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A b s t r a c t  

In this paper we extend the study of the prime ideal structure of 

group rings initiated by Gilmer (1974), Brewer-Costa-Lady (1975), and 

Anderson-Bouvier-Dobbs-Fontana-Kabbaj (1988). Of particular inter- 

est is the transfer from A to A[G] of certain properties which are Linked 

t o  the prime spectrum such as S-domain or Jaffard domain. Their study 
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will follow the same lines as the usual approach to the study of prime 

ideal structure in polynomial rings. 

1 Introduction 

Let A be a commutative ring, G an abelian group, and S a commutative 

semigroup. The group-ring (respectively, semigroup-ring) associated to A and 

G (resp., S) ,  denoted by A[G] (resp. AIS]), is the ring of elements of the form 

C g E G a S X g  (resp., C s E S a s X S ) ,  where { a ,  I g E G )  (resp., { a ,  I s E S})  is a 

family of elements of A which are almost all zero. 

The aim of this paper is to extend the study of the prime ideal struc- 

ture of group-rings initiated by Gilmer (1974), Brewer-Costa-Lady (1975), and 

Anderson-Bouvier-Dobbs-Fontana-Kabbaj (1988) .  Of particular interest is the 

transfer from A to A[G] of certain properties which are linked to the prime 

spectrum. Their study will follow the same lines as the usual approach to the 

study of prime ideal structure in polynomial rings. 

In the second section, we generalize to group-rings several classical results 

for polynomial rings and deduce from them a more general version of the 

theorem of Jaffard on the existence of special chains of prime ideals. The 

results of sections 3 and 4 sheed light on the connections between polynomial 

rings and group-rings. In Section 3 we study the transfer from A to A[G] of 

the properties of being a strong S-domain, catenary, and universally catenary. 

Section 4 concerns the local study of the Jaffard domain property in group 

rings. (An integral domain A is a Jaffard domain if its Krull dimension is 

equal to its valuative dimension.) The paper concludes with some applications 

and some new examples in Section 5. 
For a given prime ideal P in a commutative ring A we shall denote by 

P IXl , .  . . , X,] the extension of P to the polynomial ring AIX1,. . . , X,] and c 
will always mean proper containment 

This paper is concerned with properties which are best studied when A[G] 
is an integral domain. We then impose the corresponding restrictions to A and 

G, namely that A is an integral domain and G is a torsion-free abelian group. 

We thank D. Dobbs for several suggestions and corrections to the manuscript 

A sequel of this paper by S. Ameziane D. E. Dobbs and S. Kabbaj [2] has al- 

ready appear and may be enlightening to readers. 



D
ow

nl
oa

de
d 

B
y:

 [K
in

g 
Fa

hd
 U

ni
ve

rs
ity

 o
f P

et
ro

le
um

 a
nd

 M
in

er
al

s]
 A

t: 
08

:0
0 

20
 S

ep
te

m
be

r 2
00

7 

SPECTRUM OF THE GROUP RING 

2 Generalities and a generalization of 

Jaffard's special chain theorem 

This section contains some general results on chains of prime ideals in group- 

rings. Many of the arguments are simplified by using the following set-up: 

Let A be a commutative ring and let G be a torsion-free abelian group of 

finite rank n. Let F be a free abelian subgroup of G such that G I F  is a 

torsion group. Then F is free of rank n and the ring extension A[F] r A[G] 

is integral with A[G] a free A[F]-module [6, Lemma 11. Letting XI, .  . . , X,, 
be a basis for F ,  then X I , .  . . , Xn are indeterminates over A, and A[F] = 

AIX1, X;', . . . , X,, X;'] is a localization of the polynomial ring C = 

A[XI,. . . ,Xn]. 
On the other hand, if we set I$ = X,+X;', i = I , .  . . , n ,  then K ,  . . . , Yn are 

also indeterminates over A. Let B = A[Yl,. . . , Y,] C A[F]. Since X; - Y,X; + 
1 = 0, A[F] is integral over B. Moreover, the elements 1, XI are linearly 

independent over A[X1 + X;'] = A[x] ,  so that A[X1, X;'] is a free A[Yl]- 

module of rank 2. It follows by induction on n that A[F] is a free B-module 

of rank 2". 

