On the Class Group of $A+X B[X]$ Domains

DAVID F. ANDERSON Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300
SAID EL BAGHDADI Department of Mathematics, FST, Beni Mellal, Morocco
SALAH-EDDINE KABBAJ (${ }^{*}$) Department of Mathematical Sciences, KFUPM, P.O.Box 849, Dhahran 31261, Saudi Arabia

INTRODUCTION

All the rings considered in this paper are integral domains, and all modules and ring homomorphisms are unital. In this paper, we deal with the class group (see definition below) of $A+X B[X]$ domains. That is, let $A \subset B$ be an extension of integral domains. Then $A+X B[X]$ is a subring of the polynomial ring $B[X]$. This construction has been studied by many authors and has proven to be useful in constructing interesting examples and counterexamples, see for instance [2], [3], [5], [9], and [10].

If D is an integral domain, two well-known results on polynomial rings are that $\operatorname{Pic}(D[X])=\operatorname{Pic}(D)$ if and only if D is seminormal, and $C l(D[X])=C l(D)$ if and only if D is integrally closed (cf. [14] and [12], respectively). In [2], it is shown that $\operatorname{Pic}(A+X B[X])=\operatorname{Pic}(A)$ if and only if B is seminormal. The purpose of this work is to study the question of when $C l(A+X B[X])=C l(A)$, paying particular attention to the case where B is integrally closed. Namely, Theorem 4.4 establishes
that if B is integrally closed and a flat overring of A, then $C l(A+X B[X])$ is canonically isomorphic to $C l(A)$. We also show that if B is integrally closed, then this isomorphism holds in the cases $q f(A) \subset B$ or $B=A[\mathbf{Y}]$, where \mathbf{Y} is a set of indeterminates. Theorem 4.10 allows us to construct explicit examples showing that this canonical isomorphism does not hold in general even if B is integrally closed.

In this paper, $A \subset B$ is an extension of integral domains and K is the quotient field of B. Let D be an integral domain with quotient field $q f(D)=k$. By an ideal of D we mean an integral ideal of D. Given a nonzero fractional ideal I of D, we define $I^{-1}=\{x \in k \mid x I \subset D\}$ and $I_{v}=\left(I^{-1}\right)^{-1}$. We say that I is divisorial or a v-ideal if $I_{v}=I$; while I is v-finite if $I=J_{v}$ for some finitely generated fractional ideal J of D. For I a nonzero fractional ideal of D, we define $I_{t}=U\left\{J_{v} \mid J \subset I\right.$ finitely generated $\}$. Then I is a t-ideal if $I_{t}=I$. The mappings $I \mapsto I_{v}$ and $I \mapsto I_{t}$ are particular star-operations on fractional ideals of D, see [13, Sections 32 and 34$]$ for a general theory. As in $[7]$ and $[8]$, we define the class group of $D, C l(D)$, to be the group of t-invertible (fractional) t-ideals of D modulo the subgroup of principal ideals of D. If D is a Krull domain, then $C l(D)$ is the usual divisor class group of D, see [11]. In this case, $C l(D)=0$ if and only if D is factorial.

This paper consists of four sections in addition to the introduction. In Sections 1 and 2 , we state basic results on divisorial ideals and t-invertibility in $A+$ $X B[X]$ domains. Section 3 establishes necessary and sufficient conditions for a v-invertible v-ideal or a t-invertible t-ideal of $A+X B[X]$ to be extended from A (see definition below). In Section 4, we give the proofs of the theorems mentioned above.

1. DIVISORIAL IDEALS IN $A+X B[X]$

Let $R=A+X B[X]$. In what follows, we consider the natural grading on R, that is, $R=\bigoplus R_{n}$, where $R_{0}=A$ and $R_{n}=X^{n} B$ for $n \geq 1$. An element (resp., an ideal) of R is said to be homogeneous if it is homogeneous with respect to this grading. If f is a polynomial over an integral domain A, we denote by A_{f} the content of f.

LEMMA 1.1 Let $R=A+X B[X]$ with B integrally closed. Let I be a homogeneous divisorial ideal of R, J the ideal of B generated by the coefficients of all polynomials of I, n the least integer k such that $a X^{k} \in I$ for some nonzero $a \in B$, and $W \subset J$ the A-module generated by all $a \in B$ such that $a X^{n} \in I$. Then J is a divisorial ideal of B and $I=X^{n} W+X^{n+1} J[X]$.

