \leq 2$.
A) (i) Assume $G \cong \mathbb{Z} / 2^{t_{1}} \mathbb{Z} \oplus \mathbb{Z} / 2^{t_{2}} \mathbb{Z}$ where $t_{1}>1$. So the homomorphic image $R[\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}]$ has the 4 -generator property. Then N^{2} is 4 -generated, where $N=$ $\left(r, 1-X^{g}, 1-X^{h}\right)$ where r generates M in R and $\left.\langle g\rangle \oplus<h\right\rangle=\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$.

It is easy to see that $\left(1-X^{g}\right)^{2}$ and $\left(1-X^{h}\right)^{2}$ are required as generators of N^{2}. Now assume that $r\left(1-X^{g}\right)$ is a redundant generator, then applying the augmentation map $R[\langle g\rangle \oplus<h\rangle] \longrightarrow R[\langle g\rangle]$ and passing to the homomorphic image $R /\left(r^{2}\right)[\langle g\rangle]$, yields $r\left(1-X^{g}\right) \in\left(\left(1-X^{g}\right)^{2}\right) R /\left(r^{2}\right)[<g>]$. By [1, Lemma 1.5], $r=4 \lambda$ for some $\lambda \in R /\left(r^{2}\right)$. This forces $R r=R r^{2}$, a contradiction. Likewise for $r\left(1-X^{h}\right)$. Consequently,

$$
N^{2}=\left(r\left(1-X^{g}\right), r\left(1-X^{h}\right),\left(1-X^{g}\right)^{2},\left(1-X^{h}\right)^{2}\right) .
$$

Since $\left(1-X^{g}\right)\left(1-X^{h}\right) \in N^{2}$, then passing to the homomorphic image $R /(r)[<g\rangle$ $\oplus(1)<h>]$ yields $\left(1-X^{g}\right)\left(1-X^{h}\right) \in\left(\left(1-X^{g}\right)^{2},\left(1-X^{h}\right)^{2}\right) R /(r)[<g>\oplus<h>]$. Thus $\left(1-X^{g}\right)^{3}\left(1-X^{h}\right)^{3} \in\left(\left(1-X^{g}\right)^{4},\left(1-X^{h}\right)^{4}\right)=(0)$ in $R /(r)[<g>\oplus<h>]$, since $\left(1-X^{g}\right)^{4}=2\left(1-2 X^{h}+3 X^{2 h}\right)$ and $2 \in(r)$. Then $1 \in(r)$, a contradiction. Therefore N^{2} needs more than four generators. Consequently, $G \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2^{i} \mathbb{Z}$ where $i \geq 1$.
(ii) Assume $G \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2^{i} \mathbb{Z}$ with $i>1$ and $M^{2} \neq 0$. Then $R[\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}]$ has the 4-generator property. Therefore N^{2} is 4-generated, where $N=\left(r, 1-X^{g}, 1-X^{h}\right)$, r generates M in R and g, h are the generators of $\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z}$, respectively. Since ($1-$ $\left.X^{g}\right)^{2}=2\left(1-X^{g}\right)$, then

$$
N^{2}=\left(r^{2}, r\left(1-X^{g}\right), r\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right),\left(1-X^{h}\right)^{2}\right) .
$$

Since $M^{2} \neq 0$ and $|<h>|>2$, it is clear that r^{2} and $\left(1-X^{h}\right)^{2}$ are required as generators of N^{2}. Furthermore, using arguments similar to ones used above, we obtain that $r\left(1-X^{g}\right), r\left(1-X^{h}\right)$ and $\left(1-X^{g}\right)\left(1-X^{h}\right)$ also are required as generators of N^{2}. Then N^{2} needs more than four generators, a contradiction. Consequently, $G \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ when $M^{2} \neq 0$.
$\Leftrightarrow]$ (i) Assume $M^{2}=0$ and $G \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2^{i} \mathbb{Z}$ with $i>1$. Then $R\left[\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2^{i} \mathbb{Z}\right]$ is a local ring with maximal ideal $N=\left(r, 1-X^{g}, 1-X^{h}\right)$, where r generates M in R and $<g>\oplus<h>=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2^{i} \mathbb{Z}$. Since $r^{2}=0,|<g>|=2$ and $2 \in(r)$ we get $N^{2}=\left(r\left(1-X^{g}\right), r\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right),\left(1-X^{h}\right)^{2}\right)$ and $N^{3}=\left(r\left(1-X^{g}\right)(1-\right.$ $\left.\left.X^{h}\right), r\left(1-X^{h}\right)^{2},\left(1-X^{g}\right)\left(1-X^{h}\right)^{2},\left(1-X^{h}\right)^{3}\right)$.

Let I be a proper ideal of $R[G]$. Since $N^{3}=\left(1-X^{h}\right) N^{2},[11$, Lemma 2] implies that $\mu(I) \leq \mu\left(I+N^{2}\right)$. In order to show that I is 4-generated, we may assume $N^{2} \subset I$. Let $x \in I \backslash N^{2}, x \in N$. By [8, Theorem 159], $\mu(N /(x))=\mu(N)-1=2$. Let us show that $\mu\left((N /(x))^{2}\right) \leq 2$. Since $\mu(N /(x))=2$, we have $N=\left(r, x, 1-X^{g}\right), N=\left(r, x, 1-X^{h}\right)$ or $N=\left(x, 1-X^{g}, 1-X^{h}\right)$.

If $N=\left(r, x, 1-X^{g}\right)$ then $N /(x)=\left(\bar{r}, \overline{\overline{1}-\overline{X^{g}}}\right)$, where bars denote images under the natural map $R[G] \rightarrow R[G] /(x)$. Since $r^{2}=0$ then $(N /(x))^{2}=\left(\overline{r\left(1-X^{g}\right)}, \overline{\left(1-X^{g}\right)^{2}}\right)$, and hence $\mu\left((N /(x))^{2}\right) \leq 2$. The argument for $N=\left(r, x, 1-X^{h}\right)$ is similar.

If $N=\left(x, 1-X^{g}, 1-X^{h}\right)$ then $(N /(x))^{2}=\left(\overline{\left(1-X^{g}\right)\left(1-X^{h}\right)}, \overline{2\left(1-X^{g}\right)}, \overline{\left(1-X^{h}\right)^{2}}\right)$. f $2 \in M^{2}=(0)$, we're finished. Otherwise, $M=(r)=(2)$. Clearly $2 \in N$. Then $2=\lambda x+\mu\left(1-X^{g}\right)+\delta\left(1-X^{h}\right)$ for some $\lambda, \mu, \delta \in R[G]$. Furthermore, we may assume hat μ and δ are not invertible. So $\lambda, \delta \in N$, hence $2=\lambda^{\prime} x+\mu^{\prime}\left(1-X^{g}\right)\left(1-X^{h}\right)+\beta^{\prime}(1-$ $\left.X^{g}\right)^{2}+\delta^{\prime}\left(1-X^{h}\right)^{2}=\lambda^{\prime} x+\mu^{\prime}\left(1-X^{g}\right)\left(1-X^{h}\right)+2 \beta^{\prime}\left(1-X^{g}\right)+\delta^{\prime}\left(1-X^{h}\right)^{2}$, for some $\lambda^{\prime}, \mu^{\prime}, \beta^{\prime}, \delta^{\prime} \in R[G]$. Then $2\left(1-\beta^{\prime}\left(1-X^{g}\right)\right)=\lambda^{\prime} x+\mu^{\prime}\left(1-X^{g}\right)\left(1-X^{h}\right)+\delta^{\prime}\left(1-X^{h}\right)^{2}$. Since $1-\beta^{\prime}\left(1-X^{g}\right)$ is a unit in $R[G], \overline{2} \in\left(\overline{\left(1-X^{g}\right)\left(1-X^{h}\right)}, \overline{\left(1-X^{h}\right)^{2}}\right)$ and so does $\overline{2\left(1-\overline{X^{g}}\right)}$. Consequently, $(N /(x))^{2}=\left(\overline{\left(1-X^{g}\right)\left(1-X^{h}\right)}, \overline{\left(1-X^{h}\right)^{2}}\right)$, and hence $\mu\left((N /(x))^{2}\right) \leq 2$.