Combining these extensions B ~t A[F] and A[F] L+ A[G], we get that B -+ 

A[G] is an integral extension with A[G] a free B-module. Thus the extension 

is faithfully flat and Going Down (GD), Going Up (GP), and Lying Over (LO) 
all hold between them. It follows that dim A[G] = dim A [ x , .  . . , Y,]. If P 
is any prime ideal of B ,  then PA[G] f l  B = P. This holds in particular for 

P = pB, where p E Spec (A), so that pA[G] n B = pB. If Q is any prime ideal 

of A[G] and P = Q n B, then ht Q = ht P, Q is maximal if and only if P is 

maximal, etc. 

Note that if p E Spec(A), then tensoring B L) A[G] by Alp shows that 
(A/p)[G] = A[G]/pA[G] is also a free module over and integral extension of 

BIPB = (AIP)[K . . ., Yn]. 

Proposition 2.1 Let A be an integral domain, and let G be a torsion-free 

abelian group of finite rank n. Then 

(a) I ' n  = 1 ,  ht p 5 ht pA[G] 5 2ht p for all p E Spec (A) 

(b) For all P  E Spec(A[G]), ht P = htpA[G] + ht (P/pA[G]), where p = 

P n  A. 
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390 AMEZIANE ET AL. 

(c) For all P E Spec (A[G]) ,  ht P I ht pA[G] t n ,  where p = P n A. 

Lemma 2.2 Let A be an integral domain, and let G be a torsion-free abelian 
group of rank 1. Then there do not exist prime ideals Q1 C Q2 c Q3 in A[G] 
such that Q1 n A = Q2 n A = Q3 n A. 

Proof. Let F be a rank one free group such that G / F  is a torsion group. 

Then A[G] is integral over A[F] by [6, Lemma l(b)],  and A[F] = A[X,  X-'1 is 

integral over A[X + X-'1, where X is an indeterminate over A. 

Suppose that Q1 c Q2 c Q3 are prime ideals of A[G] such that Ql 0 A = 

Q2 n A = QJ n A = p. Letting Q: = Qi n A[X + X-'1 for i = 1,2,3, we have 

that Q; C Q; c Q$ are distinct because A[X t X-'1 is a polynomial ring. 

Proof of Proposition 2.1 (a) First note that for each p E Spec ( A ) ,  pA[G] 

is a prime ideal of A[G] by [9, Proposition 2.91 and that pA[G] n A = p, since 

A[G] is a free A-module. It follows that h t p  I ht pA[G]. (This also holds if G 

is of rank n >_ 1.) 

Let m = ht pA[G]. Then there exist prime ideals PI,. . . , P,,, of A[G] such 

that 

(0)  c Pi c ... c P, =pA[G].  

Letting pi = P, n A for i = 1 , .  . . , m,  we have (0)  C pl C . . . C p, and Lemma 

2.2 implies that m 5 2ht p. 

(b) Since G is of rank n ,  there is a free abelian subgroup F of G such that 

rank (F) = n and G / F  is a torsion-group. Using the set-up described above, 

let B = A [ K , .  . . , Y,], where Y ,  = Xi + X;', and XI, .  . . , X, is a basis for F. 
Then B L-, A[G] satisfies going down. If P E Spec (A[G]) ,  let P' = P n B 
and p = P n A = P' n A. Then ht P = ht P' and since pB = pA[G] n B ,  
ht pA[G] = ht pB. Applying the same arguments to A/p[G] = A[G]/pA[G] 
and BIpB, we also have ht (P/pA[G]) = ht (P1/pB) .  We are thus reduced to 
showing that ht P' = ht pB + ht (P1/pB).  But this is true by (7, Theorem 11, 

since B is a polynomial ring over A. 
(c) We now have ht P = ht pA[G] + ht (P/pA[G]) and ht (P/pA[G]) = 

ht (P'IpB),  
where P' = P n  B as above. Now ht (Pr /pB)  = ht (P1BP/pBp).  But Bp/pBp = 

(Ap/pAp)[Yl, .  . . , Y,] has dimension n ,  so ht (P1/pB)  5 n. It follows that 

ht P I ht pA[G] + n. 
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SPECTRUM OF THE GROUP RING 39 1 

R e m a r k  2.3 R. Matsuda in [19, Theorem 7.31 established the same result as 
in (b) by a totally different (and stronger) way. 

Corol lary  2.4 Let A be an integral domain, G a torsion-free abelian group of 

rank n ,  and Q a mazimal ideal of A[G]. 