Proof. Since I is homogeneous, it is easy to see that $I \subset X^{n} W+X^{n+1} J[X]$. Conversely, since I is divisorial and $X^{n} W \subset I$, it suffices to show that $X^{n+1} J_{v}[X] \subset$ $\mathcal{L}_{g} R$ for each $f, g \in R$ such that $I \subset f_{g} R$. Choose a nonzero $a \in W$. Let $f, g \in R$ such that $I \subset{\underset{g}{g}}^{R} R$. Since $a X^{n} \in I$, we have $\frac{\mathcal{L}}{g}=\frac{a X^{n}}{r}$ for some $r \in R$. Hence we can assume $f=a X^{n}$. Let $0 \neq h \in I$. Then $h \in \frac{a X^{n}}{g} R$, and hence $g h \in a X^{n} R \subset a B[X]$ and $A_{g h} \subset a B$. Since B is integrally closed, by [15, Lemme 1, Sect:2], $\left(A_{g} A_{h}\right)_{v}=\left(A_{g h}\right)_{v}$. Hence $A_{g} A_{h} \subset a B$, so that $g A_{h}[X] \subset a B[X]$. Then $g J[X] \subset a B[X]$, and by taking the v-closure, we get $g J_{v}[X] \subset a B[X][12$, Lemma 1.6]. Since $X B[X] \subset R$, then $X^{n+1} J_{v}[X] \subset \frac{a X^{n}}{g} R$; whence $X^{n+1} J_{v}[X] \subset I$, as desired.

LEMMA 1.2 Let $R=A+X B[X]$ with B integrally closed. Then for each divisorial ideal I of R, there exist $u \in K\left[X, X^{-1}\right]$ and J a homogeneous divisorial ideal of R such that $I=u \mathrm{~J}$.

Proof. Let S be the (multiplicatively closed) set of nonzero homogeneous elements of R. We have $R_{S}=K\left[X, X^{-1}\right]$. Let I be a divisorial ideal of R. Then $I R_{S}=$ $f R_{S}$ for some $f \in B[X]$ such that $f(0) \neq 0$. Hence $I \subset f K[X]$. Since B is integrally closed, by [15, Section 2, Lemme 1], $f K[X] \cap B[X]=f A_{f}^{-1}[X]$; hence $I \subset f A_{f}^{-1}[X]$. Let $0 \neq b \in A_{f}$ and set $J=b X f^{-1} I$. Clearly, J is a divisorial ideal of R. We next show that J is homogeneous. Let $f, g \in R$ such that $J \subset \frac{f}{g} R$. Since $J \cap S \neq \emptyset$, and as in the proof of Lemma 1.1, we can assume that $f=a X^{m}$ for some nonzero element a of B and some integer $m \geq 0$. Now let $0 \neq h \in J$. Then $h \in \frac{a X^{m}}{g} R$, and hence $g h \in a X^{m} R \subset a B[X]$. Then $A_{g} A_{h} \subset a B$ by an argument similar to that in the proof of Lemma 1.1. On the other hand, $g h \in a X^{m} R$ implies that $g=X^{r} g_{1}$ and $h=X^{s} h_{1}$ with $r+s \geq m$ and $g_{1}(0) h_{1}(0) \neq 0$. We have $A_{g}=A_{g_{1}}$ and $A_{h}=A_{h_{1}}$, so $A_{g_{1}} A_{h_{1}} \subset a B$, and thus $g_{1} A_{h_{1}}[X] \subset a B[X]$. Therefore $X^{s+1} A_{h_{1}}[X] \subset J$. It follows that the homogeneous components of h are in J, which proves that J is homogeneous.

REMARK 1.3 Lemma 1.2 can be generalized to N-graded domains by using other techniques. Let $R=\bigoplus R_{n}$ be an N-graded integral domain and S be the $n \geq 0$
n
(multiplicatively closed) set of nonzero homogeneous elements of R. Then R_{S} is a Z-graded domain. In [1], the authors define a graded domain R to be almost normal if it is integrally closed with respect to nonzero homogeneous elements of R_{S} of nonzero degree. They showed [1, Corollary 3.8] that the following statements are equivalent:
(i) R is almost normal.
(ii) For each v-ideal I of $R, I=u J$ for some $u \in R_{S}$ and some homogeneous v-ideal J of R.

If $R=A+X B[X]$ is graded in the natural way, it is not difficult to show that R is almost normal if and only if B is integrally closed.

By Lemma 1.1 and Remark 1.3, we have the following theorem.
THEOREM 1.4 Let $R=A+X B[X]$. The following statements are equivalent. (1) B is integrally closed.
(2) For each v-ideal I of $R, I=u(W+X J[X])$ for some $u \in K\left[X, X^{-1}\right], J$ a v-ideal of B, and $W \subset J$ a nonzero A-module.

2. v-INVERTIBLE IDEALS AND t-INVERTIBLE IDEALS IN

 $A+X B[X]$LEMMA 2.1 Let $R=A+X B[X]$. Let F_{1} (resp., F_{2}) be a nonzero fractional ideal of A (resp., B) such that $F_{1} \subset F_{2}$. Then $F_{1}+X F_{2}[X]$ is a fractional ideal of R, and we have $\left(F_{1}+X F_{2}[X]\right)^{-1}=F_{1}^{-1} \cap F_{2}^{-1}+X F_{2}^{-1}[X]$.
Proof. It is obvious that $I=F_{1}+X F_{2}[X]$ is a fractional ideal of R. Now since $F_{1} \subset I$, if $u \in I^{-1}$, then $u \in K[X]$. Thus if $u \in K[X]$, then $u \in I^{-1}$ if and only if $u(0) F_{1} \subset A$ and $u F_{2}[X] \subset B[X]$. Hence $u \in I^{-1}$ if and only if $u \in F_{1}^{-1} \cap F_{2}^{-1}+X F_{2}^{-1}[X]$.