By $\{11$, Theorem $1(6 \Rightarrow 1)], R[G] /(x)$ has the 2 -generator property. Then $I /(x)$ is --generated, and hence I is 4-generated. This completes the proof of (i).
\Leftrightarrow] (ii) Assume $G \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and $M^{2} \neq 0$. Then $R[\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}]$ is a local ing with maximal ideal $N=\left(r, 1-X^{g}, 1-X^{h}\right)$, where r generates M in R and $<$ $g>\oplus<h>=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. Since $|<g>|=|<h>|=2$ and $2 \in(r)$, we get $N^{2}=\left(r^{2}, r\left(1-X^{g}\right), r\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right)\right)$ and $N^{3}=\left(r^{3}, r^{2}\left(1-X^{g}\right), r^{2}(1-\right.$ $\left.\left.X^{h}\right), r\left(1-X^{g}\right)\left(1-X^{h}\right)\right)$.

Let I be a proper ideal of $R[G]$. Since $N^{3}=r N^{2}$, [11, Lemma 2] implies that $\mu(I) \leq \mu\left(I+N^{2}\right)$. As before, we may assume that $N^{2} \subset I$. Let $x \in I \backslash N^{2}, x \in N$. By [8, Theorem 159], $\mu(N /(x))=\mu(N)-1=2$. Thus $N=\left(r, x, 1-X^{g}\right)$ or $N=$ (r $x, 1-X^{h}$) or $N=\left(x, 1-X^{g}, 1-X^{h}\right)$. It is easly seen that for the two first cases we
 have $\mu\left((N /(x))^{2}\right) \leq 2$. Now let consider
Then $\left.(N /(x))^{2}=\overline{\left(1-X^{g}\right)\left(1-X^{h}\right)}, \overline{2\left(1-X^{g}\right)}, \overline{2\left(1-X^{h}\right)}\right)$.

If $2 \in M^{2}=\left(r^{2}\right)$, since $\bar{r} \in N /(x)$, then $\overline{2}=\overline{\lambda 2\left(1-X^{g}\right)}+\overline{\mu\left(1-X^{g}\right)\left(1-X^{h}\right)}+$ $\overline{\delta 2\left(1-X^{h}\right)}$ for some λ, μ and $\delta \in R[G]$. We get, by induction,

$$
\begin{aligned}
(N /(x))^{2} & \left.=\left(\overline{\left(1-X^{g}\right)\left(1-X^{h}\right.}\right)\right)+(N /(x))^{3}, \\
& =\left(\overline{\left(1-X^{g}\right)\left(1-X^{h}\right)}\right)+(N /(x))^{4}, \\
& =\left(\overline{\left(1-X^{g}\right)\left(1-X^{h}\right)}\right)+(N /(x))^{n}, \text { for each } n \geq 3 .
\end{aligned}
$$

Since $R[G]$ is a local Artinian ring, there exists $n_{0} \in N$ such that $(N /(x))^{n}=0$ for each $n \geq n_{0}$. Therefore. $(N /(x))^{2}=\left(\overline{\left(1-X^{g}\right)\left(1-X^{h}\right)}\right)$, and hence $\mu\left((N /(x))^{2}\right) \leq 2$.

If $2 \in M \backslash M^{2}$ then $M=(r)=(2)$. Clearly $2 \in N$. Then $2=\lambda x+\mu(1-$ $\left.X^{s}\right)+\delta\left(1-X^{h}\right)$ for some $\lambda, \mu, \delta \in R[G]$. Applying arguments used above for (i), we
see that $\overline{2} \in\left(\overline{\left(1-X^{g}\right)\left(1-X^{h}\right)}\right)$, and so do $\overline{2\left(1-X^{g}\right)}$ and $\overline{2\left(1-X^{h}\right)}$. Consequently, $\mu\left((N /(x))^{2}\right) \leq 2$. As before, we conclude that $\mu(I /(x)) \leq 2$. Therefore I is 4 -generated, as desired. This completes the proof of (ii).
B) Suppose that G is a cyclic group $(s=1)$. Let g be the generator of G. we have

$$
\begin{aligned}
N & =\left(r, 1-X^{g}\right) \\
N^{2} & =\left(r^{2}, r\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) \\
N^{3} & =\left(r^{3}, r^{2}\left(1-X^{g}\right), r\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right) \\
N^{4} & =\left(r^{4}, r^{3}\left(1-X^{g}\right), r^{2}\left(1-X^{g}\right)^{2}, r\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)
\end{aligned}
$$

(i) Assume $M^{4}=0$. Applying Lemma 2, we conclưde that $R[G]$ has the 4-generator property.
(ii) (a) Assume $M^{4} \neq 0$ and $2 \in M^{2}$. In order to conclude, it suffices to show that $R[\mathbb{Z} / 4 \mathbb{Z}]$ has the 4 -generator property while $R[\mathbb{Z} / 8 \mathbb{Z}]$ does not. Suppose that $R[\mathbb{Z} / 8 \mathbb{Z}]$ has the 4 -generator property. Then N^{4} is 4 -generated.

Since $M^{4} \neq 0$ and $|<g>|>4$, it is easily seen that r^{4} and $\left(1-X^{g}\right)^{4}$ are required as generators of N^{4}.
If $r^{3}\left(1-X^{g}\right)$ is a redundant generator of N^{4}, then passing to the homomorphic image $\left(R /\left(r^{4}\right)\right)[<g>]$, yields $r^{3}\left(1-X^{g}\right) \in\left(\left(1-X^{g}\right)^{2}\right)\left(R /\left(r^{4}\right)\right)[<g>]$. By [1, Lemma 1.5], $r^{3}=8 \lambda$ for some $\lambda \in R /\left(r^{4}\right)$. It follows that $r^{3}=0$ in $R /\left(r^{4}\right)$, a contradiction
If $r^{2}\left(1-X^{g}\right)^{2}$ is redundant, then by passing to the homomorphic image $\left(R /\left(r^{3}\right)\right)[<g>]$,
we obtain that $r^{2}\left(1-X^{g}\right)^{2}=a\left(1-X^{g}\right)^{3}$ with $a=\sum_{i=0}^{i=7} a_{i} X^{i g}$, where $a_{i} \in R /\left(r^{3}\right)$. After setting corresponding terms equal, we obtain the following equations:

$$
a_{o}-a_{5}+3 a_{6}-3 a_{7}=r^{2}
$$

X^{9}
$X^{2 g}$
$X^{3 g}$
$-a_{o}+3 a_{1}-3 a_{2}+a_{3}=0$
$-a_{2}+3 a_{3}-3 a_{4}+a_{5}=0$
$X^{7 g} \quad-a_{4}+3 a_{5}-3 a_{6}+a_{7}=0$
This yields $r^{2}=0$ in $R /\left(r^{3}\right)$. Hence $R r^{3}=R r^{2}$, a contradiction.
If $r\left(1-X^{g}\right)^{3}$ is redundant, then by passing to the homomorphic image $\left(R /\left(r^{2}\right)\right)[<g>]$, we obtain that $r\left(1-X^{g}\right)^{3} \in\left(\left(1-X^{g}\right)^{4}\right)\left(R /\left(r^{2}\right)\right) \mid<g>$. Since $2 \in M^{2}=\left(r^{2}\right)$,

