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NTRODUCTION

All the rings considered in this paper are integral domains, and all modules and

ring homomorphisms are unital. In this paper, we deal with the class group (see

" definition below) of A + X B[X] domains. That is, let A C B be an extension
- of integral domains. Then A + X B[X] is a subring of the polynomial ring B[X].
This construction has been studied by many anthors and has proven to be useful

in'constructing interesting examples and counterexamples, see for instance [2], [3],

 [6), [8), and [10].

If D is an integral domain, two well-known results on polynomial rings are that

' Pic(_D[X ]) = Pic(D) if and only if D is seminormal, and C}(D[X]) = CI(D) if and
- only if D is integrally closed (cf. [14] and [12], respectively). In [2], it is shown that
. Pie(A 4 XB{X]) = Pic(A) if and only if B is seminormal. The purpose of this

work is to study the question of when Ci(A + X B[X]) = Cl(A), paying particular

- attention to the case where B is integrally closed. Namely, Theorem 4.4 establishes
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that if B is integrally closed and a flat overring of A, then Cl(A + X B[X]) is
canonically isomorphic to CI(A). We also show that if B is integrally closed, then
this isomorphism holds in the cases ¢f(A) C B or B = A[Y], where Y is a set
of indeterminates. Theorem 4.10 allows us to construct explicit examples showing
that this eanonical isomorphism does not hold in general even if B is integrally
closed.

In this paper, A C B is an extension of integral domains and K is the quotient
field of B. Let D be an integral domain with quotient field ¢f(D) = k. By an
ideal of D we mean an integral ideal of D, Given a nonzero fractional ideal I
of D, we define I = {z € k| = ¢ D} and I, = (I"1)~1, We say that I is
divisorial or a v—ideal if I, = I; while I is v—finite if J = J, for some finitely
generated fractional ideal J of D. For I a nonzero fractional ideal of D, we define
I = U{Jy | J C I finitely generated}. Then I is a t—ideal if I, = I. The mappings
I I, and I — I are particular star-operations on fractional ideals of D, see [13,
Sections 32 and 34] for a general theory. As in [7] and [8], we define the class group
of D, Ci(D), to be the group of ¢{~invertible (fractional) ¢t—ideals of D modulo
the subgroup of principal ideals of D. If D is a Krull domain, then CI(D) is the
usual divisor class group of D, see {11]. In this case, CI(D) = 0 if and only if D is
factorial.

This paper consists of four sections in addition to the introduction. In Sections
1 and 2, we state basic results on divisorial ideals and ¢—invertibility in A 4-
X B[X] domains. Section 3 establishes necessary and sufficient conditions for a
v—invertible v—ideal or a ¢—invertible ¢—ideal of A+ X B[X] to be extended from
A (see definition below). In Section 4, we give the proofs of the theorems mentioned
above,

1. DIVISORIAL IDEALS IN A+ XB[X]

Let R = A+ XB[X]. In what follows, we consider the natural grading on R, that

is, R = @R,,, where Rp = A and R, = X"B for n > 1. An element (resp., an
©on20

|deal) of Ris smd to be homogeneous if it is homogeneous with respect to th1s
grading. If f is a polynomia.l over an integral domain A, we denote by A, the
content of f. .

LEMMA 1.1 Let R = A4 XB[X] with B integrally closed. Let I be a homo-
geneous divisorial ideal of R, J the ideal of B generated by the coefficients of all
polynomials of I, n the least integer & such that e X* € I for some nonzero o € B,
and W C'J the A-module generated by all @ € B such that e X® € 1. Then J is
& divisorial ideal of B and I = X"W + X"+1J[X],
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Proof. - Since I is homogeneous, it is easy to see that I C. XPW4+ X t1J[X]. Con-
versely, since I is divisorial and X"W C I, it suffices to show that X"+1J,[X] C.
LR for each f,g € R such that I C LR Choose a nonzero ¢ € W. Let
g € R such that I C {R. Since aX™ e I, we have £ = oX= for some r € R.