(a) I f q = Q f l A ,  then h t Q =  htqA[G]+n.  

(b) I fht  Q = dimA[G] < CQ, then q = Q n A is a maximal ideal of A. 

Proof .  (a) Using the same set-up as above, since Q is maximal in A[G], 

Q' = Q n B is maximal in B. Then QIB,/qBq is maximal in I<[Yl,. . . , Y,], 

where Ii' = Aq/qAq is a field. It follows that ht (Q/qA[G]) = ht (Q1/pB) = 

ht (Q1B,IqB,) = n. B y  (2.1 (b)), ht Q = ht qA[G] + n.  

(b) If q is not maximal in A, then there exists p E Max (A) such that q c p ,  

and htqA[Gl < htpA[G]. Choose M E Max(A[G]) such that pA[G] c M .  

(Recall that (AIp)[G] is not a field.) Then dimA[G] 2 ht M = ht PA[G] + n  > 
ht qA[G] f n = ht Q = dim A[G], which is absurd. 

Corol lary  2.5 Let A be an integral domain offinite dimension, and let G be 

a torsion-free abelian group of rank n. Then dimA[G] = max{dimAM[G] I 
M E Max (A)} = n + max{ht MA[G] I M E Max (A)}. 

Proof .  It is clear from (2.4) that d i m A ~ [ G ]  = n+ht  MA[G] for each maximal 

idal M of A. Since dim A[G] > maxidim AM[G] ( M f Max (A)), it suffices to 

prove the existence of an M E Max ( A )  such that dim A[G] = n + ht MA[G]. 
But A[G] is finite-dimensional, and so we may choose Q E Max (A[G]) such 

that ht Q = dimA[G]. Then by (2.4 (b)), M = Q n A is the desired maximal 

ideal. 

Recall that a ring A is said to be equicodimensional if all its minimal primes 

have the same coheight. 

Corol lary  2.6 Let A be an integral domain, and G a torsion-free abelian 

group of rank n .  Then A[G] is equicodimensional if and only if the polyno- 

mial ring AIX1,. . . , X,] is equicodimensional. 

Proof .  Letting B = A [ x , .  . . , Y,] as in the set-up above, B L, A[G] is a 

faithfully flat integral extension. It follows that A('G'] is equicodimensional if 
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and only if B is. 

One says that a ring A satisfies the dimension inequality if for every exten- 

sion B of A, (A, B)  satisfies the dimension inequality. 

Corol lary  2.7 Let A be an integral domain, and let X I , .  . . , X,,, Y be indeter- 

minates over A. The following assertions are equivalent: 

(2) A satisfies the dimension inequality. 

(iz) The pair (A, AIX1,. . . , X,]) satisfies the dimension formula. 

(iiz) ht P = ht P[Y], Vn E w and all P E Spec (AIXI,. . . , X,]). 

(iu) ht p = ht p[X1,. . . , X,], for all p E Spec (A) and all n E W 

(v) h t p  = htpA[G], for all p E Spec (A), Vn E W ,  and for every torsion-free 

abelian group G of rank n. 

(ui) ht P = ht PAIXl, . . . , X,][H], Vn E N, for all P E Spec (A[XI, . . . , X,]) 
and for any torsion-free abelian group H of rank 1 .  

(uii) ht P = ht P[Y], Vn E M, for all G of rank n and for all P E Spec (A[G]). 

(viii) ht P = ht PA[G][H], Vn E N, for all G of rank n,  for all P E Spec (A[G]) 

and for all H of rank 1. 

Proof .  That (i), (ii), (iii), and (iv) are equivalent is (16, Lemma 1.41. 

By the proof of (2.1 (b)), ht pA[G] = ht p[X1,. . . , X,], whence (v)  @ 

(iv). That (v) 3 (vi) is trivial. To see that (vi) + (iii) note that for 

P E Spec(AIX1,. . . , X,]), ht PA[Xl, .  . . ,X ,][H] = ht P[Y] as in the proof 
of (2.1 (b)). 

For P E Spec (A[G]), ht PA[G][H] = ht P[Y] again, so we get (vii) (viii). 