N^{4} needs more than four generators, contradicting the fact that N^{4} is 4-generated.
Now let us show that $R[\mathbb{Z} / 4 \mathbb{Z}]$ has the 4 -generator property. If $2 \in M^{2} \backslash M^{3}$ then $M^{2}=\left(r^{2}\right)=(2)$. We have

$$
\begin{aligned}
1 & =\left(1-X^{g}+X^{g}\right)^{4} \\
& =1+4\left(1-X^{g}\right) X^{3 g}+6\left(1-X^{g}\right)^{2} X^{2 g}+4\left(1-X^{g}\right)^{3} X^{g}+\left(1-X^{g}\right)^{4}
\end{aligned}
$$

Then $2\left(1-X^{g}\right)^{2} \in\left(4\left(1-X^{g}\right),\left(1-X^{g}\right)^{4}\right) \subset\left(r^{4},\left(1-X^{g}\right)^{4}\right)$. Therefore $r^{2}\left(1-X^{g}\right)^{2} \in$ $\left(r^{4},\left(1-X^{g}\right)^{4}\right)$. Consequently, N^{4} is 4 -generated. If $2 \in M^{3}$, we get

$$
\begin{aligned}
\left(1-X^{g}\right)^{4} & =1-4 X^{g}+6 X^{2 g}-4 X^{3 g}+X^{4 g} \\
& =2-4 X^{g}+6 X^{2 g}-4 X^{3 g} \\
& =2-2 X^{g}-2 X^{g}+2 X^{2 g}+4 X^{2 g}-4 X^{3 g} \\
& =2\left(1-X^{g}\right)-2 X^{g}\left(1-X^{g}\right)+4 X^{2 g}\left(1-X^{g}\right) \\
& =2\left(1-X^{g}\right)\left(1-X^{g}+2 X^{2 g}\right)
\end{aligned}
$$

Then $\left(1-X^{g}\right)^{4} \in\left(2\left(1-X^{g}\right)\right) \subset\left(r^{3}\left(1-X^{g}\right)\right)$. Hence N^{4} is 4 -generated. Lemma 2 completes the proof.
b) Assume $M^{4} \neq 0$ and $2 \in M \backslash M^{2}$. It suffices to prove that $R[\mathbb{Z} / 8 \mathbb{Z}]$ has the 4-generator property while $R[\mathbb{Z} / 16 \mathbb{Z}]$ does not. Clearly $M=(r)=(2)$ and

$$
N^{4}=\left(16,8\left(1-X^{g}\right), 4\left(1-X^{g}\right)^{2}, 2\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)
$$

Assume $\langle g\rangle=\mathbb{Z} / 8 \mathbb{Z}$. We have

$$
1=\left(1-X^{g}+X^{g}\right)^{8}
$$

$=\sum_{i=o}^{i=8}\binom{8}{i}\left(1-X^{g}\right)^{i} X^{(8-i) g}$
$=1+8\left(1-X^{g}\right) X^{7 g}+28\left(1-X^{g}\right)^{2} X^{6 g}+56\left(1-X^{g}\right)^{3} X^{5 g}$

$$
+\left(1-X^{g}\right)^{4}\left(\sum_{i=4}^{i=8}\binom{8}{i}\left(1-X^{g}\right)^{(i-4)} X^{(8-i) g}\right)
$$

Then $8\left(1-X^{g}\right) \in\left(4\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{4}\right)$, and hence N^{4} is 4 -generated. Thus $R[\mathbb{Z} / 8 \mathbb{Z}]$ has the 4 -generator property,
Assume $\langle g\rangle=\mathbb{Z} / 16 \mathbb{Z}$. Let prove that N^{4} is not 4-generated. It is clear that 16 Assured as generators of N^{4}
If $8\left(1-X^{g}\right)$ is redundant, then passing to the homomorphic image $(R /(16))[\langle g\rangle]$, If $8\left(1-X^{g}\right)$ is redundant, then passing to the . yields $8\left(1-X^{g}\right) \in\left(\left(1-X^{g}\right)^{2}\right)(R /(16))[<g>]$. By
in $R /(16)$. Hence $8=0$ in $R /(16)$, a contradiction. If $2\left(1-X^{g}\right)^{3}$ is redundant, then by passing to the hon
we obtain that $2\left(1-X^{g}\right)^{3}=a\left(1-X^{g}\right)^{4}$ with $a=\sum_{i=0}^{i=15} a_{i} X^{i g}$, where $a_{i} \in R /(4)$.
After setting corresponding terms equal, we obtain among other equations the following :

ing :	$a_{o}+a_{12}+2 a_{14}=2$
X^{o}	$2 a_{o}+a_{2}+a_{14}=2$
$X^{2 g}$	$a_{o}+2 a_{2}+a_{4}=0$
$X^{4 g}$	$a_{2}+2 a_{4}+a_{6}=0$
$X^{6 g}$	$a_{4}+2 a_{6}+a_{8}=0$
$X^{8 g}$	$a_{6}+2 a_{8}+a_{10}=0$
$X^{10 g}$	$a_{8}+2 a_{10}+a_{12}=0$
$X^{12 g}$	$a_{10}+2 a_{12}+a_{14}=0$.

After resolving this system, we obtain $2=0$ in $R /(4)$, then $2 \in M^{2}$, a contradiction.
If $4\left(1-X^{g}\right)^{2}$ is redundant, then passing to the homomorphic image $\left.(R /(8))[<g\rangle\right]$, yields $\left.4\left(1-X^{g}\right)^{2}=a\left(1-X^{g}\right)^{3}\right)$ where $a \in(R /(8))[<g>]$. As before, we obtain a system of 16 linear equations in 16 unknowns. After resolving this system, we obtain $4=0$ in $R /(8)$, a contradiction ($M^{4} \neq 0$).

