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" Considerable work, part of it summarized in Sally’s book [15], has been concerned with

*- the number of generators needed for'ideals in a commutative ring R. If there is a fixed

bound n, valid for all ideals, on the number of generators needed, R is said to have
‘the n—generator property. That means, cach ideal of R is n—generated (i.e. can be
generated by n elements). If dim R > 1, no such bound exists. Considerable interest has
beén shown in rings with the n—generator property. See for example [4], [11], [15] and
{18]. ‘ '
Let G be an abelian group. The group ring associated to R and G, denoted by RG],
is the ring of elements of the form. )] . 4, X9, where {a3/g € G} is a family of clements
of R which are almost all zero. We refer to [5] for elementary properties of group rings.
Of particular interest is the study of the question of when R[G] has the n—generator
property. This question, either in general or for specific choice of n, has received further
attention by several authors. See [11,[3], {9}, {10}, [13], [14] and [17]. _

From the restriction on Krull dimension, we have 1 > dimR[G] = dimB + r, where
7 denotes the torsion free rank of G. If r = 0, then & must be & finite group. If r =1,
then G = Z @ H, where H is & finite abelian group and Z denotes the group of the
integers. We will focus on the case in which B is Artinian and » = 0, i.e. G is a finite
abelian group, since the case r = 1 was considered by Okon and Vicknair in [14, Theorem
5.1). Furthermore, [1] is entirely devoted to n = 3. However, for n > 4 and under our
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assumptions, the problem of when R[G) has the n—generator property remains open.

In this note, we consider the problem of determining when a group ring R[G] has the
4—generator property, when R is an Artinian principal ideal ring and G is a finite group.

Throughtout this note rings and groups are taken to be commutative and the groups
are written additively. If p is a prime integer, then the p—sylow subgroup of the finite
abelian group G will be denoted Gp. When I is an ideal of R, we shall use p(I) to
denote the number of generators in a minimal basis for I, Finally, recall that if I is
an n—generated ideal in a local ring, then the n generators of I may be chosen from
elements of & given set of generators of I (cf. (12, (5.3), p. 14]).

PROPOSITION 1 Assume that G is o nontrivial finite 2— group, (R, M) is an Ar-
tinian local principal ideal Ting which is not a field and 2 € M. Then R[G] has the
4-generator property if and only if
A) (i) G=L/2T HL/2T withi>1
(ii) when M #0, then G = Z[2L SL/2L.
B) (i) G is a cyclic group
(ii) When M* # 0, then
(o) G=Z/2T, where 1 <i<2,if2€ M?
(b) G = T/2L, where 1 <i<3,i2¢€ M\ M2,

Before proving this proposition we establish & lemma which will be used frequently
in the sequel.

LEMMA 2 Assume that (R, M) is a local principal ideal ring and G is a finite cyclic

group. Let N be the mazimal ideal of the local ring R[G]. Then R[G] has the 4-—generator

property if and only if N,N*,N® and N 1 gre 4-- generoted. ‘ \d
an

Proof. R[G] is local with maximal ideal N = (r,1— X9), where r generates M in R
g is the generator of G. Suppose that N, N 2 N® and N* are 4—generated. We need to
prove that each proper ideal T of R[G] is 4— generated. By [16, Corollary 4.2.1), it suffices
to consider the case where I ¢ N°. Let z € I'\ N?, - '

Ifz € N%z = M? 4 pr(l — X9) + 6(1 — X9)* for some A,p,8 € R[G]. Since
z ¢ N®, then X or g or 6 is a unit. Therefore N? = (z,7(1 — X9),(1 — X9)*) or
N3 — (03 (1 X9)) or N = (r2, (1 — X9, z). Hence p(N/(2))?) = p(N?/(a)) < 2.
By [11, Theorerm 1, 6 = 1], R[G]/(x) has the 2-—gencrator property. Then u(I/(z)) < 2.
Therefore I is 4—generated. : :

If + ¢ N%,2 € N because R[G] is local with maximal ideal -N. By [8, Theorem
159), p(N/(z)) = u(N) —1=1. So RIG)/(z) is principal then u(l/(z)) = 1, and hence
u(I) < 2. Consequently R[G| has the 4—generator property. § ‘

Proof of Proposition 1. =] Assume G & Z/2"Z GZ/27L & - & Z/2%Z where 0 <
£y < ta <o+ <t If R[G) has the 4—generator property, then the homomorphic image
(R/M)[G] does also. By [14, Corollary 2.2), s < 3. ]
We first show that the case of s = 3 does not hold. Indeed, if RZ/2"T ®Z/22L &
7 /27 has the 4—generator property, then the homomorphic image R[Z/2Z & Z/2Z &
Z/27) does also. Since R is a local ring with residue field of characteristic 2, R[Z/2Z &
Z/27 & Z/2Z) is local with maximal ideal N := (r,1 — X9 1-X"1- X%y, where v
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generates M in Rand < g> D < h>® <k >=Z/2Z ®Z/2Z ®Z/2Z (cf. [5, Theorem
1%).1.and Corollary 19.2]). Since | < g > | =2, ({1 — X9)? = 2(1 — X9) e (rEl - X9))
I{llgewise for (1 — X*)% and (1 — X*¥)2. Hence N? = (r%,r(1 — X9),7{1 — X*),r(1 -
XF), (1= X9)(1 - X", (1 - X9)(1~X*),(1-—-X")(1-X*)). The four generators,of N?
can be chosen from the original generators of N2, '
If 7(1 — X9) is a redundant generator, then under the augmentation map R[< g >
K h>® < k>— R[<g>], r(l-X% € (r*)R[< g >]. Hence Br = Rr? a
contradiction. Likewise for 7(1 — X*) and »(1 — X*), .
CIF (1 - X9)(1 — X*) is redundant, then applying the augmentation map R[< g >
2/;)F<>][< k> — Iw",[< g> @& < h > ?;nd passing to the homomorphic image
frnt< ?0:(?_< }?g )>({ y]e;?:) (:,n(_i .E(l -")(1X7L_Xi } = I? Hence 1 € R;‘, a contradiction.
four generators. Consequently s < 2. 1= X Therelore N7 neds more _Fh&ﬂ