To see that (iii) + (vii), let P E Spec (A[G]), and let P' = P n B, where 
B = A [ K , .  . . , Y,] a s  in the basic set-up above. Then ht P = ht P'. By 
(iii), ht P' = ht P1[Y]. Now B[Y] r A[G][Y] is integral and a free-module 

extension and P1[Y] = P[Y] n BIY], so ht P1[Y] = ht PLY]. We conclude that 
ht P = ht P[Y] as required. Reversing the argument proves (vii) + (iii), and 

completes the proof of the theorem. 

Let A be a commutative ring, n 2 1 an integer, and X I , .  . . , X, inde- 

terminates over A. Let G be a torsion-free abelian group of rank n. A 
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SPECTRUM OF THE GROUP RING 393 

chain (0) C Q1 C ... C Qm of prime ideals of A[X1,. . . ,X,] is called a 
special chain if for each i = 1,.  . . , m there is a j E (0 , .  . . , i )  such that 

(Q; nA)[X1,.  . . , X,] = Qj. P. Jaffard proved in [15] that for every prime ideal 

P of AIXI,. . . , X,] there is a special chain realizing the height of P. By anal- 

ogy, we say that a chain (0) C Q1 C . . . C Q, of prime ideals of A[G] is special 

if for each i = 1,. . . , m there is a j E (0,. . . , i )  such that (Q, n A)A[G] = Qj. 
We now give the analogue of Jaffard's special chain theorem for group-rings. 

Theorem 2.8 Let A be an integral domain and G a torsion-free abelian group 

of rank n. Given a prime ideal P of A[G] of finite height, there exists a special 

chain in A[G] of length ht P terminating in P .  

Proof. Let P E Spec A[G]) and let p = P n A. The proof will be by induction 

on s = htp. 

If s = 0, the result is trivial. So we suppose the theorem true for prime 

ideals Q of A[G] with ht (Q fl A) 5 s - 1. Let r = htpA[G], and let (0) c 
PI C ... C Pr-1 C Pr = pA[G] be a saturated chain of primes in A[G] of 

length r. Then ht P,-1 = r - 1 and if pr-1 = Pr-1 n A, ht pr-, 5 s - 1. By the 

induction hypothesis, there is a special chain (0) C Pi C . . . C Pi-:, c Pr-1 of 

length r - 1 in A[G]. Since ht P = ht pA[G] + ht PIpAIG] by (2.1 (b)) we have 

(0) C P,' C . . . C P:-, C P,-1 C P, = pA[G] C P,+, C . . . c Pm = P ,  where 
m = ht P .  This is a special chain in A[G]. 

3 Some results of transfer 

With the object of constructing new classes of universal strong S-domains and 

universally catenary rings, we pursue the study of the transfer of these notions 

to group-rings. 

Theorem 3.1 Let A be an integral domain, and let G be a torsion-free abelian 

group of rank n > 1. Then A[G] is an S-domain. 

Proof. If F is a free subgroup of G with G / F  torsion, then A[F] L, A[GJ is 

a free-module extension and satisfies GD. By [la, Theorem 4.91 it suffices to 

show that A[F] is an S-domain. But A[F] is a localization of a polynomial 
ring in rankG indeterminates over A. If rankG = n < oo and n 2 1, then 

AIXl,. . . , X,], and hence A[F], is an S-domain by [ l l ,  Proposition 2.11. If 
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394 AMEZIANE ET AL. 

rankG = oo, AIXl, Xz, .  . .] is an S-domain by (10, Corollary 2.131, and hence 

A[F] is an S-domain in this case also. 

Proposition 3.2 Let A be an integral domain and let G be a torsion free 

abelian group offinite rank n. Then 

(a) A[G] is strong S-domain implies that AIXl, . . . , X,] is strong S-domain. 

(b)  A[G] is catenary implies that AIXl, . . . , X,] is catenary. 

Proof. Let B as in the basic set-up. Then B r A[G] is integral and has GD, 

being B E AIXl , . . . , X,]. For (a) it suffices to apply [18, Theorem 4.61. 
(b) Assume that A[G) is catenary. Let PI c P2 be consecutive prime ideals 

in B. Since B L-, A[G] satisfies G U  there exist Q1 c Qz prime ideals in A[G] 

such that Pi = Q, n B for i = 1,2. (18, Lemma 4.11 implies then that Ql c Q2 

are consecutive prime ideals in A[G]. By the assumption, ht Qz = ht Q1 -+ 1. 