Hence we can assume [ = aX™ Let0#h el Then h e . X’ R and hence
gh'€ aX™R C aB[X] and Ags C aB. Since B is integrally closed, by [15, Lemms
1, Sect:2], (AgAn)u = (Agn)u. Hence AjAy C aB, so that gAx[X] C aB[X]. Then
gJ[X] C aB[X], and by taking the v-closure, we get gJ,[X] C aB[X] (12, Lemma
1.6]. Since XB[X] C R, then X"*1J,[X] C 2X°R; whence X™*1J,[X] C I, as"
desired.

L:EMMA 1.2 Let R = A+ XB[X] with B integrally closed. Then for each
divisorial ideal I of R, there exist « € K[X, X 1] and J a homogeneous divisorial
ideal of R such that I = uJ.

Praof Let S be the (multiplicatively closed) set of nonzero homogeneous elements
of R. We have Rg = K[X, X “1] Let I be a divisorial ideal of R. Then ITRg =
fRg for some f € B[X] such that f(0) # 0. Hence I C fK[X]. Since B is
integrally closed, by [15, Section 2, Lemme 1], fK[X] N B[X] = fA;l[X], hence .
Ic fA; 1X]. Let 0 # b € Ay and set J = bX f~11. Clearly, J is a divisorial ideal
of R. We next show that J is homogeneous. Let f,g € R such that J & %R Since:

- JNS # B, and as in the proof of Lemma 1.1, we can assume that f = aX™ for

some nonzero element a of B and some integer m > 0. Now let 0 £ k € J. Then.
he “’;m R, and hence gh € aX™R C aB{X]. Then A;Ax C aB by an argument
gimilar to that in the proof of Lemma 1.1. On the other hand, gh € aX™R
implies that g = X"g; and b = X®hy with 7 + 5 > m and g1(0)h1(0) # 0. We
have A, = A,, and A, = Ay, s0 Ay A, C aB, and thus gy Ay, [X] C oB[X].
Therefore X**1 Ay, [X] C J. It follows that the homogeneous components of h are

" in J, which proves that J is homogeneous.

| REMARK 1.3 ,Lérmﬁa 1.2 can be generalized tb_ N-graded domains by using

other techniques. Let R = @R, be an N-graded integral domain and. §' be the
n>0
(multiplicatively closed) set of nonzero homogeneous ¢lements of R.- Then Rg is

-8 Z-graded domain. In [1], the authors define a graded domain R to be almost

normal if it is integrally closed with respect to nonzero- homogeneous elements of

. Rgof nonzero degree. They showed [1, Corollary 3.8] that the following statements

are equivalent:
(i) R is almost normal.

(ii) For each v—ideal I of R, I = uJ for some « € Rg and some homogeneous
v—ideal J of R. : : : :
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- If R= A+ XB[X] is graded in the natural way, it is not difficult to show that
R is almost normal if and only if B is integrally closed.

By Lemma 1.1 and Rﬂmark 1.8, we have the followmg theorem.

THEOREM 14 Let R= A + X B[X]. The following statements are equivalent.
(1) B is integrally closed.

(2) For each v—ideal T of R, I = u(W+ XJ[X]) for some v € K[X, X", J a
v—ideal of B, and W C J a nonzero A-module.

2. »—INVERTIBLE IDEALS AND {-INVERTIBLE IDEALS IN
A+ XB[X]

LEMMA 2.1 Let R = A+ XB[X]. Let Fy (resp., F2) be a nonzero fractional
ideal of A (resp., B) such that 7} C F,. Then Fy + X Fy[X] is a fractional ideal
of R, and we have (Fy + XF3[X])~! = F{ ' n Fy ! 4 XF Y X).

Proof. It is obvious that I = F) + XF3[X] is a fractional ideal of R. Now

since Fy C I, if u € I"!, then u € K[X]. Thusifu € K[X], then u € !

if and only if u(O)F1 C A and uFy[X) € B[X). Hence u € I"! if and only if
€ Fyln Fy' + XFy U [X).

LEMMA 22 Let R=A+X B[X] Then X B[X ] and B[X] are divisorial ideals
of R.~

Proof. Let C(A,B) = {zx € A| zB C A}. It is easy to see that [R : B[X]]
C(A, B) + XB[X]. If C(A, B) = 0, then (B[X])~! = XB[X]; hence (B[X]),
BIX]. If C(A, B) # 0, by Lemma 2.1, (B[X])y = (C(A, B)~! 1 B) + XB[X] =
B[X). Hence B[X] and X B[X] are divisorial ideals of R.