It follows that N^{4} needs more than four generators. Hence $R[\mathbb{Z} / 16 \mathbb{Z}]$ does not have the 4 -generator property. This completes the proof of Proposition $1 . \diamond$

PROPOSITION 3 Assume that G is a nontrivial finite $3-$ group,(R, M) is an Artinian local principal ideal ring which is not a field and $3 \in M$. Then $R[G]$ has the 4-generator property if and only if
A). $G \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}, 3 \in M \backslash M^{2}$ and $M^{2}=0$.
B) (i) G is a cyclic group
(ii) When $M^{4} \neq 0$, then
(a) $G \cong \mathbb{Z} / 3 \mathbb{Z}$, if $3 \in M^{2}$
(b) $G \cong \mathbb{Z} / 3^{i} \mathbb{Z}$, where $1 \leq i \leq 3$, if $3 \in M \backslash M^{2}$.

LEMMA 4 Let (R, M) be a local ring such that M^{n} is n-generated, where n is a positive integer. Then for each ideal I of $R, \mu(I) \leq \mu\left(I+M^{n-1}\right)$.
Proof. We may assume that R has an infinite residue field (see [15, p.10]). Since M^{n} is n-generated, then [15, Theorem 2.3, p.36] implies that $M^{n}=y M^{n-1}$ for some $y \in M$. By [11, Lemma 2], $\mu(I) \leq \mu\left(I+M^{n-1}\right)$ for each ideal I of R. \diamond

LEMMA 5 Let (R, M) be a local ring such that M^{2} is 3 -generated, I a proper ideal of R and $x \in I \backslash M^{3}$ such that $x \in M^{2}$. Then $\mu(I /(x)) \leq \mu(M /(x))$.
Proof. M^{2} is 3 -generated and $x \in M^{2} \backslash M^{3}$ implies that $\mu\left((M /(x))^{2}\right)=\mu\left(M^{2} /(x)\right) \leq$ $\mu\left(M^{2}\right)-1=2$. By applying Lemma 4 to $R /(x)$, We get $\mu(I /(x)) \leq \mu(I /(x)+M /(x))=$ $\mu(M /(x)) . \diamond$
'Proof of Proposition 3. By hypothesis, $G \cong \mathbb{Z} / 3^{t_{1}} \mathbb{Z} \oplus \mathbb{Z} / 3^{t_{2}} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / 3^{t_{s}} \mathbb{Z}$ where $0<t_{1} \leq t_{2} \leq \cdots \leq t_{s}$. Suppose that $R[G]$ has the 4 -generator property, then the homomorphic image $(R / M)[G]$ does also. By [14, Corollary 2.2], $s \leq 2$.
A) \Rightarrow] If $s=2,\left[14\right.$, Proposition 2.1(a)] implies that $G \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3^{i} \mathbb{Z}$ with $i \geq 1$.

Assume $3 \in M^{2}$. Let $N=\left(r, 1-X^{g}, 1-X^{h}\right)$, where r generates M in R and $\langle\dot{g}\rangle \oplus\langle h\rangle=\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$. We have

$$
N^{2}=\left(r^{2}, r\left(1-X^{g}\right), r\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right),\left(1-X^{g}\right)^{2},\left(1-X^{h}\right)^{2}\right)
$$

Using arguments similar to ones used above it is easy to check that $r\left(1-X^{g}\right), r(1-$ $\left.X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right),\left(1-X^{g}\right)^{2}$ and $\left(1-X^{h}\right)^{2}$ are required as generators of N^{2}. Thus $R[\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / \bar{Z} \mathbb{Z}]$ does not have the 4 -generator property, a contradiction. Consequently, $3 \in M \backslash M^{2}$ and hence $M=(r)=(3)$.

Now assume $M^{2}=(9) \neq 0$. Let $N=\left(3,1-X^{g}, 1-X^{h}\right)$ be the maximal ideal of $R[\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}]$. Consider the ideal $I=(9)+N^{3}$. Then

$$
I=\left(9,3\left(1-X^{g}\right), 3\left(1-X^{h}\right),\left(1-X^{g}\right)^{2}\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right)^{2}\right)
$$

It is easily seen that all these elements are required as generators of I. Thus $R[\mathbb{Z} / 3 \mathbb{Z} \oplus$ $\mathbb{Z} / 3 \mathbb{Z}]$ does not have the 4 -generator property, a contradiction. Consequently, $M^{2}=0$.

We claim that $R\left[\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3^{2} \mathbb{Z}\right]$ does not have the four generator property. Let N be its maximal ideal and g, h the generators of $\mathbb{Z} / 3 \mathbb{Z}$ and $\mathbb{Z} / 3^{2} \mathbb{Z}$, respectively. Then we have

$$
N^{2}=\left(3\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right),\left(1-X^{g}\right)^{2},\left(1-X^{h}\right)^{2}\right)
$$

$$
N^{3}=\left(3\left(1-X^{g}\right), 3\left(1-X^{h}\right)^{2},\left(1-X^{g}\right)^{2}\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right)^{2},\left(1-X^{h}\right)^{3}\right)
$$

If $3\left(1-X^{h}\right)^{2}$ is a redundant generator of N^{3}, then by applying the augmentation map $R[<h>][<g>] \longrightarrow R[<h>]$, we get $3\left(1-X^{h}\right)^{2} \in\left(1-X^{h}\right)^{3} R[<h>]$. By [1, Lemma 1.7], $3=9 \lambda$ for some $\lambda \in R$. Then $M=(3)=(0)$, a contradiction. The arguments for $3\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right)^{2}$ and $\left(1-X^{h}\right)^{3}$ are similar to ones used above. Hence $\mu\left(N^{3}\right)>4$.
$\Leftrightarrow]$ Assume $G \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}, 3 \in M \backslash M^{2}$ and $M^{2}=0$. Let us show that $R[G]$ has the 4-generator property. Let N be the maximal ideal of $R[G]$ and $\langle g\rangle \oplus<h>=$ $\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$. We have

$$
\begin{aligned}
N & =\left(3,1-X^{g}, 1-X^{h}\right) \\
N^{2} & =\left(\left(1-X^{g}\right)^{2},\left(1-X^{h}\right)^{2},\left(1-X^{g}\right)\left(1-X^{h}\right)\right) \\
N^{3} & =\left(3\left(1-X^{g}\right), 3\left(1-X^{h}\right),\left(1-X^{g}\right)^{2}\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right)^{2}\right) \\
N^{4} & =\left(3\left(1-X^{g}\right)^{2}, 3\left(1-X^{h}\right)^{2}, 3\left(1-X^{g}\right)\left(1-X^{h}\right),\left(1-X^{g}\right)^{2}\left(1-X^{h}\right)^{2}\right)
\end{aligned}
$$

Let I be a proper ideal of $R[G]$, we need to prove that I is 4 -generated. Applying Lemma 4 to N^{4}, yields $\mu(I) \leq \mu\left(I+N^{3}\right)$. Since N^{3} is 4-generated, we may assume $N^{3} \subset I$. Let $x \in I \backslash N^{3}$. If $x \in N^{2}$, since N^{2} is 3 -generated, Lemma 5 implies the desired conclusion. If $x \notin N^{2}$; by [8, Theorem 159], it follows that $N=\left(3, x, 1-X^{g}\right)$ or $N=\left(3, x, 1-X^{h}\right)$ or $N=\left(x, 1-X^{g}, 1-X^{h}\right)$. If $N=\left(3, x, 1-X^{g}\right)$ then $N /(x)=$ $\left(\overline{3}, \overline{1-X^{g}}\right)$ and $(N /(x))^{2}=\left(\overline{\left(1-X^{g}\right)^{2}}\right)$, where bars denote images under the natural map $R[G] \rightarrow R[G] /(x)$. As in the proof of Lemma 2, we conclude via part (6) of [11, Theorem 1]. Likewise for $N=\left(3, x, 1-X^{h}\right)$.

