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INTRODUCTION 

All the rings considered In this paper are Integral domains, and all modules and 
ring homomorphisms are unital. In this paper, we deal with the class group (see 
definition below) of A + X B[XJ domains. That is, let A C B be an extension 
of integral domains. Then A + X B[XJ is a subring of the polynomial ring B[XJ. 
This construction lias been studied by many authors and has proven to be useful 
In constructing Interesting examples and counterexamples, see for instance [2J, [3J, 
[5J, [9J, and [10J. 

If D is an integral domain, two well-known results on polynomial rings are that 
. Pic(D[X]) = Pic(D) if and only if Dis seminormal, and CI(D[X]) = CI(D) if and 
only If D is Integrally closed (cf. [14J and [12J, respectively). In [2J, it is shown that 
Pic(A + XB[X]) = Pic(A) if and only if B is seminormal. The purpose of this 
work Is to study the question of when CI(A + X B[X]) = CI(A), paying particular 
attention to the case where B is integrally closed. Namely, Theorem 4.4 establishes 
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that if B is integrally Closed and a flat overring of A, then Cl(A + X B[X]) is 
canonically isomorphic to Cl(A). We also show that if B is integrally closed, then 
this isomorphism holds in the cases ql(A) c B or B = A[y], where Y is a set 
of indeterminates. Theorem 4.10 allows us to construct el(plicit examples showing 
that this canonical isomorphism does not hold in general even If B is integrally 
closed. 

In this paper, A C B is an extension of integral domains and K is the quotient 
field of B. Let D be an integral domain with quotient field ql(D) = k. By an 
ideal of D we mean an integral ideal of D. Given a nonzero fractional ideal I 
of D, we define I-I = {x e k I xl c D} and I. = (I-I)-I. We say that I Is 
dlvlsorial or a v-Ideal if I. = Ij while I is v-finite if I = J. for some finitely 
generated fractional Ideal J of D. For I a nonzero fractional ideal of D, we define 
It = U{J. I J C I finitely generated}. Then I is a t-ideallf It = I. The mappings 
I .... I. and I .... It are particular star-operations on fractional Ideals of D, see [13, 
Sections 32 and 34] for a general theory. As in [7] and [8], we define the class group 
of D, Cl(D), to be the group of t-invertible (fractional) t-Ideals of D modulo 
the subgroup of principal Ideals of D. If D Is a Krull domain, then Cl(D) Is the 
usual divisor class group of D, see [11]. In this case, Cl(D) = 0 if and only if Dis 
factorial. 

This paper consists of four sections in addition to the introduction. In Sections 
1 and 2, we state basic results on divisorial ideals and t-invertibility in A + 
X B[X] domains. Section 3 establishes necessary and sufficient conditions for a 
v-invertible v-ideal or at-invertible t-ideal of A + X B[X] to be extended from 
A (see definition below). In Section 4, we give the proofs of the theorems mentioned 
above. 

1. D1VISORlAL IDEALS IN A + X B[X] 

Let R = A + X B[X]. In what follows, we consider the natural grading on R, that 
is, R = EaRn, where ~ = A and Rn = X" B for n ;:: L An element (resp., an 

n~O 

ideal) of R is said to be homogeneous if it is homogeneous with respect to this 
grading. If I Is a polynomial over an Integral domain A, we denote by AI the 
content of I. 

LEMMA 1.1 Let R = A + X B[X] with B integrally closed. Let I be a homo
geneous divisorial ideal of R, J the Ideal of B generated by the coefficients of all 
polynomials of I, n the least integer k such that aXk e I for some nonzero a e B, 
and W cJ the A-module generated by all a e B such that aX" e I. Then J Is 

.a divisorial ideal of B and I = X" W + X"+1 J[X]. 
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Since I is homogeneous, it is easy to see that I c X"W+X"tIJ[X] . .oon
>vAlrselv. since I Is divlsorial and X"W c I, it suffices to show that X"+1J.[X] C 

for each I, 9 e R such that I C £ R. Choose a nonzero a e W. Let 

9 e R such that I C £R. Since aX" e I, we have £ = G~' for some r e R. 
we can assume I = aX". Let 0 '" h e I. Then h e G~' R, and hence 

e aX" R C aB[X] and Agh CaB. Since B is Integrally closed, by [15, Lemme 
1, Sect,2], (AgAh). = (Agh ) •. Hence AgAh caB, so that gAh[X] C aB[X]. Then 
gJ[X] C aB[X], and by taking the v-closure, we get gJ.[X] C aB[X] [12, Lemma 
1.6]. Since XB[X] C R, then xn+1J.[X] C G~' Rj whence xn+1J.[X] C I, as 

. desired. 