LEMMA 2.2 Let $R=A+X B[X]$. Then $X B[X]$ and $B[X]$ are divisorial ideals of R.
Proof. Let $C(A, B)=\{x \in A \mid x B \subset A\}$. It is easy to see that $[R: B[X]]=$ $C(A, B)+X B[X]$. If $C(A, B)=0$, then $(B[X])^{-1}=X B[X]$; hence $(B[X])_{v}=$ $B[X]$. If $C(A, B) \neq 0$, by Lemma 2.1, $(B[X])_{\nu}=\left(C(A, B)^{-1} \cap B\right)+X B[X]=$ $B[X]$. Hence $B[X]$ and $X B[X]$ are divisorial ideals of R.

THEOREM 2.3 Let $R=A+X B[X]$ with B integrally closed. If I is a fractional v-invertible v-ideal, then $I=u\left(J_{1}+X J_{2}[X]\right)$ for some $u \in q f(R), J_{2}$ a v-invertible v-ideal of B, and $J_{1} \subset J_{2}$ a nonzero ideal of A.
Proof. By Theorem 1.4, we can assume that $I=W+X J[X]$ for some v-ideal J of B and $W \subset J$ a nonzero A-module. First, we show that there exists nonzero $c \in K$ such that $c W \subset A$ and $c J \subset B$. Let $a \in W$ be a nonzero element. Then one can easily show that $a I^{-1} \subset R$ satisfies the hypothesis of Lemma 1.1. Thus there exist an integer m, J^{\prime} a divisorial ideal of B, and $W^{\prime} \subset J^{\prime}$ a nonzero A-module such that

$$
a I^{-1}=X^{m} W^{\prime}+X^{m+1} J^{\prime}[X]
$$

Since I is v-invertible

$$
a R=X^{m}\left((W+X J[X])\left(W^{\prime}+X J^{\prime}[X]\right)\right)_{v}
$$

On the other hand, we have $(W+X J[X])\left(W^{\prime}+X J^{\prime}[X]\right) \subset B[X]$. Further, since $B[X]$ is divisorial, $a R \subset X^{m} B[X]$. Hence $m=0$ and

$$
a R=\left((W+X J[X])\left(W^{\prime}+X J^{\prime}[X]\right)\right)_{v}
$$

Thus $a^{-1} W W^{\prime} \subset A$ and $a^{-1} J J^{\prime} \subset B$. Let $c \in a^{-1} W^{\prime}$ be a nonzero element. Then $J_{1}=c W \subset A$ and $J_{2}=c J \subset B$. Hence there exist $J_{2} \subset B$ a divisorial ideal of B and $J_{1} \subset J_{2}$ a nonzero ideal of A such that $I=u\left(J_{1}+X J_{2}[X]\right)$ for some $u \in q f(R)$. It remains to show that J_{2} is v-invertible. By Lemma. 2.1, we have

$$
I^{-1}=u^{-1}\left(J_{1}^{-1} \cap J_{2}^{-1}+X J_{2}^{-1}[X]\right) .
$$

Hence, $I I^{-1} \subset J_{1}\left(J_{1}^{-1} \cap J_{2}^{-1}\right)+X J_{2} J_{2}^{-1}[X] \subset R$, and since I is v-invertible, we have

$$
\left(J_{1}\left(J_{1}^{-1} \cap J_{2}^{-1}\right)+X J_{2} J_{2}^{-1}[X]\right)^{-1}=R
$$

By applying Lemma 2.1, we conclude that $\left(J_{2} J_{2}^{-1}\right)^{-1}=B$. Hence J_{2} is a v-invertible v-ideal of B.

COROLLARY 2.4 Let $R=A+X B[X]$ with B integrally closed. If I is a fractional t-invertible t-ideal, then $I=u\left(J_{1}+X J_{2}[X]\right)$ for some $u \in q f(R), J_{2}$ a t-invertible t-ideal of B and $J_{1} \subset J_{2}$ a nonzero ideal of A.
Proof. It remains to show that J_{2} and J_{2}^{-1}, from Theorem 2.3, are v-finite. Since I is a t-invertible t-ideal, then $J_{1}+X J_{2}[X]=\left(f_{1}, \ldots, f_{n}\right)_{v}$ for some $f_{1}, \ldots, f_{n} \in R$. Thus there exists $F_{1} \subset J_{1}$ (resp., $F_{2} \subset J_{2}$) a finitely generated ideal of A (resp., B) such that $F_{1} \subset F_{2}$ and $f_{1}, \ldots, f_{n} \in F_{1}+X F_{2}[X]$. Hence $J_{1}+X J_{2}[X]=\left(F_{1}+X F_{2}[X]\right)_{\cup}$. Applying Lemma 2.1 yields $J_{2}^{-1}=F_{2}^{-1}$; hence J_{2} is v-finite. Similarly, one shows that J_{2}^{-1} is also v-finite by using the fact that I^{-1} is v-finite.