THEOREM 23 let R = A+ XB[X] with B integrally closed. If I is a frac-
tional v—invertible v—ideal, then I = u(Jy + X Jo[X]) for some u € qf(R), Jz a
v—invertible v—ideal of B, and J; C Jp & nonzero ideal of A.

Proof. By Theorem 1.4, we can assume that I = W + X J[X] for some v—ideal
J of B and W C J a nonzero A-module. First, we show that there exists nonzero
¢ € K such that ¢W C A and ¢J C B. Let a € W be a nonzero element, Then one
can easily show that aI—! C R satisfles the hypothesis of Lemma 1.1. Thus there
exist an integer m, J’ & divisorial ideal of B, and W’ C J’ a nonzero A-module
such that

oI~ = X™W' 4 X™H 7[X].
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" Since I is v—invertible;

aR= X™((W + XJIX)(W' + X [X])),.

On the other hand, we have (W + X J[X])(W' + X J'{X]) C B[X]. Further, since

B[X] is divisorial, aR C X™ B[X]. Hence m =0 and

aR = (W + XJ[X])W' + X J'[X])),.

- Thus a~*WW' C Aand a~1JJ’' C B. Let c € a~!W’ be a nonzero element. Then
R J1 =cW C A and Jp = ¢J C B. Hence there exist J, C B a divisorial ideal
_of B and J; C J; a nonzero ideal of A such that I = u(J; + X Jo{X]) for some

- u € gf(R). It remains to show that J; is v~invertible. By Lemma, 2.1, we have

I =u I nJgt + XIFYX)).

Hence, II"' c L(J7InJ7 )+ X.ng;l[X] C R, and since I is v—invertible, we

have

(WU AT + X LJ7 X)) ™ = R.

By applying Lemma 2.1, we conclude that (JoJy 1)‘ = B. Hence Jg is a

v—invertible v#~ideal of B.

' COROLLARY 24 Let R = A + XB[X] with B integrally closed, If I is'a

fractional t—invertible t—ideal, then I = u(Jy + X J3[X]) for some v € ¢f(R), J2
a ¢—invertible t—ideal of B and J; C J2 a nonzero ideal of A.

Proof. It remains to show that Jz and Jy ! from Theorem 2.3, are v—finite.
Since I is a t—invertible t—ideal, then J; + XJ5(X] = (f1,..., fa)y for some
J1,...,fa € R. Thus there exists Fy C Jy (resp., F; C J2) a finitely generated
ideal of A (resp., B) such that F{ C F; and fi,..., fn € F1 + XF3[X]. Hence
Jt + X Jo|X] = (F1 4+ X F2[X])y. Applying Lemma 2.1 yields J; ! = F;!; hence Jp

© is v—finite. Similarly, one shows that J;! is also v—finite by using the fact that

I-1 is y—finite.

_ 3. t—INVERTIBLE IDEALS OF A + XB{X] EXTENDED FROM A -

'A fractional ideal  of R= A+ XB [X] is said to be extended from A if [ = uJ R

- for some u € qf(R) and some ideal J of A.

LEMMA 3.1 Let R= A+ XB[X] with B integrally closed and I be a fractional

" divisorial ideal of R. Then the following statements are equivalent.
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(1) There exist u € ¢f(R) and W a nonzero-A-module (¢ B) such that I = uWR.
(2) 1B{X] is a divisorial ideal of B[X].

Proof. (1) = (2). We can assume that ] = XWR; hence ] = XW + X 2w B[ X).

By Lemma 1.1, WB is & divisorial ideal of B; so IB[X] = X WB[X] is divisorial
in B[X].

(2) = (1) By Theorem 1.4, I = u(W + XJ[X]), where u € K[X, X" 1, Jisa
divisorial ideal of B and W C J is a nonzero A-module. Let I; = u=!IB[X]. Then
we have I; = WB+ XJ[X]. Applying Lemma 2.1 to I in the case A = B, we get
(I)y = J|X]. Further, since Iy is divisorial in B[X], then J = WB. Therefore
I =uWR.