LEMMA 1.2 Let R = A + X B[X] with B Integrally closed. Then for each 
. divisorlalldeal I of R, there exist u e K[X,X-I] and J a homogeneous divisorial 
ideal of R such that I = uJ. 

Proof. Let S be the (multiplicatively closed) set of nonzero homogeneous elements 
of R. We have Rs = K[X, X-I]. Let I be a divlsorialldeal of R. Then IRs = 

IRs for some I e B[X] such that 1(0) '" O. Hence I C I K[X]. Since B Is 
integrally closed, by [15, Section 2, Lemme 1], IK[X] n B[X] = IAjl[XJj hence 
I C I Ajl[XJ. Let 0 '" b e AI and set J = bXr l I. Clearly, J is a divisorial ideal 
of R. We next show that J is homogeneous. Let f, 9 e R such .that J Ci; ~ R. Since 
J n S '" 0, and as in the proof of Lemma 1.1, we can assume that I = axm for 
S<lme nonzero element a of B and some Integer m ;:: O. Now let 0 i- h e J. Then 
he a~m R, and hence gh e axmR C aB[X]. Then AgAh C aB by an argument 
similar to that in the proof of Lemma 1.1. On the other hand, gh e axm R 
Implies that 9 = X' gl and h = X· hi with r + 8 ;:: m and gl (O)hl (0) '" O. We 
have Ag = Ag, and Ah = Ah" so Ag, Ahl CaB, and thus glAhl [X] C aB[X]. 
Therefore XO+I Ahl [X] C J. It follows that the homogeneous components of hare 
In J, which proves that J is homogeneous. 

REMARK 1.3 Lemma 1.2 can be generalized to N-graded domains by using 
other techniques. Let R = EaRn be an N-graded integral domain and S be the 

n~O 

(multiplicatively closed) set of nonzero homogeneous elements of R. Then Rs is 
. a Z-graded domain. In [1], the authors define a graded domain R to be almost 
normal if it Is integrally closed with respect to nonzero· homogeneous elements of 
Rs of nonzero degree. They showed [1, Corollary 3.8] that the following statements 
are equivalent: 

(i) R is almost normal. 

(ii)For each v-ideal I of R, 1= uJ for some u e Rs and some homogeneous 
v-ideal J of R. 
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If R = A + X B[X] Is graded in the natural way, It Is not difficult to show that 
R Is almost normal If and only if B Is Integrally closed. 

By Lemma 1.1 and Remark 1.3, we have the following theorem. 

THEOREM 1.4 Let R = A + X B[X]. The following statements are equivalent. 
(1) B Is integrally closed. 
(2) For each v-Ideal I of R, I = u(W + XJ[X]) for some u E K[X,X-I], J a 
v-Ideal of B, and We J a nonzero A-module. 

2. v-INVERTIBLE IDEALS AND t'-INVERTIBLE IDEALS IN 
A+XB[X] 

LEMMA 2.1 Let R = A + XB[X]. Let FI (resp., F2) be a nonzero fractional 
Ideal of A (resp., B) such that FI c F2. Then FI + XF2[X] is a fractional Ideal 
of R, and we have (FI +XF2[X])-1 = FI-I n F2-

1 +XF2-I[X]. 

Proof. It Is obvious that I = FI + X F2[X] is a fractional Ideal of R. Now 
since FI C I, if u E rl, then u E K[X]. Thus If u E K[X], then u E r l 
if and only If u(O)FI C A and uF2[X] C B[X]. Hence u E I-I if and only If 
u E FI-

I n Fi l + XF2-
I [X]. 

LEMMA 2.2 Let R = A + X B[X]. Then X B[X] and B[X] are dlvlsorial ideals 
of R. 

Proof. Let G(A, B) = {'" E A I ",B c A}. It Is easy to see that [R : B[Xll = 
G(A, B) + XB[X]. Irc(A, B) = 0, then (B[X])-I = XB[X]j hence (B[X]). = 
B[X]. If G(A, B) i- 0, by Lemma 2.1, (B[X]). = (G(A, B)-I n B) + XB[X] = 
B[X]. Hence B[X] and X B[X] are divisorlalldeals of R. 