Therefore, ht Pz = ht PI + 1 since B L-, A[G] is integral and satisfies GD, which 

implies ht Pi = ht Qi for i = 1,2, Furthermore, A[G] locally of finite dimension 

implies B is. Consequently, B is catenary. 

Theorem 3.3 Let A be an integral noetherian ring. The following are equiv- 

alent: 

(i) A is universally catenary. 

(ii) A[G] is catenary for all finite rank torsion-free abelian groups G. 

(iii) A[G] is universally catenary for all finite rank torsion-free abelian groups 

G. 

(iv) A[G] is catenary for some non-trivial trosion-free abelian group G of 

finite rank. 

(v) A[z] is catenary. 

Proof. (i) .s (ii) Let Q1 C Qz be consecutive prime ideals in A[G]. Set 

Pi = QQ; n B for i = 1,2, where B is as in the basic set-up, and let S = B \ P2. 
Bp, L-, S-lA[G] is an integral extension, and Bp, is a local noetherian domain. 

Since A is universally catenary, Bp2[X] is catenary, and 121, remark A.111 

implies that Bs is a GB domain. Consequently, ht &/PI = ht S-' Pz/S-'PI = 
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SPECTRUM OF THE GROUP RING 395 

1 (ht S - ' Q Z / S - ' Q ~  = ht & ~ / Q I  = 1 ,  S-'&i n Bq = S I P i  for i = 1,2, and 
Bq is a GB-domain), and ht Pz = ht 4 + 1 because of B is catenary. On the 

other hand, ht Qi = ht Pi for i = 1,2, thus ht Qz = ht Q1 + 1. Taking into 

account that B is locally of finite dimension (A is universally catenary), we 

finally get A[G] is a catenary domain. 

(ii) + (i) comes from (3.2), while the equivalence with (iii) results from 

the isomorphism AIG][X1,. . . , X,] E AIXI,. . . , Xn][G]. 

The implications (ii) + (iv) and (ii) =+ (v) are evident. 

(iv) + (i) Since A[G] is catenary for some non-trivial torsion-free group 

of finite rank, A[Xl,. . . , X,] is catenary by (3.2), where n = rank G (n 2 1). 

Then by (221 A is universally catenary because of A is noetherian and A[X] is 

catenary. 

(v) + (i) A[z] catenary implies that A[X] is catenary (3.2). Since A is 

noetherian and A[X] is catenary, [22] implies A is universally catenary. 

P ropos i t ion  3.4 Let A be an integral domain of dimension 1 and let G be a 

torsion-free abelian group of rank 1. 

(a) A[G] is strong S-domain i j  and only if A[X] is strong S-domain. 

(b)  If A is noetherian, A[G] is a universal strong S-domain. 

Proof.  (a) (+) comes from (3.2 (a)) .  (e) Since dimA[G] = dimA[X] = 2 

([13, Corollary 11) and A[(=I is S-domain by (3.1), [18, Theorem 4.51 implies 

that A[G] is strong S-domain. 

(b) It suffices to apply the set-up and [18, Proposition 4.201. 

E x a m p l e  3.5 Let I< be a field and n E N. Then the rings It'[@ @ zn]  and 

Z[Q$ Zn] are universally catenary. 

Definit ion 3.6 Let A be a commutative ring. 

(a) A satisfies the first chain condition (f.c.c.) if every maximal chain of 
prime ideals of A has length equal to  the Krull dimension of A. 

(b) A satisfies the second chain condition (s.c.c.) if for every prime ideal P of 

A and every integral domain B integral over AJP,  every maximal chain 

of prime ideals of B has length dim A. 

Corol lary  3.7 Let A be an integral noetherian domain which is universally 

catenary, and let G be a trosion-free abelian group of rank n .  Then A[G] 
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396 AMEZIANE ET AL. 

satisfies the f.c.c. i f  and only if A[X,, . . . , X,] satisfies the J.c.c.. 

Proof .  This follows from (2.6) and (3.3) since the f.c.c. is equivalent to being 

both catenary and equicodimensional. 

E x a m p l e  3.8 If K is a field, I<[Q] and z[Q] satisfy the f.c.c.. 

P ropos i t ion  3.9 Let A be an integral domain and G a torsion-free abelian 

group of rank n. Then A[G] satisfies the s.c.c. if and only i f  A[Xl,. . . , X,] 
does. 