REMARK 3.2 If B is integrally closed, then divisorial ideals of R are not always
of the form uWR, where u € gf(R) and W C B is a nonzero A-module. For,
let A= Z and B = Z[i]. Let's consider the ideal I = 27 + (1 + {)XZ[i][X]
of R = Z + XZ[i][X]. By applying Lemma 2.1, one can easily show that I is
a divisorial ideal. Notice that I is also a ¢—invertible ¢—ideal (see Remark 4.15
and Example 4.16). Now assume ] = uWR., Then u € Q(3), so uW = 27 and
uW Z[i} = (1 + i) Z[i]. Hence 2Z[i] = (1 + £)Z[i], a contradiction.

LEMMA 3.3 Let R = A+ XB[X]. Let I be a divisorial ideal of R of the form
I = Ji + X J3|X), where J; is an ideal of B and Ji € Jg is a nonzero ideal of A.
Then the following statements are equivalent.

(1) I is extended from A,

(2) o= J1B.

(3) 1B[X] is divisorial in B[X].

Proof. (1) = (2) We assume that I = uJR for some u € ¢f (R) and some ideal J
of A. Since IN A% 0, u € gf(A). It follows tha.t J1 = uJ and Jp = uJB. Hence
Jo = AB.

(2) = (1) Clear.

(2) > (8) Notice that by Lemma 2.1, Jp is necessarily a divisorial ideal of B. We
have I B[X] = J1 B + X J5[X], and applying Lemma. 2.1 in the case where A=B
yields (IB[X])s = J2[X]. Therefore IB[X] is divisorial if and only if J3 = Ji B.

THEOREM 34 Let R = A+ XB[X] with B integrally closed. Let I be a
fractional v—invertible v—ideal of R. Then the following statements are equivalent.
(1) I is extended from A. :

(2) I1B[X] is a divisorial ideal of B{X].

Proof. 1t follows from Theorem 2.3 and Lemma 3.3.

REMARK 3.5 The implication (2) = (1) in Theorem 3.4 is not. true in general
if I is a v—ideal which is not v—invertible. To see this, let A and B be such that
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. C(A, B) = 0 (see Lemma 2.2), and consider the fractional ideal I = B{X] of R.
- By Lemma 2.2, I is a divisorial ideal of R, but-it is not v—invertible in R since

~! = X B[X] and (II"')y = XB[X]. Note that IB[X] = B[X] is divisorial in
B|X). If I = uJR for some u € qf(R) and some ideal J of A, then u € K. Hence
B =uJ, and thus «~1B = J C A, Hence u~! € C(A, B), a contradiction. Note
that in this case, the implication (2) = (1) in Lemma 3.1 is true, namely W = B,

LEMMA 3.6 Let R= A+ XB[X]. Then R is a flat A-module if and only if B
is & flat A-module. i

: Praof Just note that R = A (DX B.

n21

LEMMA 3.7 Let § C T be an extension of integral domaiﬁs such that T is a flat
S-module. If I is a finitely generated ideal of S, then (IT)~! = 17T

) Proof. Ses for instance [6, Alg. Comm.,, Chap.1].

LEMMA 3.8 Let R = A+ XB[X] and J be an ideal of A.
(1) If (JR), = R, then J, = A.
(2) If (JR), = R, then J, = A,

Proof. (1) Assume (JR), = R. Letu € ¢f{A) such that J C uA. Then JR C uR,
and hence R = (JR), C uR. Thus 1 € u4 and J, = A. (2) is a consequence of

() since (JR): = U{(FR)y | F C J finitely generated }

PROPOSITION 3.9 Let R= A+ XB|[X] such that B is a flat A-module. Let J.

~ be an ideal of A. Then the following statements are equivalent.

(1) J is a t—invertible {—ideal of A.
(2) JR is a t—invertible {—ideal of R.

Proof. If B is a flat A-module, then R is a flat A-module by Lemma 3.6, and by
{4, Prop. 2.2], we have (1) = (2). :

(2) = (1) Assume that I = JR is a t~invertible t—ideal of B. Then J = I'N A
is a £—ideal. To see this, let F' C J be a finitely generated ideal of A. By using
the formula (¥, R), = (FR), which is a consequence of Lemma 3.7 (see |4, Prop.