3. t-INVERTIBLE IDEALS OF $A+X B[X]$ EXTENDED FROM A

A fractional ideal I of $R=A+X B[X]$ is said to be extended from A if $I=u J R$ for some $u \in q f(R)$ and some ideal J of A.

LEMMA 3.1 Let $R=A+X B[X]$ with B integrally closed and I be a fractional divisorial ideal of R. Then the following statements are equivalent.
(1) There exist $u \in q f(R)$ and W a nonzero A-module ($\subset B)$ such that $I=u W R$. (2) $I B[X]$ is a divisorial ideal of $B[X]$.

Proof. (1) $\Rightarrow(2)$. We can assume that $I=X W R$; hence $I=X W+X^{2} W B[X]$. By Lemma 1.1, WB is a divisorial ideal of B; so $I B[X]=X W B[X]$ is divisorial in $B[X]$.
(2) \Rightarrow (1) By Theorem 1.4, $I=u(W+X J[X])$, where $u \in K\left[X, X^{-1}\right], J$ is a divisorial ideal of B and $W \subset J$ is a nonzero A-module. Let $I_{1}=u^{-1} I B[X]$. Then we have $I_{1}=W B+X J[X]$. Applying Lemma 2.1 to I_{1} in the case $A=B$, we get $\left(I_{1}\right)_{v}=J[X]$. Further, since I_{1} is divisorial in $B[X]$, then $J=W B$. Therefore $I=u W R$.
REMARK 3.2 If B is integrally closed, then divisorial ideals of R are not always of the form $u W R$, where $u \in q f(R)$ and $W \subset B$ is a nonzero A-module. For, let $A=Z$ and $B=Z[i]$. Let's consider the ideal $I=2 Z+(1+i) X Z[i][X]$ of $R=Z+X Z[i][X]$. By applying Lemma 2.1, one can easily show that I is a divisorial ideal. Notice that I is also a t-invertible t-ideal (see Remark 4.15 and Example 4.16). Now assume $I=u W R$. Then $u \in Q(i)$, so $u W=2 Z$ and $u W Z[i]=(1+i) Z[i]$. Hence $2 Z[i]=(1+i) Z[i]$, a contradiction.
LEMMA 3.3 Let $R=A+X B[X]$. Let I be a divisorial ideal of R of the form $I=J_{1}+X J_{2}[X]$, where J_{2} is an ideal of B and $J_{1} \subset J_{2}$ is a nonzero ideal of A. Then the following statements are equivalent.
(1) I is extended from A.
(2) $J_{2}=J_{1} B$.
(3) $I B[X]$ is divisorial in $B[X]$.

Proof. (1) \Rightarrow (2) We assume that $I=u J R$ for some $u \in q f(R)$ and some ideal J of A. Since $\operatorname{In} A \neq 0, u \in q f(A)$. It follows that $J_{1}=u J$ and $J_{2}=u J B$. Hence $J_{2}=J_{1} B$.
(2) \Rightarrow (1) Clear.
(2) \Leftrightarrow (3) Notice that by Lemma $2.1, J_{2}$ is necessarily a divisorial ideal of B. We have $I B[X]=J_{1} B+X J_{2}[X]$, and applying Lemma 2.1 in the case where $A=B$ yields $(I B[X])_{v}=J_{2}[X]$. Therefore $I B[X]$ is divisorial if and only if $J_{2}=J_{1} B$.

THEOREM 3.4 Let $R=A+X B[X]$ with B integrally closed. Let I be a fractional v-invertible v-ideal of R. Then the following statements are equivalent. (1) I is extended from A.
(2) $I B[X]$ is a divisorial ideal of $B[X]$.

Proof. It follows from Theorem 2.3 and Lemma 3.3.
REMARK 3.5 The implication (2) \Rightarrow (1) in Theorem 3.4 is not true in general if I is a v-ideal which is not v-invertible. To see this, let A and B be such that
$C(A, B)=0$ (see Lemma 2.2), and consider the fractional ideal $I=B[X]$ of R. By Lemma 2.2, I is a divisorial ideal of R, but it is not v-invertible in R since $I^{-1}=X B[X]$ and $\left(I^{-1}\right)_{U}=X B[X]$. Note that $I B[X]=B[X]$ is divisorial in $B[X]$. If $I=u J R$ for some $u \in q f(R)$ and some ideal J of A, then $u \in K$. Hence $B=u J$, and thus $u^{-1} B=J \subset A$. Hence $u^{-1} \in C(A, B)$, a contradiction. Note that in this case, the implication $(2) \Rightarrow(1)$ in Lemma 3.1 is true, namely $W=B$.