A) (i) Assume G & Z/2Y7 @ Z/2"2Z where £; > 1. So the homomotrphic image
R[Z/4Z ® Z/4Z] has the 4—generator property. Then N? is 4—generated, where N =
(r,1 - X9,1— X") where r generates M in Rand < g > @& < h >=Z/4Z 532/42.

It is easy to see that (1 — X9)% and (1 — X*)? are required as generators of N2. Now

-assume that v(1 — X9) is a redundant generator, then applying the augmentation map
R[< g > ® < h >] — R|[< g >] and passing to the homomorphic image R/(r?)[< g >],

Cyields 7(1 - X9) € ({1 — X9)%)R/(r?)[< g >]. By [l, Lemma 1.5), r = 4X for some

A € Rf{(r?). This forces Rr = Rr?, a contradiction. Likewise for r(1—X"). Consequently,
N2 = (r(1 - X9),r(1 = X™), (1 - X9)%, (1 — X")?).

Since (1 — X9)(1 — X*) € N2, then passin ic i
. , g to the homomorphic image R/{r)[< g >
Eli < f;(i]?'ylelds (}1 " X9 - Xh)4€ ((1=X92 (1-XMOR/(r)<g>B < h >][ Tius
(I:Xg)li(i—X ) Gh((l —gﬁ-") (L= XM = (0) in R/(r)[< g > @ < h >], since
& 7 =2(1 -2X"+3X%) and 2 € (r). Then 1 € (7}, a contradiction. Therefore
needs more than four generators. Consequently, G Z/2Z @ Z/2°Z where ¢ > 1.

(ii) Assume G = Z/2Z & Z/2'Z with ¢ > 1 and M? # 0. Then R[Z/2Z & Z/4Z) has
the 4--generator property. Therefore N? is 4--generated, where N = (r,1— X9,1— X")

" 7 generates M in R and g, h are the generators of Z/2Z,7 /4Z, respectively. Since (1 —

X9)* =2(1 — X9), then

N? = (12,71 — X9),r(1= XP), (1 — XO) (1 = X™), (1 - X™)%).

* 2 . .
Since M 7&20 and | < h > | > 2, it is clear that r? and (1 — X")? are required as
generators of N2, Furthermore, using arguments similar to ones used above, we cbtain

~that 7(1-X9),7(1- X"*) and (1-X9)(1—X") also are required as generators of N2, Then

N? needs more than four -ator: dicti :
generators, a contradiction. o
when M2 # 0. on. Consequently, G = 7/27 @ 2/2Z

. <] (i) Assume M? =0 and G = Z/27 & Z/2'Z with i > 1. Then R[Z/2Z & Z/2'Z)
is a local ring with maximal ideal N = (r,1 — X9, 1 — X ""), where v generates M in R
an2d <g>B®<h>=LZGI/?L. Sincer? =0,] < g>|=2and 2 € (r) we get
Nh. = (r(l1 - X9),7(1 — X™),(1 — X9(1 — X*),(1 — X")?) and N? = (r(1 — X9)(1 —
X )1T(1_Xh)2:(1_Xg)(‘l“Xh)z’(lﬁXh)a)' '

¢
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Let I be a proper ideal of R[G]. Since N® = (1-X MN?, [11, Lemma 2] in;plie; tlﬁat
W) S p{I+ N 2}, In order to show that [ is 4 -generated, we may assume N hC .thet
T € JT-\ N?, z € N. By (8, Theorem 159], p(N/(z)) = #{(N) - i = 2. Let usls o;h) ir
w((N/(2))?) < 2. Since ((N/(z}) = 2, we have N = (rz,1-X9), N=(rz1-X

(1 - X91— XM, _ |
v If (I:\Ef,l— (r,z,1—X9 )) then N/{z) = (7,1 — X9), where bars denote images under the

— v 2
natural map R[G] — R[G]/(z). Since 2 = 0 then (N/{(z))}* = (r(l —X9),(1 - X9) ),
and hence p ((N/())?) < 2. The argument for N = (r,z,1— X") is similar. _