2.2}, we conclude that F, C J. On the other hand, since JR is {—invertible,

there exists Jy C J a finitely generated ideal of A such that JR = (J;R),. Thus
(JI7IR) = ((JR)(JR)-!); = R, and by Lemma 3.8, (JJ; 1), = A, Hence Jisa
t—invertible t—ideal of A.

THEOREM 38,10 Let R = A + XB[X) such that B is integrally closed and a
- flat A-module. Let I be a fractional t—invertlble t—ideal of R. Then the followmg

statements are equivalent.
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(1) I =uJRfor some w€ gf(R) and some t—invertible t—ideal J of A.
(2) 1B[X] is a divisorial ideal of B[X]

Proof. (1) = (2)isa particular case of (1) = (2) in Lemma 3.1. Since t—invertible
¢—ideals are v—invertible v—ideals, (2) = (1) is a consequence of (2) = (1) of The-
orem 3.4 and Proposition 3.9.

4. THE CLASS GROUP OF A+ XB|X]

LEMMA 4.1 Let S be an integral domain and T an overring of §. Then the
following statements are equivalent.

(1) T is a flat S-module.

(2) For each meximal ideal M of T', T = Sumns.

Proof. See [11, Lemma 6.5].

LEMMA 4.2 Let B = A + XB[X] such that B is a flat A-module. Then, B[X]
is a flat R-module if and only if B is an overring of A.

Proof. We will use Lemma 4.1. First suppose that B[X] is a flat R-module and
let M be a maximal ideal of B[X] such that XB{X} c M; then B[X]|m = Ruor.
Let x € B. Then z € Rpynp, 8nd hence x = g for some f,g € R with g ¢ M.
Since X B[X] C M, g(0) # 0, so that z = ﬁ{g} € qf(A), hence B C qf(A).

Conversely, assume that B is an overring of A and let M be a maximal ideal
of B[X]. We will show that B[X]s = Rmnr. If X € M, then M = m + XB[X]
for some maximal ideal m of B, and we have M N R = (m N A) + X B{X]. Since
B is a flat A-module, by Lemma 4.1, By, = Amnra, and-one can easily verify
that B[X]y = Rmnr. Now if X ¢ M, let u € B[X]y. Then u = £ for some
f,g € BIX] with g ¢ M; thus u = % € Ruynp. Hence B[X]y C Runr and
B[X]Mm = BMnR.

LEMMA 4.3 Let R = A+ XB[X] such that B is a flat A-module. Then the
canonical map ¢ : Cl(A) — CU(R), [J] — [JR]is well-defined and it is an
injective homomorphism. :

Proof. Since Bisa flat A-module, by Lemma 3.6, R is a flat A-module. Hence

by {4, Prop. 2.2}, p is well-defined and it is a homomorphism. ¢ is injective since
R is a faithfully flat A-module.

THEOREM 44 Let R = A+ XB[X] such that B is integrally closed and a flat
overring of A. Then Cl(A + X B[X)) & CI(A).

Proaf. = It suffices to show that the canonical homomorphism  in Lemma 4.3 is
surjective. Let I be a t—invertible t—ideal of R. Since B is a flat overring of A,
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by Lemma 4.2, B{X] is a flat R-module, and thus I B{X] is a t—invertible {—ideal
of B[X] [4, Prop. 2.2]. The surjectivity of  now follows from Theorem 3.10.

COROLLARY 4.5 Let S be a multiplicatively closed subset of A. If A is integrally
closed, then Cl(A + X As(X]) & Cl(A).

For A = B, we have the following corollary (12, Theorem 3.6]
COROLLARY 4.6 If A is integrally closed, then Ci(A[X]} & CI(A).

THEOREM 4.7 Leét R = A+ XB|X|. If B is integrally closed and qf(A4) C B,
then Cl(A + X B[X]) = CI(A) - :

~ Proof. Since gf(A) C B, Bisaflat A-module, and hence by Lemma 4.3, it suffices

to show that the canonical homomorphism ¢ : CIi{A) — CU(R) is surjective. Let
I be a t—invertible t—ideal of R. By Corollary 2.4, I = u(J; + X J2[X]), where
v € gf(R), Jp is a t—invertible {—ideal of B, and J; C Jp is a nonzero ideal of
A. Since qf(A) C B, Jy = B, and hence I = uJ,\R is extended from A. By
Proposition 3.9, J; is a t—invertible t—ideal of A, as desired. '

COROLLARY 4.8 If B is integrally closed and A is a field, then CI(A+X B[X]) =
0.