If $N=\left(x, 1-X^{g}, 1-X^{h}\right)$, then $\left(\frac{N}{(x)}\right)^{3}=\frac{N^{3}+(x)}{(x)} \subseteq \frac{I}{(x)}$. We consider
separately two cases :
If. $\left(\frac{N}{(x)}\right)^{3} \subset \frac{I}{(x)}$, choose $z \in I$ such that $\bar{z} \in \frac{I}{(x)} \backslash\left(\frac{N}{(x)}\right)^{3}$. Assume $\bar{z} \in\left(\frac{N}{(x)}\right)^{2}$. Since $\left(\frac{N}{(x)}\right)^{2}$ is 3 -generated, Lemma 5 yields

$$
\begin{aligned}
\mu\left(\frac{I}{(x, z)}\right) & =\mu\left(\frac{I /(x)}{(\bar{z})}\right) \\
& \leq \mu\left(\frac{N /(x)}{(\bar{z})}\right) \\
& \leq \mu\left(\frac{N}{(x)}\right) \\
& \leq 2
\end{aligned}
$$

Therefore I is 4 -generated. Now assume $\bar{z} \notin\left(\frac{N}{(x)}\right)^{2}$. Then

$$
\begin{aligned}
\mu\left(\frac{N}{(x, z)}\right) & =\mu\left(\frac{N /(x)}{(\bar{z})}\right) \\
& =\mu\left(\frac{N}{(x)}\right)-1 \\
& =2-1 \\
& =1
\end{aligned}
$$

Thus $\frac{R[G]}{(x, z)}$ is a principal ideal ring, and hence $\frac{I}{(x, z)}$ is principal. Consequently, I is 4-generated

$$
\text { If }\left(\frac{N}{(x)}\right)^{3}=\frac{N^{3}+(x)}{(x)}=\frac{I}{(x)}, \text { then } I=N^{3}+(x) . \text { More precisely }
$$

$$
I=\left(x, 3\left(1-X^{g}\right), 3\left(1-X^{h}\right),\left(1-X^{g}\right)^{2}\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right)^{2}\right)
$$

$x \in N \backslash N^{2}$, then $x=3 a+b\left(1-X^{g}\right)+c\left(1-X^{h}\right)$ for some $a, b, c \in R[G]$. Moreover, we may assume that b and c are not units of $R[G]$. Hence there exist $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \in R[G]$ such that $x=3 a^{\prime}+b^{\prime}\left(1-X^{g}\right)^{2}+c^{\prime}\left(1-X^{h}\right)^{2}+d^{\prime}\left(1-X^{g}\right)\left(1-X^{h}\right)$. Clearly, since $x \notin N^{2}$, a^{\prime} is a unit. If $b^{\prime} \in N$, then $3\left(1-X^{g}\right) \in\left(x,\left(1-X^{g}\right)^{2}\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right)^{2}\right)$ since $x\left(1-X^{g}\right)=\left(a^{\prime}-b^{\prime} X^{g}\right) 3\left(1-X^{g}\right)+c^{\prime}\left(1-X^{g}\right)\left(1-X^{h}\right)^{2}+d^{\prime}\left(1-X^{g}\right)^{2}\left(1-X^{h}\right)$. If b^{\prime} is a unit, then $\left(1-X^{g}\right)^{2}\left(1-X^{h}\right) \in\left(x, 3\left(1-X^{h}\right),\left(1-X^{g}\right)\left(1-X^{h}\right)^{2}\right)$ since $x\left(1-X^{h}\right)=$ $\left(a^{\prime}-c^{\prime} X^{h}\right) 3\left(1-X^{h}\right)+b^{\prime}\left(1-X^{g}\right)^{2}\left(1-X^{h}\right)+d^{\prime}\left(1-X^{g}\right)\left(1-X^{h}\right)^{2}$. In either case, I is 4 -generated. Consequently, $R[\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}]$ has the 4 -generator property, as we wished to show.
B) Assume that G is a cyclic group $(s=1)$. Let g be the generator of G. To show that $R[G]$ has the 4-generator property, by Lemma 2, it suffices to prove that N, N^{2}, N^{3} and N^{4} are 4-generated, where N denotes the maximal ideal of $R[G]$. We have

$$
\begin{aligned}
N & =\left(r, 1-X^{g}\right) \\
N^{2} & =\left(r^{2}, r\left(1-X^{g}\right),\left(1-X^{g}\right)^{2}\right) \\
N^{3} & =\left(r^{3}, r^{2}\left(1-X^{g}\right), r\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{3}\right) \\
N^{4} & =\left(r^{4}, r^{3}\left(1-X^{g}\right), r^{2}\left(1-X^{g}\right)^{2}, r\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)
\end{aligned}
$$

(i) it is clear that N, N^{2}, N^{3} and N^{4} are 4-generated when $M^{4}=0$. Then $R[G]$ has the 4-generator property.
(ii) (a) Assume $M^{4} \neq 0$ and $3 \in M^{2}$. In order to conclude, it suffices to prove that $R[\mathbb{Z} / 3 \mathbb{Z}]$ has the 4-generator property while $R[\mathbb{Z} / 9 \mathbb{Z}]$ does not.

Assume $G=\mathbb{Z} / 3 \mathbb{Z}$. Since $|\langle g\rangle|=3, r\left(1-X^{g}\right)^{3}=-3 r X^{g}\left(1-X^{g}\right) \in\left(r^{3}\left(1-X^{g}\right)\right)$. Hence \dot{N}^{4} is 4-generated. It follows that $R[\mathbb{Z} / 3 \mathbb{Z}]$ has the 4 -generator property, as asserted.