LEMMA 3.6 Let $R=A+X B[X]$. Then R is a flat A-module if and only if B is a flat A-module.
Proof. Just note that $R=A \oplus \bigoplus_{n \geq 1} X^{n} B$.
LEMMA 3.7 Let $S \subset T$ be an extension of integral domains such that T is a flat S-module. If I is a finitely generated ideal of S, then $(I T)^{-1}=I^{-1} T$
Proof. See for instance [6, Alg. Comm., Chap.1].
LEMMA 3.8 Let $R=A+X B[X]$ and J be an ideal of A.
(1) If $(J R)_{v}=R$, then $J_{v}=A$.
(2) If $(J R)_{t}=R$, then $J_{t}=A$.

Proof. (1) Assume $(J R)_{v}=R$. Let $u \in q f(A)$ such that $J \subset u A$. Then $J R \subset u R$, and hence $R=(J R)_{v} \subset u R$. Thus $1 \in u A$ and $J_{v}=A$. (2) is a consequence of (1) since $(J R)_{t}=U\left\{(F R)_{v} \mid F \subset J\right.$ finitely generated $\}$.

PROPOSITION 3.9 Let $R=A+X B[X]$ such that B is a flat A-module. Let J. be an ideal of A. Then the following statements are equivalent.
(1) J is a t-invertible t-ideal of A.
(2) $J R$ is a t-invertible t-ideal of R.

Proof. If B is a flat A-module, then R is a flat A-module by Lemma 3.6, and by [4, Prop. 2.2], we have (1) \Rightarrow (2).
(2) \Rightarrow (1) Assume that $I=J R$ is a t-invertible t-ideal of R. Then $J=I \cap A$ is a t-ideal. To see this, let $F \subset J$ be a finitely generated ideal of A. By using the formula $\left(F_{v} R\right)_{v}=(F R)_{v}$ which is a consequence of Lemma 3.7 (see [4, Prop. 2.2], we conclude that $F_{v} \subset J$. On the other hand, since $J R$ is t-invertible, there exists $J_{1} \subset J$ a finitely generated ideal of A such that $J R=\left(J_{1} R\right)_{v}$. Thus $\left(J J_{1}^{-1} R\right)_{t}=\left((J R)(J R)^{-1}\right)_{t}=R$, and by Lemma 3.8, $\left(J J_{1}^{-1}\right)_{t}=A$. Hence J is a t-invertible t-ideal of A.

THEOREM 3.10 Let $R=A+X B[X]$ such that B is integrally closed and a flat A-module. Let I be a fractional t-invertible t-ideal of R. Then the following statements are equivalent.
(1) $I=u J R$ for some $u \in q f(R)$ and some t-invertible t-ideal J of A (2) $I B[X]$ is a divisorial ideal of $B[X]$

Proof. (1) $\Rightarrow(2)$ is a particular case of $(1) \Rightarrow(2)$ in Lemma 3.1. Since t-invertible t-ideals are v-invertible v-ideals, $(2) \Rightarrow(1)$ is a consequence of $(2) \Rightarrow(1)$ of Theorem 3.4 and Proposition 3.9.

4. THE CLASS GROUP OF $A+X B[X]$

LEMMA 4.1 Let S be an integral domain and T an overring of S. Then the following statements are equivalent.
(1) T is a flat S-module.
(2) For each maximal ideal M of $T, T_{M}=S_{M \cap S}$.

Proof. See [11, Lemma 6.5].
LEMMA 4.2 Let $R=A+X B[X]$ such that B is a flat A-module. Then, $B[X]$ is a flat R-module if and only if B is an overring of A.
Proof. We will use Lemma 4.1. First suppose that $B[X]$ is a fiat R-module and let M be a maximal ideal of $B[X]$ such that $X B[X] \subset M$; then $B[X]_{M}=R_{M \cap R}$. Let $x \in B$. Then $x \in R_{M \cap R}$, and hence $x=\frac{f}{g}$ for some $f, g \in R$ with $g \notin M$. Since $X B[X] \subset M, g(0) \neq 0$, so that $x=\frac{f(0)}{g(0)} \in q f(A)$, hence $B \subset q f(A)$.