THEOREM 2.3 Let R = A + X B[X] with B integrally closed. If I is a frac
tional v-invertible v-ideal, then 1= U(JI + X J2[X)) for some u E qf(R), J2 a 
v-invertible v-ideal of B, and J I C .12 a nonzero ideal of A. 

Proof. By Theorem 1.4, we can assume that I = W + X J[X] for some v-Ideal 
J of Band W C J a nonzero A-module. First, we show that there exists nonzero 
c E K such that cW C A and cJ C B. Let a E W be a nonzero element. Then one 
can easily show that aI-I C R satisfies the hypothesis of Lemma 1.1. Thus there 
exist an integer m, J' a divisorial ideal of B, and W' C J' a nonzero A-module 
such that 

arl = X ... W' + X m+1J'[X]. 
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,Since I Is v-invertible; 

aR = xm(w +XJ[X])(W' +XJ'[X])) •. 

On the other hand, we have (W + X J[X])(W' + X J'[X]) C B[X]. FUrther, since 
B[X] is divisorial, aR C X'" B[X]. Hence m = 0 and 

aR = (W + XJ[X])(W' +XJ'[X])) •. 

Thus a-IWW' C A and a-IJJ' C B. Let cE a-IW' be a nonzero element. Then 
JI = cW c A and J2 = cJ c B. Hence there exist J2 C B a divisorial ideal 
of Band JI C J2 a nonzero Ideal of A such that I = u(J, + X J2[X]) for some 
u E qf(R). It remains to show that J2 Is v-Invertible. By Lemma 2.1, we have 

Hence, II-I C J, (J11 n J2'I) + X J2J2'1 [X] c R, and since I is v-invertible, we 
have 

(JM11 n J2'I) + XJ2J2' I [Xj)-I = R. 

By applying Lemma 2.1, we conclude that (J2Jil)-1 = B. Hence J2 is a 
v-Invertible v-ideal of B. 

COROLLARY 2.4 Let R = A + X B[X] with B integrally closed. If I Is 'a 
fractional t-invertible t-ideal, then I = U(JI + X J2[X]) for some u E qf(R), J2 

at-Invertible t-Ideal of Band J I C J2 a nonzero ideal of A. 

Proof. It remains to show that J 2 and J2'I, from Theorem 2.3, are v-finite. 
Since I is at-invertible t-Ideal, then JI + XJ2[X] = (b, ... ,fn). for some 
b, .. . , fn E R. Thus there exists FI C JI (resp., F2 C J2) a finitely generated 
Ideal of A (resp., B) such that FI c F2 and b, .. . , fn E FI + X F2[X], Hence 
JI +XJ2[X] = (FI +XF2[X])., Applying Lemma 2.1 yields J2'1 = F2'lj hence J2 
is v-finite. Similarly, one shows that J2'1 is also v-finite by using the fact that 
I-I Is v-finite. 

3. t-INVERTIBLE IDEALS OF A+XB[X] EXTENDED FROM A 

A fractional ideal I of R = A + X B [X] is said to be extended from A if I = uJ R 
for some u E qf(R) and some Ideal J of A. 

LEMMA 3.1 Let R = A + X B[X] with B integrally closed and I be a fractional 
divisorlalldeal of R. Then the following statements are equivalent. 
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(1) There exist" E q!(R) and W a nonzero A-module (c B) such that I = "WR. 
(2) I B[X] is a divisorial ideal of B[X]. 

Proof. (1) =* (2). We can assume that 1= XWR; hence I = XW + X2W B[X]. 
By Lemma 1.1, W B Is a divlsorial ideal of B; so I B[X] = XW B[X] is divlsorial 

in B[X]. 
(2) =* (1) By Theorem 1.4, I = ,,(W + XJ[X]), where" E K[X, X-I], J is a 

divisorial ideal of Band We J is a nonzero A-module. Let II = ,,-II B[X]. Then 

we have II = WB+XJ[X]. Applying Lemma 2.1 to It In the case A = B, we get 
(II). = J[X]. Further, since II is divisorial in B[X], then J = WB. Therefore 

I="WR. 