— xh)2

If N = (z,1-X9, 1-X") then (N/(2))? = ((1 —X9)(1 — XP), 2(1 — X9, (1 - X*) )
If 2 € M? = (0), we're finished. Otherwise, M = (r) = (2). Clemly 2 e N .ésg‘ilneli

may ass
9 — Az + p(l — X9) +6(1 — X"} for some A, 4, & € R[G];' Furflllein;gzi,(fv_e_Xh))r+ﬁ’(1 e
that z and & are not invertible. So A, 6 € N, hence 2 = Nz + { : %
X9)? 81— XhY? = No +p/(1 - X1 - X" +28(1— X9+ 61 - X )’ , for sc;:r;e
. §,8 € RIG). Then 2(1 - /(1 — X9)) = N+ #/ (1 - X9)(1 - X*) + 501 - XT)"
¥ ¥ 1 4 h 2
Since 1 — F/(1 — X9) is a unit in R[G], 2 € ((1 X1 - XM),(1 - X") ) and so

does 2(1 — X¢). Consequently, (N/{z))? = ((1 —X9(1-X"),(1- Xh)z), and hence

Nf(=))*} < 2. _
g ((By/%ﬂ) '%‘heorem 1 (6 = 1)], R[G}/(x} bas the 2—generator property. Then I/(z) is
2—generated, and hence [ is 4—generated. This completes the proof of (i). _

& | (ii) Assume G 2 Z/2Z & Z/27 and M*? Zé 0. Then R[Z/2‘Z €B %V/IZZ] }s%zigcaél
ring with maximal ideal N = (r,1 — X*#,1 — X"), where r genelate; ! in - =
g> @< h>=I1/2L®L[2L. Since | < g > | = | < h >3| = 23a1r12 z g)(gg), :vz(f*
NZ = (r%,r(1 - Xg),T(l ~ X", (1 — X9)(1 — X")) and N* = (3,731 - X¥9),

h Y9 — X", . B
x %:;nt(ll b()f a)(plroper i)c)lea,l of R[G]. Since N? = rl\f, [11, Lemma 2] 1Irvn£)11es Gi;h;i;t
u(I) < (I + N?). As before, we may assume that N* C I E,et x elI_\Xg),Oa; N V.
By (8, Theorem 159], p(N/(z)) = p(N) — 1 =2, Thus N E _(1;,}13:,t x5 or N =
(r,z,1 ~X")or N=(g,1 - X1~ XM, Tt is ea-sl.y seen thgt or _e Wf_Xy e
have p ((N/(m))z) < 2. Now let consider the remaining case, 1.e. N = {(z, , .

Then (N/(z))? = ((1 ~X9)(1 - X7),2(1 — X9),2(1 - X“)). h
If 2 ¢ M? = (r?), since ¥ € N/(z}, then 7= 21— X9) +p(l - X9)(1-X )+
52(1 = X ) for some A, p and 6 € R[G]. We get, by induction,

(N/(@)? = (T XD XD + (/@
= (=X XM) + (/@)
= (=X - XPY) + (N/(@))", for eachn 2 3.

Since R[] is a local Artinian ring, there exists np € N such that (N/(z))" = 0 for each

n > ng. Therefore (N/(z))* = ((1 — X9){(1 - Xh)), and hence g ((N/(x))?) < 2.
If2 € M\ M? then M = (r) = (2). Clealy 2 € N. Then 2 = Az +f:L(1 —
X9) + 86(1 — X for some A, p,6 € R|G). Applying arguments used above for (i), we

\

o xe
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see that 2 € ((1 — X9)(1 - X”')), and so do 2(1 — X9) and 2(1 -- X"). Consequently,

1 ((N/(2))?) < 2. As before, we conclude that u(J/(x)) < 2. Therefore I is 4—generated,
as desired. This completes the proof of {ii).

B) Suppose that G is a cyclic group (s = 1). Let g be the generator of G. we have
N= (T,l - X%
NT= (%p(1 - X9), (1 - X7)%)
NS = (r®,r2(1 — X9),7(1 — X9)2,(1 — X9));
N*= (%731 — X9),72(1 - X9)%, (1 — X9),(1 - X9)%).
(i) Assume M* = 0. Applying Lemma 2, we conclude that R[] has the 4—generator
property.

(ii) (a) Assume M? # 0 and 2 € M2, In order to conclude, it suffices to show that

R[Z/4Z] has the 4—generator property while R[Z/8Z] does not. Suppose that R[Z/8Z]
has the 4—generator property. Then N* is 4—generated.

Since M* # 0 and | < g > | > 4, it is easily seen that r* and (1 — X9)4 are required
as generators of N4, ‘

If r3(1 — X9) is a redundant generator of N4, then passging to the homomorphic image

(R/()[< g >), yields r3(1 — X9) € (1 - X9))(R/(+Y))[< ¢ >|. By [1, Lemma 1.5],

7% = 8 for some A € R/(r?). It follows that 3 = 0 in R/(+1), & contradiction.

If7%(1—X9)? is redundant, then by passing to the homomorphic image (R/(r®))[< ¢ > ],
' vogeT

“we obtain that r2(1 — X9)? = q(1 - X9)% with ¢ = ZaiX*'g, where a; € R/(r%). After

L . . ‘ prd
setting corresponding terms equal, we obtain the following equations :

Xe ao - a5 + 3ag — gy = r?