Assume $G=\mathbb{Z} / 9 \mathbb{Z}$. Since $M^{4} \neq 0$ and $|<g>|>4$, it is clear that r^{4} and $\left(1-X^{g}\right)^{4}$ are required as generators of N^{4}. If $r^{3}\left(1-X^{g}\right)$ is redundant, then passing to
the homomorphic image $\left(R /\left(r^{4}\right)\right)\left[<g>\right.$] and applying [1, Lemma 1.5], yields $r^{3}=0$ in $R /\left(r^{4}\right)$, a contradiction. If $r\left(1-X^{g}\right)^{3}$ is redundant, then by passing to the homomorphic image $\left(R /\left(r^{2}\right)\right)[<g>]$, we get $r\left(1-X^{g}\right)^{3} \in\left(\left(1-X^{g}\right)^{4}\right)\left(R /\left(r^{2}\right)\right)[<g>]$, then $r(1-$ $\left.X^{g}\right)^{8}=0$ in $\left(R /\left(r^{2}\right)\right)[<g>]$. So $r=0$ in $R /\left(r^{2}\right)$, a contradiction. If $r^{2}\left(1-X^{g}\right)^{2}$ is $\left.X^{g}\right)^{8}=0$ in $\left.\left(R /\left(r^{2}\right)\right) \ll g\right\rangle$. redundant, the passing 1.7] yields $r^{2}=0$ in $R /\left(r^{3}\right)$, a contradiction. In conclusion, N^{4} needs more than Lemma 1.7] yields $r^{2}=0$ in R / r^{3}, a contrad have the 4-generator property.
four generators, and hence $R[\mathbb{Z} / 9 \mathbb{Z}]$ does not have the $M^{4} \neq 0$ and $3 \in M \backslash M^{2}$. Let us prove that $R[\mathbb{Z} / 27 \mathbb{Z}]$ has the 4-generator b) Assume $M^{4} \neq 0$ and $3 \in M \backslash$
property while $R[\mathbb{Z} / 81 \mathbb{Z}]$ does not.
Assume $G=\mathbb{Z} / 27 \mathbb{Z}$. Clearly, $N=\left(3,1-X^{g}\right)$ and $N^{4}=\left(81,27\left(1-X^{g}\right), 9(1-\right.$
Assume $G=\mathbb{Z} / 27 \mathbb{Z}$. Clearly, $N=$
$\left.\left.X^{g}\right)^{2}, 3\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$. We have
$1=\left(1-X^{g}+X^{g}\right)^{27}$
$=\sum_{i=o}^{i=27}\binom{27}{i}\left(1-X^{g}\right)^{i} X^{(27-i) g}$
$=1+27\left(1-X^{g}\right) X^{26 g}+(27 \times 13)\left(1-X^{g}\right)^{2} X^{25 g}+(9 \times 13 \times 25)\left(1-X^{g}\right)^{3} X^{24 g}$

$$
+\left(1-X^{g}\right)^{4}\left(\sum_{i=4}^{i=27}\binom{27}{i}\left(1-X^{g}\right)^{(i-4)} X^{(27-i) g}\right)
$$

Then $27\left(1-X^{g}\right) \in\left(9\left(1-X^{g}\right)^{2}, 3\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$. Therefore N^{4} is 4-generated. Lemma 2 allows us to conclude.

Assume $G=\mathbb{Z} / 81 \mathbb{Z}$. Using techniques similar to ones used above, one can easily
a
and
Assume $G=\mathbb{Z} / 81 \mathbb{Z}$. Using techniques similar x^{g}. $\left.1-X^{g}\right)^{4}$ are required as generators of N^{4}. check that $81,27\left(1-X^{g}\right), 9\left(1-X^{g}\right)^{2}$ and $\left(1-X^{g}\right.$,
Moreover, if $3\left(1-X^{g}\right)^{3}$ is a redundant generator, then passing to the homomorphic image Moreover, if $3\left(1-X^{g}\right)^{3}$ is a redundant generator, then passing to
$(R /(9))[<g>]$, we get $3\left(1-X^{g}\right)^{3}=a\left(1-X^{g}\right)^{4}$ with $a=\sum_{i=0}^{i=80} a_{i} X^{i g}$, where $a_{i} \in R /(9)$.
Thus setting corresponding terms equal, we obtain a system of 81 linear equations in 81 nown After (with the use of a computer), we obtain $1=0$ in $R(9)$ a contradiction. Consequently, $R[\mathbb{Z} / 81 \mathbb{Z}]$ does not have the 4 -generator property, $R /(9)$, a contradiction. Consequently, $R[\mathbb{Z} / 81 \mathbb{Z}]$ does not \diamond
PROPOSITION 6 Let (R, M) be a local Artinian principal ideal ring which is not a field, p a prime Then $R[G]$ has the 4 -generator property if and only if
(i) G is a cyclic group
(ii) If $M^{4} \neq 0$, then $p \notin M^{4}$ and
(a) $G \cong \mathbb{Z} / p \mathbb{Z}$, if $p \in M^{2}$
(b) $G \cong \mathbb{Z} / p^{i} \mathbb{Z}$, where $1 \leq i \leq 3$, if $p \in M \backslash M^{2}$.

Proof. If $R[G]$ has the 4-generator property, by [14, Proposition 3.5], G is a cyclic group, and if in addition $M^{4} \neq 0$ then $G \cong \mathbb{Z} / p^{i} \mathbb{Z}$ with $i \leq 3$.

Let g be the generator of G and $N=\left(r, 1-X^{g}\right)$ the maximal ideal of $R[G]$. As before, to show that $R[G]$ has the 4 -generator property, by Lemma 2 it suffices to prove that N^{4} is 4-generated. We have

$$
N^{4}=\left(r^{4}, r^{3}\left(1-X^{g}\right), r^{2}\left(1-X^{g}\right)^{2}, r\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)
$$

(i) Clearly, if $M^{4}=0$ then N^{4} is $4-$ generated.
(ii) If $M^{4} \neq 0$, let us show that $R[\mathbb{Z} / p \mathbb{Z}]$ does not have the 4 -generator property when $p \in M^{4}$. Indeed, it is straightforward to check that r^{4} and $\left(1-X^{g}\right)^{4}$ are required as generators of N^{4}. If $r^{3}\left(1-X^{g}\right)$ is redundant, then passing to the homomorphic image $\left(R /\left(r^{4}\right)\right)[<g>]$ and applying [1, Lemma 1.5], yields $\dot{r}^{3}=\lambda p$ for some $\lambda \in R /\left(r^{4}\right)$. Since $p \in M^{4}, r^{3}=0$ in $R /\left(r^{4}\right)$, a contradiction. If $r^{2}\left(1-X^{g}\right)^{2}$ is redundant, then passing to the homomorphic image $\left(R /\left(r^{3}\right)\right)\left[\langle g\rangle\right.$] and applying [1, Lemma 1.7], yields $r^{2}=\lambda p$ for some $\lambda \in R /\left(r^{3}\right)$. Since $p \in M^{4}, r^{2}=0$ in $R /\left(r^{3}\right)$, a contradiction. Finally, If $r\left(1-X^{g}\right)^{3}$ is redundant, then by passing to the homomorphic image $\left(R /\left(r^{2}\right)\right)[<g>]$, we get $r\left(1-X^{g}\right)^{3} \in\left(\left(1-X^{g}\right)^{4}\right)\left(R /\left(r^{2}\right)\right)[<g>]$. So $r\left(1-X^{g}\right)^{p-1} \in\left(\left(1-X^{g}\right)^{p}\right) \subset$ $p\left(R /\left(r^{2}\right)\right)[<g>]$. Since $p \in M^{4}, r\left(1-X^{g}\right)^{p-1}=0$ in $\left(R /\left(r^{2}\right)\right)[<g>]$. Therefore $M=(r)=0$, a contradiction. Thus N^{4} needs more than four generators.
a) Suppose $p \in M^{2}$. Let show that $R[\mathbb{Z} / p \mathbb{Z}]$ has the 4 -generator property while $R\left[\mathbb{Z} / p^{2} \mathbb{Z}\right]$ does not. Indeed, assume $G=\mathbb{Z} / p \mathbb{Z}$. Then
$1=\left(1-X^{g}+X^{g}\right)^{p}$
$=\sum_{i=o}^{i=p}\binom{p}{i}\left(1-X^{g}\right)^{i} X^{(p-i) g}$
$=1+p\left(1-X^{g}\right) X^{(p-1) g}+\frac{p(p-1)}{2}\left(1-X^{g}\right)^{2} X^{(p-2) g}$
$+\frac{p(p-1)(p-2)}{6}\left(1-X^{g}\right)^{3} X^{(p-3) g}$.
$+\left(1-X^{g}\right)^{4}\left(\sum_{i=4}^{i=p}\binom{p}{i}\left(1-X^{g}\right)^{(i-4)} X^{(p-i) g}\right)$.