REMARK 3.2 If B is Integrally closed, then dlvisorial Ideals of R are not always 

of the form "WR, where" E q!(R) and WeB is a nonzero A-module. For, 
let A = Z and B = Z[i]. Let's consider the Ideal I = 2Z + (1 + i)XZ[i][X] 
of R = Z + XZ[i][X]. By applying Lemma 2.1, one can easily show that I is 
a divisorlal ideal. Notice that I is also at-invertible t-Ideal (see Remark 4.15 

and Example 4.16). Now assume I = "WR. Then" E Q(i), so "W = 2Z and 

"WZ[i] = (1 + i)Z[i]. Hence 2Z[i] = (1 + i)Z[i], a contradiction. 

LEMMA 3.3 Let R = A + X B[X]. Let I be a divisorial ideal of R of the form 
I = JI + X J2[X], where J2 is an ideal of Band JI C J2 is a nonzero Ideal of A. 
Then the following statements are equivalent. 

(1) I is extended from A. 
(2) J2 = JIB. 
(3) I B[X] is divisorial in B[X]. 

Proof. (1) =* (2) We assume that I = "JR for some" E q!(R) and some ideal J 
of A. Since I n A #- 0, " E q!(A). It follows that JI = "J and J2 = "J B. Hence 

J2 = JIB. 
(2) =* (1) Clear. 
(2) <* (3) Notice that by Lemma 2.1, J2 Is necessarily a divisorial ideal of B. We 

have IB[X] = JIB + XJ2[X], and applying Lemma 2.1 In the case where A = B 
yields (IB[X]). = J2[X], Therefore IB[X] is divlsoriallf and only If J2 = JIB. 

THEOREM 3.4 Let R = A + XB[X] with B integrally closed. Let I be a 

fractional v-invertible v-ideal of R. Then the following statements are equivalent. 

(1) I is extended from A. 
(2) I B[X] is a divisorial ideal of B[X]. 

Proof. It follows from Theorem 2.3 and Lemma 3.3. 

REMARK 3.5 The implication (2) =* (1) In Theorem 3.4 is not true in general 
if lis a v-Ideal which is not v-invertible. To see this, let A and B be such that 
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, C(A, B) = 0 (see Lemma 2.2), and consider the fractional Ideal 1 '" B[X] of R.· 
By Lemma 2.2, I is a divisorial ideal of R, but it is not v-invertible in R since 

I-I = XB[X] and (II-I). = XB[X]. Note that IB[X] = B[X] is divisorial in 

B[X]. If I = "JR for some" E q!(R) and someldeal J of A, then" E K. Hence 
B = "J, and thus ,,-I B = J C A. Hence ,,-1 E C(A, B), a contradiction. Note 

that in this case, the implication (2) =* (1) in Lemma 3.1 is true, namely W = B. 

LEMMA 3.6 Let R = A + X B[X]. Then R is a flat A-module if and only if B 
Is a flat A-module. 

Proof. Just note that R = A E!) 6jxn B. 
n~l 

LEMMA 3.7 Let SeT be an extension of Integral domains such that T is a flat 
S-module. If I is a finitely generated ideal of S, then (IT)-1 = I-IT 

Proof. See for Instance [6, Alg. Comm., Chap.1]. 

LEMMA 3.8 Let R = A + X B[X] and J be an ideal of A. 
(1) If (JR). = R, then J. = A. 
(2) If (JRJ, = R, then J. = A. 

Proof. (1) Assume (J R). = R. Let" E q!(A) such that J C uA. Then J R cuR, 
and hence R = (JR). cuR. Thus 1 E uA and J. =,A. (2) is a consequence of 
(1) since (JR). = U{(FR).I F c J finitely generated}. 

PROPOSITION 3.9 Let R = A + XB[X] such that B is a flat A-module. Let J 
be an ideal of A. Then the following statements are equivalent. 

(1) J is at-invertible t-ideal of A. 
(2) J R is at-invertible t-Ideal of R. 

Proof. If B is a flat A-module, then R is a flat A-module by Lemma 3.6, and by 
[4, Prop. 2.2], we have (1) =* (2). 

(2) =* (1) Assume that I = J R is at-invertible t-ideal of R. Then J = I n A 
Is a t-Ideal. To see this, let F C J be a finitely generated ideal of A.By using 

the formula (F.R). = (F R). which Is a consequence of Lemma 3.7 (see [4, Prop. 
.2.2], we conclude that F. C J. On the other hand, shlce J R is t-invertible, 

there exists JI C J a finitely generated ideal of A such that JR = (JIR) •. Thus 

(JJ1I R), = «JR)(JR)-I). = R, and by Lemma 3.8, (JJ11), = A. Hence J is a 
t-invertlble t-ideal of A. 