THEOREM 49 Let ¥ = {V;} bé a set of indeﬁqmﬁna.tes. If Als integrallsr
closed, then Cl(A + X A[Y][X]) = Cl(A).

Proof. B = A[Y] is a flat A-module. By Lemma 4.3, it suffices to-show that
the canonical homomorphism ¢ is surjective., Let I be a t—invertible t—ideal of
R. By Corollary 2.4, we can assume that I = Jy + XJ,[X] for some t—invertible
t—ideal J of B and Jy C J» a nonzero ideal of A. Let J = Jo N A; J # 0 since
Ji # 0. By [12, Lemma 3.3 and Prop. 3.2}, J is a t—invertible t—ideal of A and
Jp = J[Y). Hence I = J; + X J[Y][X]. By applying Lemma 2.1 and using the fact
that J[Y]~! = J71[V] ([12, Lemma 1.6)), we obtain o

It = naY + XIYTUX)
=J7 i nJ Y]+ XTI Y] (X]
= J-1 4+ XJ-1[Y][X],

" so that I = (I-1)~! = JR. Hence y is surjective.

From the above results, the following natural question arises: Assume that
B is integrally closed and a flat A-module. Does the canonical isomorphism
- Cl{A + XBIX]) = Cl(A) always hold? The answer is negative, in general, as
‘{8 shown by the following examples. R ‘ o
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THEOREM 4.10 - Let A be an integral domain and a an element of some extension
domain of A such that o ¢ gf(A); o® € A, and a is not 2 unit in B = Ala). Let
R=A+ XB[X] and I = o®A+ aXB[X]. Then

(1) I is a divisorial ideal of R.

(2) 1 is a t—invertible {—ideal of R.

(3) I is not extended from A.

Proof. Since o € A and o ¢ qf (A), then B = A + Aa and it is a free A-module

with basis {1, a}.
(1) By applying Lemma. 2.1 to the ideal I, we get

I"'=a~2ANna B + o ' X B[ X].

On the other hand, AN aB = AN (Aa + Ad%) = Ao?. Thus o ?ANa~1B = A4,
and hence I~! = A+ o~ 1XB[X]. Thus

I, = AnaB+aXB[X]

= o? A+ aXB{X]

=1,
(2) It suffices to show that I and I -1 are v—finite and I is v—invertible, First
we show that I = (o?,aX). It is obvious that (o?,aX) C I. For the reverse
inclusion, let f € I. We have f = o?a + aXg(X) for some a € A and some
g € B[X]. Then g has the form g = b+4ca+ Xh{X), where b,c € A and h € B[X].
Thus f = o?(a+ cX) + aX(b+ Xh(X)); hence f € (a?,aX). In (1), we have
shown that I=! = A+ a~1XB[X]. Hence I"! = oI = (1,a~'X). It remains
to show that I is v—invertible. We have

11 = (a2, aX)(1, 671 X) = (o?, aX, X?).

Letueq f (R) such that (a?,aX, X 2) C uR. Since o? € uR, we can assume that

u= 2 for some f € R. Since X2 € 9‘7—R then X2 f = a%g for some g € R; so0 g has

the form g = X2h for some h € B[X]. Thus f = a®h; so that azh(O) F(0) € A,

Hence h(0) € A and k€ R. Thus 1 =yh € uR and (II71)y =

(3) If I = uJ R for some u € ¢f(R) and some ideal J of A, then u € gf(A). Hence
2.4 = uJ and aB = uJB; so B = aB, a contradiction.