Conversely, assume that B is an overring of A and let M be a maximal ideal of $B[X]$. We will show that $B[X]_{M}=R_{M \cap R}$. If $X \in M$, then $M=m+X B[X]$ for some maximal ideal m of B, and we have $M \cap R=(m \cap A)+X B[X]$. Since B is a flat A-module, by Lemma 4.1, $B_{m}=A_{m \cap A}$, and one can easily verify that $B[X]_{M}=R_{M \cap R}$. Now if $X \notin M$, let $u \in B[X]_{M}$. Then $u=\frac{1}{g}$ for some $f, g \in B[X]$ with $g \notin M$; thus $u=\frac{X f}{X} \in R_{M \cap R}$. Hence $B[X]_{M} \subset R_{M \cap R}$ and $B[X]_{M}=R_{M \cap R}$.
LEMMA 4.3 Let $R=A+X B[X]$ such that B is a flat A-module. Then the canonical map $\varphi: C l(A) \rightarrow C l(R), \quad[J] \mapsto[J R]$ is well-defined and it is an injective homomorphism.
Proof. Since B is a flat A-module, by Lemma $3.6, R$ is a flat A-module. Hence by [4, Prop. 2.2], φ is well-defined and it is a homomorphism. φ is injective since R is a faithfully flat A-module.
THEOREM 4.4 Let $R=A+X B[X]$ such that B is integrally closed and a flat overring of A. Then $C l(A+X B[X]) \cong C l(A)$.
Proof. It suffices to show that the canonical homomorphism φ in Lemma 4.3 is Proof. It suffices to show that the canonical homomorphism φ in
surjective. Let I be a t-invertible t-ideal of R. Since B is a flat overring of A,
by Lemma 4.2, $B[X]$ is a flat R-module, and thus $I B[X]$ is a t-invertible t-ideal of $B[X][4$, Prop. 2.2]. The surjectivity of φ now follows from Theorem 3.10.

COROLLARY 4.5 Let S be a multiplicatively closed subset of A. If A is integrally closed, then $C l\left(A+X A_{S}[X]\right) \cong C l(A)$.

For $A=B$, we have the following corollary [12, Theorem 3.6]
COROLLARY 4.6 If A is integrally closed, then $C l(A[X]) \cong C l(A)$.
THEOREM 4.7 Let $R=A+X B[X]$. If B is integrally closed and $q f(A) \subset B$, then $C l(A+X B[X]) \cong C l(A)$
Proof. Since $q f(A) \subset B, B$ is a flat A-module, and hence by Lemma 4.3, it suffices to show that the canonical homomorphism $\varphi: C l(A) \rightarrow C l(R)$ is surjective. Let I be a t-invertible t-ideal of R. By Corollary $2.4, I=u\left(J_{1}+X J_{2}[X]\right)$, where $u \in q f(R), J_{2}$ is a t-invertible t-ideal of B, and $J_{1} \subset J_{2}$ is a nonzero ideal of A. Since $q f(A) \subset B, J_{2}=B$, and hence $I=u J_{1} R$ is extended from A. By Proposition 3.9, J_{1} is a t-invertible t-ideal of A, as desired.

COROLLARY 4.8 If B is integrally closed and A is a field, then $C l(A+X B[X])=$ 0.

THEOREM 4.9 Let $Y=\left\{Y_{i}\right\}_{i}$ be a set of indeterminates. If A is integrally closed, then $C l(A+X A[Y][X]) \cong C l(A)$.
Proof. $B=A[Y]$ is a flat A-module. By Lemma 4.3, it suffices to show that the canonical homomorphism φ is surjective. Let I be a t-invertible t-ideal of R. By Corollary 2.4, we can assume that $I=J_{1}+X J_{2}[X]$ for some t-invertible t-ideal J_{2} of B and $J_{1} \subset J_{2}$ a nonzero ideal of A. Let $J=J_{2} \cap A ; J \neq 0$ since $J_{1} \neq 0$. By [12, Lemma 3.3 and Prop. 3.2], J is a t-invertible t-ideal of A and $J_{2}=J[Y]$. Hence $I=J_{1}+X J[Y][X]$. By applying Lemma 2.1 and using the fact that $J[Y]^{-1}=J^{-1}[Y]([12$, Lemma 1.6]), we obtain

$$
\begin{aligned}
I^{-1} & =J_{1}^{-1} \cap J[Y]^{-1}+X J[Y]^{-1}[X] \\
& =J_{1}^{-1} \cap J^{-1}[Y]+X J^{-1}[Y][X] \\
& =J^{-1}+X J^{-1}[Y][X]
\end{aligned}
$$

so that $I=\left(I^{-1}\right)^{-1}=J R$. Hence φ is surjective.
From the above results, the following natural question arises: Assume that B is integrally closed and a flat A-module. Does the canonical isomorphism $C l(A+X B[X]) \cong C l(A)$ always hold? The answer is negative, in general, as is shown by the following examples.

THEOREM 4.10 Let A be an integral domain and α an element of some extension domain of A such that $\alpha \notin q f(A), \alpha^{2} \in A$, and α is not a unit in $B=A[\alpha]$. Let $R=A+X B[X]$ and $I=\alpha^{2} A+\alpha X B[X]$. Then
(1) I is a divisorial ideal of R.
(2) I is a t-invertible t-ideal of R.
(3) I is not extended from A.