THEOREM 3.10 Let R = A + X B[X] such that B is integrally closed and a 
flat A-module. Let I be a fractional t-Invertible t~ldeal of R: Then' the following 
statements are equivalent. 
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(1) 1= uJRfot some u E ql(R) and some t-invertible t-ideal J of A. 

(2) I B[X] is a dlvisorlalldeal of B[X] 

Prool. (1) =I- (2) is a particular case of (1) =I- (2) in Lemma 3.1. Since t-Invertlble 
t-ideals are v-invertible v-ideals, (2) =I- (1) is a consequence of (2) =I- (1) of The

orem 3.4 and Proposition 3.9. 

4. THE CLASS GROUP OF A + X B[X] 

LEMMA 4.1 Let S be an integral domain and T an overring of S. Then the 

following statements are equivalent. 

(1) T is a flat S-module. 
(2) For each maximal Ideal M of T, TM = SMns. 

Proof. See [11, Lemma 6.5]. 

LEMMA 4.2 Let R = A + X B[X] such that B is a flat A-module. Then, B[X] 

is a flat R-module If and only if B is an overring of A. 

Proof. We will use Lemma 4.1. First suppose that B[X] is a flat R-module and 
let M be a maximal ideal of B[X] such that XB[X] c M; then B[X]M = RMnR. 
Let", E B. Then", E RMnR, and hence '" = ~ for some I,g E R with g ¢ M. 

Since XB[X] C M, g(O) oF 0, so that", = ~ E ql(A), hence B C ql(A). 
Conversely, assume that B is an overring of A and let M be a maximal Ideal 

of B[X]. We will show that B[X]M = RMnR. If X E M, then M = m + X B[X] 
for some maximal ideal m of B, and we have M n R = (m n A) + X B[X]. Since 
B Is a flat A-module, by Lemma 4.1, Bm = AmnA, and one can easily verify 

that B[X]M = RMnR. Now if X 1. M, let u E B[X]M. Then u = f for some 

I,g E B[X]lVith g 1. M; thus u = i; E RMnR' Hence B[X]M C RMnR and 

B[X]M = RMnR· 

LEMMA 4.3 Let R = A + X B[X] such that B is a flat· A-module. Then the 
canonical map cp : CI(A) -+ CI(R), [J] ...... [J R] is well-defined and it is an 

injective homomorphism. 

Prool. Since B is a flat A-module, by Lemma 3.6, R Is a flat A-module. Hence 

by [4, Prop. 2.2], cp is well-defined and It is a homomorphism. cp is Injective since 

R Is a faithfully flat A-module. 

THEOREM 4.4 Let R = A + X B[X] such that B Is integrally closed and a flat 

overring of A. Then CI(A + X B[X]) ~ CI(A). 

Proof. It suffices to show that the canonical homomorphism cp in Lemma 4.3 is 
surjective. Let I be at-invertible t-ideal of R. Since B Is a flat overring of A, 
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by Lemma 4.2, B[X] Is a flat R-module, and thus I B[X] is at-invertible t-Ideal 
of B[X] [4, Prop. 2.2]. The surjectivity of cpnow follows from Theorem 3.10. 

COROLLARY 4.5 Let S be a multiplicatively closed subset of A. If A is integrally 
closed, then C/(A + X As[X]) ~ C/(A). 

For A = B, we have the follOWing corollary [12, Theorem 3.6] 

COROLLARY 4.6 If A Is integrally closed, then C/(A[X]) ~ CI(A). 

THEOREM 4.7 Let R = A + XB[X]. If B is integrally closed and ql(A) C B, 
then CI(A + X B[X]) ~ CI(A) .. 

Proof. Since ql(A) C B, B is a flat A-module, and hence by Lemma 4.3, it suffices 
to show that the canonical homomorphism cp : CI(A) -+ CI(R) Is surjective. Let 
I be at-invertible t-ideal of R. By Corollary 2.4, 1= U(JI + X J2[X]), where 
u E ql(R), J2 is at-invertible t-ideal of B, and Jl C J2 Is a nonzero Ideal of 
A. Since ql(A) C B, J2 = B, and hence I = uJ1R is extended from A. By 
Proposition 3.9, Jl Is at-invertible t-Ideal of A, as desired. 