EXAMPLE 411 To construct simple examples illustrating Theorem 4.10, let’s
consider A = Z and let d € Z, d # —1 and not asquare. Thena = +/d satisfies the
conditions of Theorem 4.10. The cases where d = 2,3 (mod4) and square-free
give examples with B mtegrally closed. '

We have the followmg coro]lary of Theorem 4 10,
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. COROLLARY 4.12 . The canonical homomorphism CI(A) — CI(A +XB [X ]) is

" not surjective in general even if B Is integrally closed,

EXAMPLE 4.13 Let & be a field and A = k{[S?]), (& = S an indeterminate); so

~ B = A[S] = k[[S]}. Let R = A+ XB[X]. Then Cl(A) = 0 and Ci(R) = Z/2Z.
~ To see this, let I be a t—invertible {—ideal of R. Since A and B are DVRs,

and by applying Corollary 2.4, we can assume that I = $?"A + S™X B[X]. By
dividing out suitable powers of 5%, we may assume that m = 0 or m = 1. For

-~ I=8M™A+XB[X]; 1! = A+ XB[X| =R, and hence I = I, = Rand n = 0, For

I=8"A+SXB[X]; I '=A+S" 1XB[X], and hence I = I, = $2A+ SXB[X]
and n = 1. By Theorem 4.10, the only nonzero class in CI(R) is [I], where
I = 82A+ SXB[X)], and its order is two. Thus CI(R) = Z/2Z.

We can say more about the surjectivity of the canonical homomorphism Cl(A) —

Cl(A + X B[X]); this is a consequence of Theorem 4.10.

COROLLARY 4.14 Let G be an abelian group. Then there exists an extension
A C B of integral domains such that B is integrally closed, Cl{4) = G, and the
canonfcal homomorphism Cl(A) — CI(A + X B[X]) is not surjective.

Proof. By Claborn’s theorem there exists a Dedekind domain D such that Cl(D) =

G. Let § be an indeterminate, and let A = D[S?], B = D[S], and R =
A+ XB[X] = D[S%,8X, X]. We have Cl(A) = CI(D) = G. By Theorem 4.10,
the natural homomorphism Ci(A) — CI(R) is not surjective. Also, note that-in
this case, Pic(R) = Pic(A) = Pic(D).

REMARK 4.15 By modifying the hypothesis “a: not a unit in B” in Theorem
4.10 to “a =1 — a? not & unit in B” and considering the ideal I = aA + (1 +
@)X B[X], one can show, using similar arguments, that I = (e, (1 + o)X) and it
is & t—invertible {—ideal of R. In this case, if we take A=2Z and a = i, we have
the simple example R = Z 4 X Z[][X]. See the example below for the class group
of this ring. '

.EXAMPLE 4.16 Let R=Z+ X2 [{][X]. Then CI(R) is the direct sum of Z/2Z

and a countably infinite number of copies of Z. The Z/2Z summand corresponds
to 2, the prime in Z that splits in Z[{] with two associate prime factors, and each

of the Z summands corresponds to a positive prime p in Z that splits in Z[i] with

two nonassociate prime factors. Let 2 = ab in Z[i]; a and b are associates. Then for
I =2Z+aX Z[i][X], we have [I] = —[I] = [2Z +bX Z[][X]] is nonzero. For p # 2,
& positive prime in Z that splits as p = ab in Z[i], we have —[pZ + aX Z[i][X]] =
[pZ+bX Z[i][X]] and each has infinite order in CI(R). These statements and those

‘below follow from the form of a divisorial ideal in R and the formula for 7! for

su_ch a divisorial ideal.
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Wae next show that the above classes of ideals generate CI(R). Such a divisorial
ideal I has the form nZ + aX Zli][X] with n = ab. Using the above comments, one
can show that any prime divisor p of n in Z that does not split in Z[{] must also
divide a. If p = cd splits in Z[i] and p* exactly divides n, then one can show that
either c* or d¥ is exactly the prime power that divides a. Thus [nZ+aX Z[{][X]] =
S k;[psZ + ¢; X Z[i){X]], where {p; = cjdy} is the set of positive primes in Z
that split in Z{i]. We show that the above classes are independent. Assume
S kylps Z + ;X Z1][X]| =0 in CU(R). We may assume that each k; 2 0 (replace
¢; by dy, or conversely, if needed). Thus the corresponding nZ +eX2Z f)[X] s
principal. One then uses the above comments to show that each k; is 0 (or for the
prime 2, that k4 is even).
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