—3a,+ a1 — ag +3a7 =0
D X2 3&0—3a1+a2—a7=_+.2.
X3 —Go+ 331 —3ag+az3 =0
X —a1 +3a; —3as+ a4 =0
J - Xbe —ag +3a3 — 34+ a5 =0
._ Xﬁg —az+3a4 —3a5 +ag =0
X7

—eg + 3a5 — 3as + a7 =0

This yields 72 = 0 in R/(r®). Hence Rr® = Rr?, a contradiction.
Ifr{1-X9)? is redundant, then by passing to the homomorphic image (R/(r?))[< g >],

i7" we obtain that r(1 — X9)? € ((1 — X9))(R/(r¥))[< ¢ >]. Since 2 € M? = (r?),
0 r(1-X9)" = 0in (R/(r?))[< g >]. This forces Rr = Rr?, a contradiction. Consequently,

N* needs more than four gencrators, contradicting the fact that N is 4—generated.
Now let us show that R[Z/47) has the 4—generator property. If 2 @ M2\ M? then

M2 — (.,.2) = (2). We have

1=(1-X9+Xx9*
=14+4(1- XX +6(1 - X)X +4(1 — X9)3X9 + (1 — X9)*
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Then 2(1 — X9)? € (4(1 — X#),(1 - X0y c (@t (1- Xg)“g. Therefore 72(1 ~ X¥)* €
(r1, (1 — X¥)*). Consequently, N4 ig 4—generated. If 2 € M>, we get
(1—X9* = 1-4X9+6X™ - 4X39 4 X1

= 2-4X9+6X% —4XY .

— 2..92X9_2XY 42X 44X —4X>

= 2(1-X9) -2X°(1 - X%)+ 4X%9(1 ~ X9)

= 201 X9)(1 - X+ 2X%).
Then (1 — X9)% € (2(1 — X¥)) C (r3(1 — X9)). Hence N% is 4—generated. Lemma 2 |

letes the proof.
COHLI; eAssumepM4 #0and 2 € M\ M2 It suffices to prove that R[Z/8Z] has the

4—-generator property while R[Z/16Z] does not. Clearly M = {r) ='(22 and
N = (16,8(1 — X9),4(1 — X9)%,2(1 - X%, (1 - X9
Assume < g >= Z/8Z. We have :

1 = (1-X?+X9)®
i—=8
= 3 (3 - xoyxe-h
i=0 g .

D= 148(1— X)X 4 28(1 - X7)P X% +56(1 — X9y x5

i=8 ‘
g ; i—4) 3 (8-1)g
— X9y 1—XNENX .
e X)(Z()( ) ) -
Then 8(1 — X9) € (4(1 - X9)*,(1— X9, and hence N* is 4—generated. Thu:s.R[Z/SZ] \
has the 4—generator property. ‘ _

aSAssm‘neg< g >= L/16Z. Let prove that N® is not 4—generated. Tt is clear that 16

4

nd {1 — X9)* are required as generators of N*. .
) If( 8(1 - )Z' 9) is redundant, then passing to the homomorphlc image (R/{16))[< g >]):
yields 8(1 — X9) € ((1 — X9)*)(R/(16))[< ¢ >|. By (1, Lemma 1.5], 8 = 16X for some
‘n R/(16). Hence 8 = 0 in R/(16), a contradiction. o
" If/ é(l )—X 9) is redundant, then by passing to the homomorphic image (R/())[< g >];

’ i=15
we obtain that 2(1 — X9)? = a(1 — X¥)* with a = Z a; X", where a; € Rf(4).
After setting corresponding terms equal, we obtafi;loamong other equations the follow-
ing :
Xe "a, + are +2a14 T2
X2 , ' 2, +as+oe = 2
X4 ‘ G+ 202 +as = 0
X9 : as+2a44+0s = 0
X389 . aqt+206+as = 0
X109 ag+20gtaw = 0
X120 og +2010 taz = 0
X149 ap+2a12 +aa = O
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_After resolving this system, we obtain 2 =0 in R/(4), then 2 € M?, a contradiction.

- If 4{1 — X9)? is redundant, then passing to the homomorphic image (R/(8))[< g >],
yields 4(1 — X9)? = a(l — X9)®) where ¢ € (R/(8))[< ¢ >]. As before, we obtain a
system of 16 linear equations in 16 unknowns. After resolving this system, we obtain
4 =0in R/(8), a contradiction (M* # 0). '

It follows that N* needs more than four generators. Hence R[Z/16Z] does not have
the 4—generator property. ‘This completes the proof of Proposition 1. ¢

PROPOSITION 3 Assume that G is a nontrivial finite 3—group, (R, M) is an Ar-
tintan local principal ideal ring which is not o field ond 3 € M. Then R[G| has the
-4 generator property if and only if -
A)GRI/BZDILJ3L, 3¢ M\ M? and M? =0.
B) (i) G is a cyclic group
(ii) When M* #£ 0, then

(o) G=Z/3Z, if3 € M? _

() G=T/3T, where 1 <1<3,4if3e€ M\ M2

LEMMA 4 lLet (R,M) be e local ring such that M™ is n—generated, where n is o
positive integer. Then for each ideal T of R, p(I) < p(I + M™71).