Proof .  If A[G] satisfies the s.c.c. then so does B because A[G] is integral over 

B 121, (1.3.4)). Conversely, any integral domain integral over A[G] is integral 

over B and dimA[G] = dim B, so if B satisfies the s.c.c. A[G] does, too. 

E x a m p l e  3.10 For any field IC, K[Q$ z"] satisfies the s.c.c., for all n E n 

4 Local study of the Jaffard condition for 

group-rings 

The notion of a Jaffard domain is not stable under localization and one says 

that A is locally Jaffardif A, is a Jaffard domain for each prime ideal p of A [I]. 

In fact, locally Jaffard domains are none other than the domains satisfying the 

dimension inequality [16]. By the same token, Jaffard domains are not stable 

under quotient and so P.-J. Cahen in [8] introduced the following two concepts: 

We say that A is residually Jaflard if Alp is Jaffard for every prime idea1 p of 

A. We call A totally Jaffard if A, is residually Jaffard for each prime ideal p 

of A (equivalently, if A l p  is locally Jaffard for each prime ideal p of A). 
In this section we study the transfer of these notions to group-rings. 

T h e o r e m  4.1 Let A be an integral domain of finite dimension, and let G be 

a torsion-free abelian group of rank n .  

(a) A[G] as locally Jaffard if and only if A[Xl,. . . , X,] is. 

(b) A[G] is residually Jaffard if and only if AIX1,. . . , X,] is. 

(c) A[G] totally Jaffard implies A[Xl,. . . , X,] is. 

L e m m a  4.2 Let A be an integral domain of finite dimension. 
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(a)  A is locally Jafard i f  and only if S-'A is  a Jaflard domain for every 

multiplicative system S of A. 

(b)  A is  totally Jaffard if and only if S-'A is residually Jaflard for each 

multiplicative system S of A. 

Proof. (a) [5, Proposition 2.5(a)]. 

(b) (+) Trivial. (+-) If S-'A is not residually Jaffard for some multi- 
plicatively closed set S ,  there is a Q E Spec(A) such that Q n S = 0 and 

S-'AJS-'Q is not Jaffard. Consequently, there is a valuation ring V such 
that S-'A/S-'Q C V C Frac (A/Q) and dims-'A/S-'Q < dim V. Let M 
be the maximal ideal of V. Then M n A/Q = P/Q, where P E Spec (A), 

P n S = 0, and Q c P. Now dimAplQAp = ht P/Q = ht S-'PIS-lQ < 
dims-'AJS-'Q < dimV and ApIQAp C V C Frac(Ap/QAp). Thus, 
Ap/QAp is not a Jaffard domain, contradicting the assumption that A is 

totally Jaffard. 

Lemma 4.3 Let A - B be an integral extension of integral domains with 

dimA < m. 

(a)  B is a Jaffard domain i f  and only if A is Jaffard. 

(b) B is  residually Jaffard if and only if A is residually Jaffard. 

(c)  B is  locally Jaffard implies A is locally Jaffard. 

(d)  B is totally Ja fard  implies that A is  totally Jaffard. 

Proof. (a) See [I]. 
(b) For each Q E Spec (B), B/Q is integral over AIQ n A. And, for each 

q E Spec(A) there is a Q E Spec (B) with q = Q n A. Then (a) applied to 

A/q - B/Q proves (b). 

( c )  Let p E Spec (A) and let S = A \ p. Then S-'B is integral over A, and 

S-'B is Jaffard by (4.2(a)), so A, is Jaffard by (a). 
(d) Let p E Spec (A), and let S = A \ p. Since S-'B is integral over A,, 

and S-'B is residually Jaffard by (4.2(b)), A, is residually Jaffard by part (b). 

This shows that A is totally Jaffard. 

Remark 4.4 Recall that the converse of (c) is false, in general, [3, Example 

111-4.181. 
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Proof of Theorem 4.1 Let B = AIYl,. . . , Y,] be as in the basic set-up, so 
that B E AIXI, . . . , X,] and B r A[G] is integral with A[G] a free B-module. 