COROLLARY 4.8 If B Is Integrally closed and A Is afield, then CI(A+XB[X]) = 
O. 

THEOREM 4.9 Let Y = {V,h be a set of indetenninates. If A Is Integrally 
closed, then CI(A + X A[Y][X]) ~ CI(A). . 

Proof. B = A[Y] is a flat A-module. By Lemma 4.3, it suffices to show that 
the canonical homomorphism cp Is surjective. Let I be at-invertible t-Ideal of 
R. By Corollary 2.4, we can assume that I = Jl + X J2[X] for some t-Invertible 
t-Ideal J2 of Band Jl C J2 a nonzero ideal of A. Let J = J2 n A; J oF 0 since 
J1 # O. By [12, Lemma 3.3 and Prop. 3.2], J is at-invertible t-ideal of A and 

J2 = J[Y]. Hence I = J1 + X J[Y][X]. By applying Lemma 2.1 and using the fact 
that J[y]-1 = J-l[y] ([12, Lemma 1.6]), we obtain 

I-I = J11 n J[Yrl + XJ[Yrl[X] 

= J11 n rl[y] + Xrl[y][X] 

= rl +xrl[y][X], 

so that I = (I-I )-1 = JR. Hence cp is surjective. 

From the above results, the following natural question arises: Assume that 
B is integrally closed and a flat A-module. Does the canonical isomorphism 
CI(A + X B[X]) 5!! CI(A) always hold? The answer Is negative, in general, as 
Is shown by the following examples .. 
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THEOREM4.10 . Let A be an Integral domain and '" an element of some extension 
domain of A such that", ¢ q[(A), ",2 E A, and", is not a unit in B = A["'J. Let 
R = A + XB[XJ and 1= ",2A+ ",XB[XJ. Then 
(1) I Is a divlaorial ideal of R. 
(2) I is at-invertible t-ideal of R. 

(3) I is not extended from A. 

Proof. Since ",2 E A and", ¢ q[(A), then B = A + A", and it Is a free A-module 

with basis {I, "'}' 
(1) By applying Lemma 2.1 to the Ideal I, we get 

I-I = ",-2An ",-IB + ",-IXB[XJ. 

On the other hand, An ",B = A n (A", + A",2) = A",2. Thus ",~2 A n ",-I B = A, 

and hence I-I = A + ",-I XB[XJ. Thus 

Iv = An ",B+ ",XB[XJ 

= ",2 A + ",X B[XJ 

=1. 

(2) It suffices to show that I and I-I are v-finite and I is v-invertible. First 
we show that I = (",2, ",X). It is obvious that (",2, ",X) c I. For the reverse 
inclusion, let [ E I. We have [ = ",2a + ",Xg(X) for aome a E A and some 
9 E B[XJ. Then 9 has the form 9 = b+oo+Xh(X), where b,c E A and h E B[XJ. 
Thus [= ",2(a+cX) +",X(b+Xh(X)); hence [E (",2,,,,X). In (I), we have 
shown that I-I = A+",-IXB[XJ. Hence I-I = ",-21 = (l,,,,-IX). It remains 

to show that I Is v-invertible. We have 

Let u E q[(R) such that (",2,,,,X,X2) CuR. Since ",2 E uR, we can assume that 
u = !if for aome [ E R. Since X 2 E !if R, then X2 [ = ",2 9 for aome 9 E R; ao 9 has 
the form 9 = X 2h for aome hE B[XJ. Thus [= ",2h; ao that ",2h(0) = [(0) E A. 
Hence h(O) E A and hER. Thus 1 = uh E uR and (II-I)v = R. 
(3) If 1= uJR for aome u E q[(R) and some ideal J of A, then u E q[(A). Hence 
",2 A = uJ and ",B = uJ B; ao B = ",B, a contradiction. 

EXAMPLE 4.11 To construct simple examples illustrating Theorem 4.10, let's 
consider A = Z and let d E Z, d # -1 and not a square. Then", = v'd satisfies the 
conditions of Theorem 4.10. The cases where d == 2,3 (mod4) and square-free 
give examples with B integrally closed. 