Hence, since $p>3, p\left(1-X^{g}\right) \in\left(p\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{4}\right)$. If $p \in M^{3}$, then $M^{3}=\left(r^{3}\right)=$ (p). Therefore $r^{3}\left(1-X^{g}\right) \in\left(r^{2}\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{4}\right)$. Otherwise, if $p \in M^{2} \backslash M^{3}$, $M^{2}=\left(r^{2}\right)=(p)$. So $r^{2}\left(1-X^{g}\right) \in\left(r^{2}\left(1-X^{g}\right)^{2},\left(1-X^{g}\right)^{4}\right)$, and hence $r^{2}\left(1-X^{g}\right)^{2} \in$ $\left(r^{2}\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{5}\right) \subset\left(r\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$. Therefore N^{4} is 4 -generated. Consequently, $R[\mathbb{Z} / p \not{Z}]$ has the 4 -generator property, as desired.

Now assume $G=\mathbb{Z} / p^{2} \mathbb{Z}$. As before, and using the fact that $p \in M^{2}$, one can easily see that $r^{4}, r^{3}\left(1-X^{g}\right), r^{2}\left(1-X^{g}\right)^{2}, r\left(1-X^{g}\right)^{3}$ and $\left(1-X^{g}\right)^{4}$ are required as generators of N^{4}. Then $R\left[\mathbb{Z} / p^{2} \mathbb{Z}\right]$ does not have the 4 -generator property.
b) Suppose $p \in M \backslash M^{2}$. It remains to show that $R\left[\mathbb{Z} / p^{3} \mathbb{Z}\right]$ has the 4-generator property. Clearly, $M=(r)=(p)$ and

$$
N^{4}=\left(p^{4}, p^{3}\left(1-X^{g}\right), p^{2}\left(1-X^{g}\right)^{2}, p\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)
$$

We have

$$
1=\left(1-X^{g}+X^{g}\right)^{p^{3}}
$$

$=\sum_{i=o}^{i=p^{3}}\binom{p^{3}}{i}\left(1-X^{g}\right)^{i} X^{\left(p^{3}-i\right) g}$
$=1+\binom{p^{3}}{1}\left(1-X^{g}\right) X^{\left(p^{3}-1\right) g}+\binom{p^{3}}{2}\left(1-X^{g}\right)^{2} X^{\left(p^{3}-2\right) g}$

$$
+\binom{p^{3}}{3}\left(1-X^{g}\right)^{3} X^{\left(p^{3}-3\right) g}+\left(1-X^{g}\right)^{4}\left(\sum_{i=4}^{i=p^{3}}\binom{p^{3}}{i}\left(1-X^{g}\right)^{(i-4)} X^{\left(p^{3}-i\right) g}\right)
$$

It is straightforward that $p^{3}\left(1-X^{g}\right) \in\left(p^{3}\left(1-X^{g}\right)^{2}, p^{3}\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right) \subset\left(p^{2}(1-\right.$ $\left.\left.X^{g}\right)^{2}, p\left(1-X^{g}\right)^{3},\left(1-X^{g}\right)^{4}\right)$. Hence N^{4} is 4 -generated. This completes the proof of Proposition 6. \diamond

The previous propositions were steps to state the following theorem.
THEOREM Let R be an Artinian principal ideal ring and G a nontrivial finite abelian group. Then $R[G]$ has the 4 -generator property if and only if $R=R_{1} \oplus R_{2} \oplus \cdots \oplus R_{s}$ where, for each $j,\left(R_{j}, M_{j}\right)$ is a local Artinian principal ideal ring subject to :
(I) Assume R_{j} is a field of characteristic $p \neq 0$.
(α) when $p=2$, then G_{p} is a homomorphic image of $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \not \mathbb{Z} / 2^{i} \mathbb{Z}$ or $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 2^{i} \mathbb{Z}$ where $i \geq 0$
(β) when $p=3$, then G_{p} is a homomorphic image of $\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3^{i} \mathbb{Z}$ where $i \geq 0$ (γ) when $p>3$, then G_{p} is a cyclic group.
(II) Assume $\left(R_{j}, M_{j}\right)$ is a principal ideal ring which is not a field and p a prime integer such that p divides $\operatorname{Ord}(G)$ and $p \in M_{j}$
(α) Assume $p=2$,
A) (i) $G_{p} \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2^{i} \mathbb{Z}$ with $i \geq 1$
(ii) when $M_{j}^{2} \neq 0$, then $G_{p} \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
B) (i) G_{p} is a cyclic group
(ii) When $M_{j}^{4} \neq 0$, then
(a) $G_{p} \cong \mathbb{Z} / 2^{i} \mathbb{Z}$, where $1 \leq i \leq 2$, if $2 \in M_{j}^{2}$
(b) $G_{p} \cong \mathbb{Z} / 2^{i} \mathbb{Z}$, where $1 \leq i \leq 3$, if $2 \in M_{j} \backslash M_{j}^{2}$.
(β) Assume $p=3$,
A) $G_{p} \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}, 3 \in M_{j} \backslash M_{j}^{2}$ and $M_{j}^{2}=0$.
B) (i) G_{p} is a cyclic group
(a) $G \approx \neq 0$, then
(a) $G_{p} \cong \mathbb{Z} / 3 \mathbb{Z}$, if $3 \in M_{j}^{2}$
(b) $G_{p} \cong \mathbb{Z} / 3^{i} \mathbb{Z}$
(b) $G_{p} \cong \mathbb{Z} / 3^{i} \mathbb{Z}$, where $1 \leq i \leq 3$, if $3 \in M_{j} \backslash M_{j}^{2}$.
(γ) Assume $p>3$,
(i) G_{p} is a cyclic group
(ii) If $M_{j}^{4} \neq 0$, then $p \notin M_{j}^{4}$ and
(a) $G_{p} \cong \mathbb{Z} / p \mathbb{Z}$, if $p \in M_{j}^{2}$
(b) $G_{p} \cong \mathbb{Z} / p^{i} \mathbb{Z}$, where $1 \leq i \leq 3$, if $p \in M_{j} \backslash M_{j}^{2}$.