Proof. We may assumé that R has an infinite residue field (see [15, p.10]). Since M™ is
n—generated, then [15, Theorem 2.3, p.36] implies that M™ = yM™~1 for some y € M.
By [11, Lemma 2], (1) < p(f + M™~1) for each ideal T of R.

LEMMA 5 [et (R, M) be a local Ting such that M? is 3—generated, I o proper ideal
of R and x € T\ M® such that x € M?. Then u(I/(z)) < p(M/(z)).

Proof. M? is 3—generated and z.€ M?%\ M? implies that u((M/(a;))z) = u(M?/{(z)) <
ML) L= 3. By appving emma d 0 /), Wo ek w1/ 2) < u(/(0)+ /() ~
(M (x}).

"Proof of Proposition 3. By hypothesis, G 2 Z/?ﬁZ ®Z/3Z @ & L/3Z where

0 <ty <ty <.« <, Suppose that R[G] has the 4—generator property, then the
homomorphic image (R/M)[G] does also. By [14, Corollary 2.2], s < 2.
A) =] If s = 2, [14, Proposition 2.1{(a)] implies that G = Z/3Z & Z/3*Z with i > 1.
Assume 3 € M?. Tet N = (r,1 — X9,1 — X"}, where r generates M in R and
<g>®<h>=Z/3Z GI/3L. We have -

N%=(r? (1 — X9),7(1 — XM), (1 - X9)(1 - X", (1 X9% (1 -X"?3).

Using arguments similar to ones used above it is easy to check that (1 — X9),r(1 —
XM, (1—X9)(1 - XM, (1 — X9)? and (1~ X")? ave required as generators of N2. Thus
R[Z2/3Z ®Z/3Z] does not have the 4—generator property, a contradiction. -Consequently,
3 € M\ M? and hence M = (r) = (3).

Now assume M2 = (9) # 0. Let N = (3,1 — X9, 1 — X"*) be the maximal ideal of
R[Z/3Z @ Z/3Z). Consider the ideal I = (9} + N®. Then

I=(9,31—X9),3(1 - X"),(1 - X9)%(1 - X"),(1 - X9)(1 - X")?).
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It is easily seen that all these elements arc required as generators of /. Thus R[Z/3Z @
Z/3Z) does not have the 4—generator property, a contradiction. Consequently, M? = 0.

We claim that R[Z/3Z ®Z/3%Z) does not have the four generator property. Let N be
its maximal ideal and g, b the generators of Z/3Z and Z/ 327, respectively. Then we have

N? = (3(1 — XP), (1 — X9)(1 — XP), (1 — X9)2, (1 - X*)%)
N = (3(1 — X9),3(1 — XM2,(1 - X9)(1 ~ X¥), (1 = XO)(L - XM, (1 - X)),

Tf 3(1 — X"*)? is a redundant generator of N, then by applying the augmentation map
R[< h >][< g > — R[< h >], we get 3(1 — X")? € (1~ XMBR[< h >). By [1, Lemma
1.7], 3 = 9A for some A € R. Then M = (3) = (0), a contradiction. The arguments for
3(1 - X9), (1— X9)2(1— XM), (1 - X9)(1.— X")? and (1L — X")® are similar to ones used
above. Hence u(N3) > 4.

<] Assume G ~ 7 /37 ®1/3Z, 3 € M \ M? and M* = 0. Let us show that R[G] has
the 4—generator property. Let N be the maximal ideal of R[G] and < g > ® <h >=
Z/3Z ®Z/3Z. We have

N= (3,1-X%1-X")

N2 = ((1-X92 (1 X"P, (1~ X9)(1 - X")

N = (3(1-X9),3(1— XP), (1~ X1 - X", (1 - Xo)(1 - X*)7)

Nt= (31— X9)2,3(1 - X"?2,3(1 - X7)(1 - X"), (1 - X*)*(1 - X)),
Let I be a proper ideal of R[G], we need to prove that I is 4—generated. Applying
Lemma 4 to N4, yields p(I) < u(J + N*). Since N? is 4—generated, we may assume
N3 C I Let z € I\ N3, If x € N?, since N? is 3—gencrated, Lemma 5 implies the
desired conclusion. If & ¢ N?; by [8,Theorem 159), it follows that N = (3,z,1 — X9}
or N=(3,z,1-X") or N=(21-X9,1 ~ XM. If N = (3,z,1 - X¢) then N/(z) =
(3,1— X9) and (N/(2))? = ((1 -X 9)2), where bars denote images under the natural
map R[G] — R[G]/(z). As in the proof of Lemma 2, we conclude via part (6) of 11,
Theorem 1]. Likewise for N = (3,z,1 — X"). - '

3 3 : .
If N=(z,1-X91—X"), then (—N—) - L (m.) € . We consider
_ (z) (zy = (=)
separately two cases : :
If(N)SC ! h & I such that Z € I\(N)3 Assulrnefe(‘r\r)2
— —, choose z suc ze —\|l—]- —] .
\ (=) (z) () " \(=) (=)
Since (—(%) is 3—generated, Lemma 5 yields
I . I/ (:c))
”QE@) B ”( %)

[FAN IA
[T = =
AN TN
—
|
g

IA

Thus
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Therefore I is 4—generated. Now agsume 7 ¢ ((J—:)—) . Then
N

W@m) = ()
N
- u{g)
= 2-1
1.