We have the following corollary of Theorem 4.10. 
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, COROLLARY 4.12 • The canonical homomorphism OleA) ..... OleA + X B[X]) is 
not surjective in general even if B is integrally closed. 

EXAMPLE 4.13 Let k be a field and A = k[[S211, ('" = S an indeterminate); so 
B = A[B] = k[[B]J. Let R = A + XB[XJ. Then OleA) = 0 and OI(R) = Zj2Z. 
To see this, let I be at-invertible t-ideal of R. Since A and Bare DVRs, 
and by applying Corollary 2.4, we can assume that I = s2n A + sm X B[XJ. By 
dividing out suitable powers of 8 2, we may assume that m = 0 or m = 1. For 
1= 8 2n A+XB[XJ; I-I = A+XB[XJ = R, and hence I = Iv = R andn = O. For 
1= 8 2nA+ 8XB[XJ; I-I = A+8-IXB[XJ, and hence I = Iv = 82A+8XB[XJ 
and n

2 
= 1. By Theorem 4.10, the only non2ero class in OI(R) is [IJ, where 

1= 8 A + 8X B[XJ, and its order is two. Thus OI(R) = Zj2Z. 

We can say more about the surjectivity of the canonical homomorphism OleA) ..... 
OleA + X B[X]); this is a consequence of Theorem 4.10. 

COROLLARY 4.14 Let G be an abelian group. Then there exists an extension 
A C B of Integral domains such that B is integrally closed, OleA) = G, and the 
canonical homomorphism OleA) ..... OleA + X B[X]) is not surjective. 

Proof. By Claborn's theorem there exists a Dedeklnd domain D such that OI(D) = 
G. Let 8 be an Indeterminate, and let A = O[82J, B = D[S], and R = 
A + XB[X] = D[82,8X,X]. We have OleA) = OI(D) = G. By Theorem 4.10, 
the natural homomorphism OleA) ..... OI(R) Is not surjective. Also, note that In 
this case, Pic(R) = Pic(A) = Pic(D). 

REMARK 4.15 By modifying the hypothesis "'" not a unit In B" in Theorem 
4.10 to "a = 1 - ",2 not a unit in B" and considering the ideal I = aA + (1 + 
"')X B[XJ, one can show, using similar arguments, that I = (a, (1 + "')X) and it 
is at-invertible t-ideal of R. In this case, if we take A = Z and", = i, we have 
the simple example R = Z + X Z[i][X]. See the example below for the class group 
of this ring. 

. EXAMPLE 4.16 Let R = Z + X Z[i][XJ. Then OI(R) is the direct sum of Z/2Z 
and a countably infinite number of copies of Z. The Zj2Z summand corresponds 
to 2, the prime in Z that splits In Z[iJ with two asaociate prime factors, and each 
·of the Z summands corresponds to a positive prime p in Z that splits in Z[iJ with 
two nonassociate prime factors. Let 2 = ab in Z[iJ; a and bare asaociates. Then for 
1= 2Z +aXZ[i][XJ, we have [IJ = -[IJ = [2Z +bXZ[i][XII is nonzero. For p # 2, 
a positive prime in Z that splits as p = ab in Z[iJ, we have -(PZ + aXZ[i][XII = 
(PZ +bX Z[i][XII and each has infinite order in OI(R). These statements and those 
below follow from the form of a diviaorial ideal in R and the formula for I-I for 
such a divisorial ideal. 
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We next show. that the above classes of ideals generate CI(R}. Such a divisorial 
ideal I has the form nZ + aX Z[iJ[XJ with n = abo Using the above comments, one 
can show that any prime divisor p of n in Z that does not split in Z[iJ must also 
divide a. If p = cd splits in Z[iJ and pk exactly divides n, then one can show that 
either ck or dk is exactly the prime power that divides a. Thus [nZ +aX Z[iJ[XJl = 
Ekj[pjZ + cjXZ[iJ[XJl, where {pj = cjdj } is the set of positive primes in Z 
that split in Z[iJ. We show that the above classes are independent. Assume 
E kj[pjZ + CjXZ[iJ[XII = 0 in CI(R}. We may assume that each kj <! 0 (replace 
Cj by d

j
, or conversely, if needed). Thus the corresponding nZ + aX Z[iJ[XJ is 

principal. One then uses the above comments to show that each kj is 0 (or for the 

prime 2, that k j is even). 
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