Proof. If R is an Artinian principal ideal ring, then $R=R_{1} \oplus \cdots \oplus R_{s}$, where each $\left(R_{j}, M_{j}\right)$ is a local Artinian principal ideal ring (cf. [7, Vol.II, Theorem 7.15]). It is easy to see that $R[G]$ has the n-generator property if and only if each $R_{j}[G]$ has the n-generator property.
(I) If R_{j} is a field, it suffices to apply [1, Remark 1.2 (1)] and [14, Example 2.6].
(II) Assume that R_{j} is not a field. It is stated in [5, Theorem 19.15] that when the order of G is a unit of R_{j} and R_{j} is a principal ideal ring then so is $R_{j}[G]$. Therefore, we may suppose, without loss of generality, that the order of G is not a unit of R_{j}. For simplicity, let us denote $\left(R_{j}, M_{j}\right)$ by (R, M). So $\operatorname{Ord}(G)=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}} \in M$, where each p_{i} is a prime integer. Hence, there exists $p \in\left\{p_{1}, p_{2}, \cdots, p_{s}\right\}$ such that $p \in M$. each p_{i} is a prime integer. Hence, there exists $p \in\left\{p_{1}, p_{2}, \cdots, p_{s}\right\}$ such that $p \in \cdot M$.
Whence p is the characteristic of R / M. Let $G=G_{p} \oplus H$, where H is a finite group and Whence p is the characteristic of R / M. Let $G=G_{p} \oplus H$, where H
p does not divide $\operatorname{Ord}(H)$. Clearly, the order of H is a unit of R.
\Leftrightarrow If $R[G]$ has the 4-generator property, then its homomorphic image $R\left[G_{p}\right]$ does as well. To conclude, it suffices to apply Propositions 1,3 and 6 .
(\Leftrightarrow) For the case $G=G_{p}$, it suffices to apply Propositions 1, 3 and 6 . For the general case, $R[G]=R[H]\left[G_{p}\right]$. We notice that $R[H]$ is an Artinian ring [5, Theorem 20.7]. By $\left[5\right.$, Theorem 19.15], $R[H]$ is a principal ideal ring; and hence $R[H]=A_{1} \oplus \cdots \oplus A_{q}$ where each $\left(A_{i}, N_{i}\right)$ is a local Artinian principal ideal ring, $1 \leq i \leq q$. Furthermore, $M R[H]$ is equal to the nilradical of $R[H]$ by [5 , Corollary 9.18], and for $k \geq 2, M^{k}=0$ implies that $N_{i}^{k}=0$, for each i (see the proof of [1, Theorem 1]). Consequently, for each $i, A_{i}\left[G_{p}\right]$ has the 4 -generator property by Propositions $1,3,6$ and [14, Example 2.6]. Hence $R[G]$ has the 4-generator property. \diamond

We wish to acknowledge the help of Omar Ameziane Hassani in resolving with the use of a computer the system of 81 linear equations in 81 unknowns which arises in the proof of Proposition 3.

REFERENCES

[1] S. Ameziane Hassani, M. Fontana and S. Kabbaj. Group rings $R[G]$ with 3-generated ideals when R is Artinian, Communications in Algebra (to appear).
[2] J. T. Arnold and R. Gilmer. The dimension theory of commutative semigroup rings, Houston J. Math. 2 (1976) 299-313.
[3] J. T. Arnold and R. Matsuda. The n-generator property for semigroup rings, Houston J. Math. 12 (1986) 345-356.
[4] I. S. Cohen. Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950) 27-42.
[5] R. Gilmer. Commutative Semigroup Rings, University of Chicago Press, Chicago, 1984.
[6] R. Gilmer. Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[7] N. Jacobson. Basic Algebra. Freeman, 1985 and 1989.
[8] I. Kaplansky. Commutative Rings, University of Chicago Press, Chicago, 1974.
[9] R. Matsuda. Torsion free abelian semigroup rings V, Bull. Fac̣. Sci. Ibaraki Univ. 11 (1979) 1-37:
[10] R. Matsuda. n-Generator property of a polynomial ring, Bull. Fac. Sci., Ibaraki Univ., Series A Math. 16 (1984) 17-23.
[11] K. R. McLean. Local rings with bounded ideals, Journal of Algebra 74 (1982) 328-332.
[12] M. Nagata. Local Rings. Interscience, New York, 1962.
[13] J. Okon, D. Rush and P. Vicknair. Semigroup rings with two-generated ideals, J. London Math. Soc. 45 (1992) 417-432.
[14] J. Okon and P. Vicknair. Group rings with n-generated ideals, Comm. Algebra 20 (1) (1992) 189-217.
[15] J. D. Sally. Number of Generators of Ideals in Local Rings, Lecture Notes in Pure and Applied Mathematics 35, Marcel Dekker, New York, 1978.
[16] A. Shalev. On the number of generators of ideals in local rings, Advances in Math. 59 (1986) 82-94.
[17] A. Shalev. Dimension subgroups, nilpotency indices and the number of generators of ideals in p-group algebras, J. Algebra 129 (1990) 412-438.

Quotients of Unit Groups of Commutative Rings

D.D. ANDERSON, Department of Mathematics, The University of Iowa, Iowa City, IA 52242

BERNADETTE MULLINS, Department of Mathematics, The University of Iowa, Iowa City, IA 52242
.

For a commutative ring R with identity, let $T(R)$ denote its total quotient ring and $U(R)$ its group of units. For an extension of commutative rings $R \subseteq S$ we can form $U(S) / U(R)$, the quotient of the unit groups. In the case where R is an integral domain with quotient field K, then $U(K) / U(R)=K^{*} / U(R)$ is the group of divisibility of R and is denoted by $G(R)$. Here $K^{*}=K-\{0\}$ is the multiplicative group of K. We will be particularly interested in the following two questions.
(1) When is $U(S) / U(R)$ finite or finitely generated?
(2) When does $U(S) / U(R)$ finite or finitely generated imply that S is a finitely generated R-module?

First, suppose that $K=R \subseteq S=F$ are both fields. Brandis' Theorem [4] or [8, Theorem 4.3.11] answers both questions.

BRANDIS' THEOREM. Let $K \subseteq F$ be a field extension. Then F^{*} / K^{*} is finitely generated if and only if (1) $K=\bar{F}$ or (2) K is finite and $[F: K]<\infty$.

Actually, a stronger result due to L. Avramov and Davis and Maroscia [6] is true. Let $K \subseteq F$ be a field extension and let $r_{0}\left(F^{*} / K^{*}\right)=\operatorname{dim}_{\mathbb{Q}}\left(\left(F^{*} / K^{*}\right) \otimes \mathbb{Q}\right)$ true. Let $K \subseteq F$ be a field extension and let $r_{0}\left(F^{*} / K^{*}\right)=\operatorname{dim}_{\mathbb{Q}}\left(\left(F^{*} / K^{*}\right) \otimes \mathbb{Q}\right)$
be the torsion-free rank of F^{*} / K^{*}. Then the following statements are equivalent: be the torsion-free rank of F^{*} / K^{*}. Then the following statements are equivalent:
(a) $r_{0}\left(F^{*} / K^{*}\right)<\infty$, (b) $r_{0}\left(F^{*} / K^{*}\right)=0$, (c) char $K=p>0$ and either F is algebraic (a) $r_{0}\left(F^{*} / K^{*}\right)<\infty$, (b) $r_{0}\left(F^{*} / K^{*}\right)=0$, (c) char $K=p>0$ and either F is algebraic
over \mathbb{Z}_{p} or F is purely inseparable over K. For a simpler proof of this result and for a over \mathbb{Z}_{p} or F is purely inseparable over K. For a simpler pro
discussion of the group F^{*} / K^{*}, the reader is referred to [5].

Here, in the extreme case where $R \subseteq S$ are both fields, $U(S) / U(R)$ is finitely generated if and only if it is finite, and in this case S is a finitely generated R-module.