Proof. Since $\alpha^{2} \in A$ and $\alpha \notin q f(A)$, then $B=A+A \alpha$ and it is a free A-module with basis $\{1, \alpha\}$.
(1) By applying Lemma 2.1 to the ideal I, we get

$$
I^{-1}=\alpha^{-2} A \cap \alpha^{-1} B+\alpha^{-1} X B[X]
$$

On the other hand, $A \cap \alpha B=A \cap\left(A \alpha+A \alpha^{2}\right)=A \alpha^{2}$. Thus $\alpha^{\perp 2} A \cap \alpha^{-1} B=A$, and hence $I^{-1}=A+\alpha^{-1} X B[X]$. Thus

$$
\begin{aligned}
I_{v} & =A \cap \alpha B+\alpha X B[X] \\
& =\alpha^{2} A+\alpha X B[X] \\
& =I .
\end{aligned}
$$

(2) It suffices to show that I and I^{-1} are v-finite and I is v-invertible. First we show that $I=\left(\alpha^{2}, \alpha X\right)$. It is obvious that $\left(\alpha^{2}, \alpha X\right) \subset I$. For the reverse inclusion, let $f \in I$. We have $f=\alpha^{2} a+\alpha X g(X)$ for some $a \in A$ and some $g \in B[X]$. Then g has the form $g=b+c \alpha+X h(X)$, where $b, c \in A$ and $h \in B[X]$. Thus $f=\alpha^{2}(a+c X)+\alpha X(b+X h(X))$; hence $f \in\left(\alpha^{2}, \alpha X\right)$. In (1), we have shown that $I^{-1}=A+\alpha^{-1} X B[X]$. Hence $I^{-1}=\alpha^{-2} I=\left(1, \alpha^{-1} X\right)$. It remains to show that I is v-invertible. We have

$$
I I^{-1}=\left(\alpha^{2}, \alpha X\right)\left(1, \alpha^{-1} X\right)=\left(\alpha^{2}, \alpha X, X^{2}\right)
$$

Let $u \in q f(R)$ such that $\left(\alpha^{2}, \alpha X, X^{2}\right) \subset u R$. Since $\alpha^{2} \in u R$, we can assume that $u=\frac{\alpha^{2}}{f}$ for some $f \in R$. Since $X^{2} \in \frac{\alpha^{2}}{f} R$, then $X^{2} f=\alpha^{2} g$ for some $g \in R$; so g has the form $g=X^{2} h$ for some $h \in B[X]$. Thus $f=\alpha^{2} h$; so that $\alpha^{2} h(0)=f(0) \in A$. Hence $h(0) \in A$ and $h \in R$. Thus $1=u h \in u R$ and $\left(I I^{-1}\right)_{v}=R$.
(3) If $I=u J R$ for some $u \in q f(R)$ and some ideal J of A, then $u \in q f(A)$. Hence $\alpha^{2} A=u J$ and $\alpha B=u J B$; so $B=\alpha B$, a contradiction.
EXAMPLE 4.11 To construct simple examples illustrating Theorem 4.10, let's consider $A=Z$ and let $d \in Z, d \neq-1$ and not a square. Then $\alpha=\sqrt{d}$ satisfies the conditions of Theorem 4.10. The cases where $d \equiv 2,3$ ($\bmod 4$) and square-free give examples with B integrally closed.

We have the following corollary of Theorem 4.10.

COROLLARY 4.12 : The canonical homomorphism $\mathrm{Cl}(A) \rightarrow \mathrm{Cl}(A+X B[X])$ is not surjective in general even if B is integrally closed.
EXAMPLE 4.13 Let k be a field and $A=k\left[\left\{S^{2}\right]\right],(\alpha=S$ an indeterminate); so $B=A[S]=k[[S]]$. Let $R=A+X B[X]$. Then $C l(A)=0$ and $C l(R)=Z / 2 Z$. To see this, let I be a t-invertible t-ideal of R. Since A and B are DVRs, and by applying Corollary 2.4, we can assume that $I=S^{2 n} A+S^{m} X B[X]$. By dividing out suitable powers of S^{2}, we may assume that $m=0$ or $m=1$. For $I=S^{2 n} A+X B[X] ; I^{-1}=A+X B[X]=R$, and hence $I=I_{v}=R$ and $n=0$. For $I=S^{2 n} A+S X B[X] ; I^{-1}=A+S^{-1} X B[X]$, and hence $I=I_{v}=S^{2} A+S X B[X]$ and $n=1$. By Theorem 4.10, the only nonzero class in $\mathrm{Cl}(R)$ is $[I]$, where $I=S^{2} A+S X B[X]$, and its order is two. Thus $C l(R)=Z / 2 Z$.

We can say more about the surjectivity of the canonical homomorphism $\mathrm{Cl}(\mathrm{A}) \rightarrow$ $C l(A+X B[X])$; this is a consequence of Theorem 4.10.

COROLLARY 4.14 Let G be an abelian group. Then there exists an extension $A \subset B$ of integral domains such that B is integrally closed, $C l(A)=G$, and the canonical homomorphism $C l(A) \rightarrow C l(A+X B[X])$ is not surjective.
Proof. By Claborn's theorem there exists a Dedekind domain D such that $C l(D)=$ G. Let S be an indeterminate, and let $A=D\left[S^{2}\right], B=D[S]$, and $R=$ $A+X B[X]=D\left[S^{2}, S X, X\right]$. We have $C l(A)=C l(D)=G$. By Theorem 4.10, the natural homomorphism $\mathrm{Cl}(A) \rightarrow C l(R)$ is not surjective. Also, note that in this case, $\operatorname{Pic}(R)=\operatorname{Pic}(A)=\operatorname{Pic}(D)$.