(a) (s) It follows from (4.3(c)) that B is locally Jaffard. 
(e) By [16, Lemma 1.41 (or 2.7), it suffices to prove that for each m E M 

and for each P E Spec(AIG][X1,. . . , X,,,]), ht P = ht P[Y]. From the iso- 

morphisms A[G][Xl,. . . , X,] E A[XI,. . . , X,][G] and A[G][Xl,. . . , Xm][Y] 1: 

AIXl,. . . X,,,][Y][G], we can suppose that P E Spec (A[Xl,. . . , X,][G]). 
Let A1=AIXI, ... X,],p= PnA1,  andpl=  PIY]nA1[Y] = (PnA1)[Y] = 

p[Y]. By (2.l(b)), ht P = ht pA1[G] + ht P/pA1[G], ht P[Y] = ht pA1[Y][G] + 
ht PIY]/pA1[Y][G]. On the other hand, A[K, . . . , Y,] satisfies the dimension 
inequality [16], hence A1[Yl,. . . , Y,] too [8, Proposition 1 i)], and htpA1[G] = 
htp[Yl,. . . , Y,], htpA1[Y][q = htp[Y][Y,, . . . , Y,] (see the proof of (2.l(b)). 

Furthermore, htp[&,. . . ,Y,] = htp[Y][K,. . .,Y,] by [16, Lemma 1.41. 
Consequently, ht pA1[G] = ht pA1[Y][G]. Likewise we have ht P/pA'[G] = 

ht PIY]/pA1[Y][G], since P/pA1[G] E Spec(AJ/p)[G]) and PIY]/pA1[Y][G] E 

Spec (A1/P[GI[Y1). 
Let T = A1/p \ (0). Then, P/pA1[G] n T = 0 and PIY]/pA1[G][Y] n 

T = 0. Thus ht P/pA1[G] = htT-'(P/pA1[G]) and ht PIY]/pA1[G][Y] = 

ht T-' (PIY]/pA1[G][Y]) = ht T-I (P/pA1[G])[Y]. 
On the other hand, T-'(P/pA1[G]) E Spec(K[G]), where It' = Frac (A1/p). 

Since K[G] is universally catenary (3.3), it is universal strong S-domain. Con- 

sequently, ht T-'(P/pA1[G]) = ht T-'(P/pA1[G])[Y]. Therefore ht P/pA1[G] = 

ht PIY]/pA1[G][Y] = ht PIY]/p[Y]A1[G], and ht P = ht P[Y] for each m E M 

and each P E Spec (A[G][X,, . . . , X,]). That is, A[G] is locally Jaffard. 
(b) This is just an application of (4.3(b)) to B r A[G]. 
(c) Comes from (4.3(d)) applied to B + A[G]. 

5 Applications and construction of new 

examples 

In this section we construct new classes of locally Jaffard domains, and uni- 
versally catenary rings, different from ones previously known. 

Proposition 5.1 (a) For all n 2 2 there exists a factorial, non-noetherian, 

universally catenary domain of dimension n and characteristic p 2 0. 
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(b)  For all n > 2 there exists a local, factorial, non-noetherian, universally 
catenary domain of dimension n and characteristic p > 0. 

(c) For all n > 2 there exists a local, factorial, non-noetherian, universally 
catenary domain of dimension n and characteristic 0. 

Proof. (a) We use the construction in [S]. Let P be the Pontryagin group. 
Thus, P is a torsion-free abelian group of rank 2 in which every rank 1 subgroup 

is cyclic. For n 1 2, let G, = P $ z"-', and let Ii' be a field of characteristic 
p 2 0. The ring K[G,] is the desired example. It is universally catenary by 

(3.3). The other properties are established in [5]. 
(b) We use the construction in [13]. Let A = K[GnIM, where h' is a field 

of characteristic p > 0 and M is the maximal ideal of Ii'[G,] generated by 

(1 - X9 I g E Gn), the "augmentation ideal". That A is factorial and non- 

noetherian it is shown in (13, Theorem 4). Since I{[G,] is universally catenary 
by (3.3), A is universally catenary. 

(c) We use the construction in (61. For n >_ 3, let r = n - 1. There is a 

group L, of rank r such that z(L,] is factorial, equicodimensional, of dimension 
n, characteristic 0, and which has a maximal ideal M such that z [ L , ] ~  is non- 
noetherian (61. The ring Z[L,] is universally catenary by 3.3, so z [ L , ] ~  is the 

desired example. 

For n = 2, we reproduce the construction in [6, pp. 306-3071. Let p be 

a prime integer, z[:] = ( d i p n  1 a E E,n E W), G = z[$] $ z[$] $ z[$], H = 

z[:] $z[:] a subgroup of G, and G, = H $ p-"Z. It is clear that G = Un>oGn - 
and that z[G] = UnloZIGn] = U~>OZ[H][P-~Z]. (Z[Gn] = Z[H][p-"z] by [14, 
Theorem 7.11 .) 