R{C] is a principal ideal ring, and hence !
{z,2) (z, 2)

4--generatoed.

N\ N34(a) I
If (@) — u_m#() = @, then I = N3 + (z). More precisely,

I=(2,3(1 - X9),3(1 — XM, (1 - X901 — XM, (1 - X9(1 — X*)?)

z € N\ NZ%, then z = 3a + b(1 — X?) + ¢(1 — X*) for some a, b, c € R[G]. Moreover,
we may assume that b and c are not units of R[G]. Hence there exist a’,¥,¢',d' € R[C]
51’1ch that z = 30’ +0'(1-X9)2+ /(1 - X2 +d'(1- X9)(1 - X*). Clearly, since & ¢ N2
' is a unit. If b’ € N, then 3(1 — X9} € (z, (1 - X9)%(1 - X*), (1 — X9)(1 - X")?) sincé
z(1 —X%) = (0 -V X)3(1 - XI)+ /(1 - X1 - X +d'(1 - X9)?(1 - X"). T b s
a unit, then (1 — X9)%(1 — X*) € (2,3(1 — X*), (1 — X9)(1 — X")?) since z(1 — X?) =
(@ —XP)3(1 - XMy + V(1- X921 - X*) +d'(1 - X9)(1 — X*)2 In cither case, I is
f—g}?nérated. Consequently, R[Z/3Z ®Z /3Z] has the 4—generator property, as we wished
o show.

is principal. Consequently, I is

B) Assume that @ is a cyclic group (s = 1). Let g be the generator of . To show
that RLG'} has the 4—generator property, by Lemma 2, it suffices to prove that N, N2, N3
and N* are 4-—generated, where N denotes the maximal ideal of R[G]. We have

N={rl-X7)
N? = (2 r(1— X9),(1 - X9)?)
N3 = (% (1 - X9),r(1 — X9)%,(1 — X9))
N = (r* (1 — X9),7%(1 — X9, r(1 — X9)%, (1 — X)),

() it is clear that N, N?, N% and N* are 4—generated when M* = 0. Then R[G] has
the 4—generator property.

(ii) (a) Assume M* # 0 and 3 € M*. In order to conclude, it suffices to prove that
R[Z/3Z] has the 4—generator property while R[Z/9Z] does not.

Assunle-G =Z/3Z. Since | < g>|=3,7r(1-X9)3 = -3rX9(1- X9 € (r3(1 - X9)).
Hence N* is 4—generated. It follows that R[Z/3Z] has the 4—generator property, as
asserted. : : ,

Assunge G = Z./QZ. Since M* # 0 and | < g > | > 4, it is clear that r* and
(1 — X9)* are required as generators of N4, If r*(1 — X9) is redundant, then passing to
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the homomorphic image (R/(r*))[< g >] and applying |1, Lemma 1.5], yields 2 =0in
R/(r*), a contradiction. If r(1— X9)? is redundant, then by passing to the homomorphic
image (R/(r2))[< g >], we get (1 - X9’ ¢ ((1- XOAYR/ ()< g >), then {1 ~
X9)8 = 0 in (R/(r?)[< g >]. Sor =0 in R/(r?), a contradiction. Tf r2(1 — X9)? is

" redundant, then passing to the homomorphic image (R/ (r3))[< g >] and applying, 1,

Lemma 1.7] yields 72 = 0 in B/(r®), a contradiction. In conclusion, N* needs more than
four generators, and hence R[Z/9Z] does not have the A—generator propeity.

b) Assume M 4 £ 0and 3 € M\ M?. Let us prove that R[Z/27TZ} has the 4—generator
property while R{Z/81Z] does not. '

Assume & = Z/27Z. Clearly, N = (3,1 — X9) and N* = (81,271 - X9,901 —
X9)%,3(1— X9)%, (1 - X9)%). We have

1 = (1=X9+Xx9%
=27

= 3 (23(1 _ x9yix@1=9s

i=o

14 27(1 — X9)X?% 4 (27 x 13)(1 - X9)2X%59 - (9 x 13 x 25)(1 - X9)PR X9

=27

+(1 - X9y (Z (2:') (1 B Xg)(i—4)x(27—i)g) ’

Then 27(1 — X?) € (9(1 - X9)2,3(1 - X9)%,(1 - X9)4). Therefore N4 isf 4—generated.
Lemma 2 allows us to conclude. _

Assume GG = Z/81Z. Using techniques similar to ones used above, one can casily
check that 81,27(1 — X9},9(1 = X9?% and (1 — X9)* are required as generators of N4,

" Moreover, if 3(1—X9)? is a redundant generator, then passing to the homomorphic image

- 1=80
(RJ(9))< g >], we get 3(1 — X9)*=a(l - XY with a = ) a;X*, where a; € R/(9).