REMARK 4.15 By modifying the hypothesis " α not a unit in B " in Theorem 4.10 to " $a=1-\alpha^{2}$ not a unit in B " and considering the ideal $I=a A+(1+$ $\alpha) X B[X]$, one can show, using similar arguments, that $I=(a,(1+\alpha) X)$ and it is a t-invertible t-ideal of R. In this case, if we take $A=Z$ and $\alpha=i$, we have the simple example $R=Z+X Z[i][X]$. See the example below for the class group of this ring.
EXAMPLE 4.16 Let $R=Z+X Z[i][X]$. Then $C l(R)$ is the direct sum of $Z / 2 Z$ and a countably infinite number of copies of Z. The $Z / 2 Z$ summand corresponds to 2, the prime in Z that splits in $Z[i]$ with two associate prime factors, and each of the Z summands corresponds to a positive prime p in Z that splits in $Z[i]$ with two nonassociate prime factors. Let $2=a b$ in $Z[i] ; a$ and b are associates. Then for $I=2 Z+a X Z[i][X]$, we have $[I]=-[I]=[2 Z+b X Z[i][X]]$ is nonzero. For $p \neq 2$, a positive prime in Z that splits as $p=a b$ in $Z[i]$, we have $-[p Z+a X Z[i][X]]=$ $[p Z+b X Z[i][X]]$ and each has infinite order in $C l(R)$. These statements and those below follow from the form of a divisorial ideal in R and the formula for I^{-1} for such a divisorial ideal.

We next show that the above classes of ideals generate $C l(R)$. Such a divisorial deal I has the form $n Z+a X Z[i][X]$ with $n=a b$. Using the above comments, one can show that any prime divisor p of n in Z that does not split in $Z[i]$ must also divide a. If $p=c d$ splits in $Z[i]$ and p^{k} exactly divides n, then one can show that either c^{k} or d^{k} is exactly the prime power that divides a. Thus $[n Z+a X Z[i][X]]=$ $\sum k_{j}\left[p_{j} Z+c_{j} X Z[i][X]\right]$, where $\left\{p_{j}=c_{j} d_{j}\right\}$ is the set of positive primes in Z that split in $Z[i]$. We show that the above classes are independent. Assume $\sum k_{j}\left[p_{j} Z+c_{j} X Z[i][X]\right]=0$ in $C l(R)$. We may assume that each $k_{j} \geq 0$ (replace c_{j} by d_{j}, or conversely, if needed). Thus the corresponding $n Z+a X Z[i][X]$ is principal. One then uses the above comments to show that each k_{j} is 0 (or for the prime 2 , that k_{y} is even).

REFERENCES

1] D.D. Anderson and D.F. Anderson. Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), 549-569
2] D.D. Anderson, D.F. Anderson, and M. Zafrullah. Rings between $D[X]$ and $K[X]$, Houston J. Math. 17 (1991), 109-129.
[3] D.F. Anderson and D. Nour EL Abidine. Factorization in integral domains, III, J. Pure Appl. Algebra. To appear.

4] D.F. Anderson and A. Ryckaert. The class group of $D+M$, J. Pure Appl. Algebra 52 (1988), 199-212.
[5] V. Barruci, L. Izelgue, and S. Kabbaj. Some factorization properties of $A+X B[X]$ domains, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 185 (1997), 69-78.
[6] N. Bourbaki. Algèbre commutative, Chap. 1 to 4, Masson, 1985.
[7] A. Bouvier. Le groupe des classes d'un anneau intègre, 107ème congrés des sociétés savantes, Brest, 1982, IV 85-92.
[8] A. Bouvier and M. Zafrullah. On some class groups of an integral domain, Bull. Soc. Math. Greece 29 (1988), 45-59.
[9] M. Fontana, L. Izelgue, and S. Kabbaj. Krull and valuative dimension of the rings of the form $A+X B[X]$, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 153 (1993), 111-130.
[10] M. Fontana, L. Izelgue, and S. Kabbaj. Quelques propriétés des chaines d' idéaux premiers dans les anneaux $A+X B[X]$, Comm. Algebra 22 (1994), 9-24.
[11] R. Fossum. The divisor class group of a Krull domain, Springer, 1973.
[12] S. Gabelli. On divisorial ideals in polynomial rings over Mori domains, Comm. Algebra 15 (1987), 2349-2370.
[13] R. Gilmer. Multiplicative ideal theory, Marcel Dekker, New York, 1972.
[14] R. Gilmer and R.C. Heitmann. On $\operatorname{Pic}(\mathrm{R}[\mathrm{X}])$ for R seminormal, J. Pure Appl. Algebra 16 (1980), 251-257.
[15] J. Querre. Idéaux divisoriels d'un anneau de polynôme, J. Algebra 64 (1980), 270-284