Let &,62,. . . be a sequence of elements of z[H] \ (0) such that cl(6,) # 0 
in z /~z[H] ,  where cl(6,) denotes the class of 6, modulo p ~ [ H j  and cl(6,)P = 

c1(6,-1) for all n 2 2. (The sequence 6, = X(p-"*O) + X(O?p-") will do.) Then 
P, = (p,6, + Yfn)  is a prime ideal of Z[H][YP-",Y-P-"] which we identify 
with ;Z[H][~-"Z], and P = Un>oPn is a prime ideal of z[C;~. 

Letting A = [q, ,  it is shown in [6, pp. 306-3071 that A is factorial, 
non-noetherian, local of dimension 2, and characteristic 0. In addition, A is 
universally catenary since z[C;~ is by (3.3). 

Example 5.2 Set V = ~ ( f i ) [ [ X ] ]  = ~ ( 4 )  + X Q ( ~ ) [ [ X ] ] ,  and R = Q + 
XQ(&)[[X]]. Then by [2, Corollary 2.3) and (3.3), the ring R[Q] is universally 

catenary. 
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We now consider a construction of M. Nagata [20]. Let It' be a field. Let 

W = K[X, Y](X-I,Y), and let V be a noetherian valuation ring of K(X, Y) 
containing K[X, Y] with maximal ideal P such that P f l K[X, Y] = (X, Y) 
and VIP  = K. Set T = V fl W .  Then T is semi-local with two maximal ideals 

M, N. 

Example 5.3 Let A = It' + M n N. Then 

(a) A[Q] is non-noetherian. 

(b) A[Q] is locally and residually Jaffard. 

(c) A[Q] is not catenary. 

Proof. (a) A[Q] is not noetherian because Q is not a finitely generated group 

112, Theorem 20.71. 
(b) A is noetherian 1201 and so is universal strong S-domain. Then A[X] is 

locally and residually Jaffard. Therefore A[Q] is locally and residually Jaffard 

(4.1, (a), PI). 
(c) Nagata showed in 1201 that A is not universally catenary. Since A 

is noetherian, A [ X ]  cannot be catenary. (For by [22], that would make A 

universally catenary.) Then (3.2) shows that A[Q] is not catenary. 

(a) R[Q] is locally Jaffard. 

(b) R[Q] is not residually Jaffard. 

(c) R[Q] is not a strong S-domain. 

(d) R[Q] is not catenary. 

Proof. (a) We have dim R = dim I( + dim V = 1 and dim, R = dim, It' + 
dim, V + tr.deg, K(X) = 2 by 15, Proposition 2.11. Then [8, Proposition l(ii)] 

implies that R[X] is locally Jaffard and (4.l(a)) shows that R[Q] is locally 

Jaffard. 
(b) We have wQ E Spec (R[Q]) [9, Proposition 11 and R[Q]/wQ R, which 

is not Jaffard since dim, R > dim R. Thus, R[Q] is not residually Jaffard. 
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(c) If R[Q] were a strong S-domain, then (3.2(a)) would show that R[X] 

is a strong S-domain. From this would follow that R is a strong S-domain, 

which is absurd since It'(X)/It' is transcendental (18, Theorem 5.11. 

(d) If R[Q] is catenary, then so is R[X] by (3.2(b)), and hence R is a strong 

S-domain by [4, Lemma 2.31. This is the same contradiction as in the proof of 

(c). 

Example 5.5 Let T = Q(z)[X] and let R = Z + XQ(i)[X]. For each torsion- 

free abelian group G with finite rank, R[G] is residually and locally Jaffard. 

Proof. By [17, Corollaire 1.81, R is universal strong S-domain. Then for each 

n, R[X1, . . . , X,] is locally and residually Jaffard. By (4.l(a), (b)) we then 

have that R[G] is locally and residually Jaffard for each finite rank torsion-free 

abelian group. 

We end this paper with the following conjectures: 

Conjecture 5.6 A[X,,. . . , X,] is strong S-domain implies that A[G] is strong 

S-domain. 

Conjecture 5.7 AIXI,. . . , X,] is catenary implies that A[G] is catenary. 
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