. =0
Thus setting corresponding terms equal, we cbtain & system' of 81 linear equations in 81
unknowns. After resolving this system (with the use of a computer), we obtain 1 = 0in
R/(9), a contradiction. Consequently, R[Z/81Z} does not have the 4—generator property,
as desired. This completes the proof of Proposition 3. ¢

PROPOSITION 6 Let (R, M) be a local Artinian principel ideal ring which is not @
field, p o prime integer such thatp >3 andp € M. Let G be o nontrivial finile p—group.
Then RG] has the 4—generator property if and only if
(i) G is a cyclic group
(ii) If M* #0, thenp ¢ M* and
(c) G2T[pL, ifpe M
(b) G = 2/p'Z, where1 <1 <3, fpe M\ M.
Proof. Tf R[G] has the 4—generator property, by {14, Proposition 3.5, G is a cyclic group,
and if in addition M? 5 0 then G = Z/p'Z with i < 3. :
Let g be the generator of G and N = (r,1 — X9} the maximal ideal of RIG]. As
before, to show that RG] has the 4—generator property, by Lemma 2 it suffices to prove
that N is 4—generated. We have

N4 = (4, 93(1 - X9),r2(1 — X9)%, (L - X903, (1 - X9,
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(i) Clearly, if M* = 0 then N* is 4—generated.

o (ii) If M 3 0, let us show that R[Z/pZ] does not ha
when p € M. Indfed, it is straightforward tc]) check that rzeag(lie (li —g.e;?; ;‘?t;fe P;;O?l?:g
a; ﬁenfrators of N4 If T3(:.[ — X9) is redundant, then passing to the homomorphiccilma. e
( (]17;[4))[<3 g >].and ap};lymg [1, Lemma 1.5], yields 73 = Ap for some A € R/(r?) Singce
fhi hon,l'r =0in R/ (r?), a cogltradiction. If r2(1 — X9)% is redundant, then pas.sing to
_:.for Someor/r\l()épl;%lc u;lage .(R/('r NI« % >] and applying [1, Lemma 1.7, yields 72 = Ap
e | é (r?). Since p € M , 72 = 0 in R/(r%), a contradiction. Finally, If
ol _s )r{e; gndant, then liy passing to the homomorphic image (R/ ()< g >]
o8 ) € (1~ XOH(R/EHI< g >]. So (1l — X9p~1 € (1= Xo)p) ©
P(R/(r*))[< g >]. Since p € M*, (1 — X1 = 0 in (R/(r?})[< g >|. Theref
‘M = {r) =0, a contradiction. Thus N4 needs more than four generatof; ' e

a) Suppose p € M?. Let show that R[Z
. Z] has the 4— rator pr i
R[Z/p*Z] does not. Indeed, assume G =Z/ pZ{pT%len © A-genermtor property whil

1= (1-X94 X9

i=p

= ; (f)u _.Xg)ix(pfi)g |

= 1 +p(1 e XQ)X(P—UQ + I)(pT_l)(l _ XQ)2X(p—2)g

+ p(p — 1)(p — 2) (1 _ Xg)Sx(p—S)g

6
41— X9 (ip (1:) (1- Xy)(i—4)X(P—i)g) ‘
i—4

Hence, since p > 3, p(1 — X9) € {p(1 — X7)%,(1 — X9)*). If pe M3, then M3 = (%) =

(p). Therefore r3(1 — X9) € (r2(1 - X9)?
(p). Therofo -~ X% (1 -~ X9Y4). Otherwise, if p € M2 3
M? = (r*) = (p). Sor¥(1 — X9) € (r*(1 — X9)?,(1 - X9)%), and hence?rz(l - X\-";lfé

(r2(1 — X9)3, (1 ~ X9)5) ¢ (r(1 — X9)?
‘ - (1 — X9)*). Therefore N* is 4—
Consequently, R{Z/pZ] has the 4—generator property, as desired. 'S 4-generated.

Seel:}?; aisurgne G :gZ /3;22. As before, and using the fact that p € M?, one can easily
4, 31— X9),r2(1 — X9)%,r(1 — X9)® and (1 — X9)* are required as generators

.. of N4 Then R[Z/p?Z] does not have the 4—generator property.

b) Suppose p € M \ M2 It remains to show that R[Z/p%Z] has the 4—genérator

~ property. Clearly, M = (r) = (p) and

Nt = (7", 2 (1 - X?),02(1 - X9)%,p(1 - X9)%, (1 ~ X9)*).
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We have

1= (1 —X9+X9)pa

i=p?
= Z ( )(1 X9 x® g

»° 3 p® 2 v (p®—2
= 1+(1)(1fX9)X(p—1)g+(2)(1WX3) X -2 .

3 i=p® , o .

+ (1;)(1 - Xg)3x(p"*3)y + (1 — X9y Z (p )(1 — X x @ e |
. ] -
i=4

It is straightforward that p®(1 — X9} € (p%(1 — X9)2,p%(1 — X9)3,(1 — X9)%) < (p*(1 -
X2 p(1 — X9)3, (1 — X9%). Hence N? is 4--generated. This completes the proof of
Proposition 6. {

The previous propositions were steps to state the following theorem,

THEOREM Let B be an Artinian principal ideal ring end G o nontrivial finite abelion
group. Then R[] has the 4—generator property if and only f R=R, dRa® - O R,
where, for each j, (Ry, M) is a local’ Artinian principal ideal ring subject(ﬁ)

(I) Assume R; is a field of characteristic p # 0. '

{o) whenp = 2 then G is a homomorplic image of 7 [2LGT 2L DL 2L or L [4T ST 2L
wherei > 0

(B) when p =3, then G, is a homomorphic image of Z/3Z ®Z 3L where i > 0

{v) when p > 3, then Gy is a cyclic group.

(IT) Assume (R, M;)is a principal ideal ring which is not a field and p a prime integer
such that p divides Ord(G) and p € M;
fa) Assume p =2,
A} () G 2 IfAL ST/2'T withi> 1
(i) when M} #0, then G, = 7/21 @ Z[2L.
B) (i) Gy is o eyclic group
(i) When Mf‘i #0, then
(a) Cp X LJFL, where 1 <4 <2, zf2€M2
(b) G, 2 Z/2T, where 1 <4 <3, if 2€ M;\ M7
(B) Assume p =3, _
A) G, =T/3Z®L[3L, 3 € M;\ M? and M? =0.
B) (i) Gp is a cyclic group -
(i) When M} # 0, then
(a) Gy =7/3Z, if 3 € M2
(b) G 2 T/3Z, where 1< i < 3, if 3€ My \ M2,
(v) Assume p >3,
(i) Gy is a cyclic group
(i) If M} #0, then p ¢ M} and
(a) Gp = T/3L, if p € M?
(b) Gp = /"L, where 1 <i <3, if pe M;\ M},
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Proof. If R is an Artinian principal ideal ring, then R = R; & --- @ R,, where each
(R, M;) is a local Artinian principal ideal ring (cf. [7, Vol.II, Theorem 7.15]). It is
easy to see that RG] has the n—generator property if and only if each R;[G] has the

- p-generator property.

(I} If R; is a field, it suffices to apply (1, Remark 1.2 (1)] and [14, Example 2.6].

(1I1) Assume that R; is not a field. Tt is stated in [5, Theorem 19.15] that when the
order of (7 is a unit of R and R; is a principal ideal ring then so is R;[G]. Therefore,
we may suppose, without loss of g;enera.lity, that the order of @ is not a unit of R;. For
simplicity, let us denote (R;, M;) by (R, M). So Ord(G) = pf'p52 .+ p% € M, where
each p; is a prime integer. Hence, there exists p € {p1,pa2, -, ps} such that p € M.

~Whence p is the characteristic of R/M . Let G = Gp @ H, where H is a ﬁnlte group and

p does not divide Ord(H). Clearly, the order of H is a unit of R.
(=) If R[G] has the 4—generator property, then its homomorphic image R[G)] does
as well. To conclude, it suffices to apply Propositions 1, 3 and 6.

(<) For the case G = G,, it suffices to apply PlOpOSltlonS 1, 3 and 6. For the general
case, R[G] = R[H][G,]. We notice that R[H] is an Artinian ting [5, Theorem 20.7). By
[5, Theorem 19,15}, R[H] is a principal ideal ring, and hence R[H] = A1 @ - ® A, where
each {A;, N;) is a local Artinian principal ideal ring; 1 < i < g. Furthermore, M R[H] is

- equal to the nilradical of R[H] by [5, Corollary 9.18], and for & > 2, M* = 0 implies that

NF =0, for each i (see the proof of [1, Theorem 1]). Consequently, for each i, A;[G,] .
has the 4—generator property by Pmposmons 1,3, 6 and [14, Example 2. 6). Hence R{G]
has the 4-generator property. ¢

We wish to acknowledge the help of Omar Ameziane Hassani in resolving with the

. -use of a computer the system of 81 linear equations in 81 unknowns which arises in the

proof of Proposition 3.
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For a commutative ring R with identity, let T(R)} denote its total quotient ring

vand U (R) its group of units. For an extension of commutative rings B C & we can

form U(S}/U(R), the quotient of the unit groups. In the case where R is an integral

* domain with quotient field X, then U(K)/U(R) = K*/U(R) is the group of divisibility
- of R and is denoted by G(R). Here K* = K — {0} is the multiplicative group of K.,
. We will be particularly interested in the following two questions.

(1) When is U(S)/U{R) finite or finitely generated?

(2) When does U(S)/U(R) finite or finitely generated imply tha.t S is a finitely
generated R-module?

First, suppose that K = R C S = F are both fields. Brandis' Theorem {4] or (8,

;" Theorem 4 3.11] answers both questions.

. BRANDIS’ THEOREM. Let K C F be a field extension. Then F*/K* is finitely
©-generated if and only if (1) K = F or (2) K is finite and [F': K] < oco.

Actually, a stronger result due to L. Avramov and Davis and Maroscia [6] is
true. Let K C F be a field extension and let ro(F*/K*) = dimg((F*/K*) ® Q)
be the torsion-free rank of F*/K*. Then the following statements are equivalent:
(a) ro(F*/K*) < 00, (b) ro(F*/K*) =0, (c) char K = p > 0 and either F is algebraic
over Z, or F' is purely inseparable over K. For a simpler proof of this result and for a
discussion of the group F*/K™*, the reader is referred to [5].

- Here, in the extreme case where R C § are both fields, U(S)/U(R) is finitely
generated if and only if it is finite, and in this case § is a finitely generated R-module.






