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ABSTRACT. Let Tbe a domain of the form K + M, where K is a field and M is

a maximal ideal of T. Let D be a subring of K and let R = D + M. It is proved

that if K is algebraic over D and both D and T are universally catenarian, then

R is universally catenarian. The converse holds if K is the quotient field of D.

As a consequence, we construct for each n > 2, an n-dimensional universally

catenarian domain which does not belong to any previously known class of

universally catenarian domains.

1. Introduction. All rings considered below are (commutative integral) do-

mains. A ring A is said to be catenarian if, for each pair P C Q of prime ideals of A,

all saturated chains of primes from P to Q have a common finite length. Following

[3], we say that A is universally catenarian if the polynomial rings A[ATi,... ,Xn]

are catenarian for each positive integer n. The main purpose of this note is to

construct new examples of universally catenarian domains.

Any Cohen-Macaulay ring is universally catenarian. Moreover, it is known [15,

(2.6)] that a Noetherian ring A is universally catenarian if (and only if) A[X] is

catenarian. Moving beyond the Noetherian context, note that each catenarian A

must be locally finite-dimensional (LFD), in the sense that each prime ideal of A

has finite height. It is known [14, 12, p. 256, 5] that each LFD Prüfer domain

is universally catenarian. More generally, it was shown in [4, Theorem 1] that

each LFD going-down strong S-domain (in the sense of [12]) must be universally

catenarian. In addition, [4, Theorem 2] established that each LFD domain of

global dimension 2 is universally catenarian. (As explained in [4, pp. 863-864], this

assertion does not carry over to global dimension 3.) In §3, we construct for each

integer n > 2, an n-dimensional universally catenarian domain which is not of any

of the above types.

The constructions in §3 depend on work in §2 that studies universal catenarity

for rings of the form D + M. Here, M is a maximal ideal of a ring K + M, where K

is a field and D is a subring of K. Theorem 2.2 characterizes universal catenarity in

case K is the quotient field of D. A useful sufficient condition is given in Corollary

2.3, and Corollary 2.4 characterizes universal catenarity for the classsical D + M

construction [10] in which K + M is a valuation domain.
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2. Universal catenarity and the D + M construction. We begin with a

useful result that is analogous to various gluing criteria in [5, 4, 1]. It will be

convenient to say that I is S-saturated if S is a multiplicatively closed subset of

a ring A and I is an ideal of A such that A D 5_1i = i. Note that if I is an

¿■-saturated proper ideal, then I n S = 0.

LEMMA 2.1. Let S be a multiplicatively closed subset of a domain A and I an

S-saturated ideal of A. Let P be a prime ideal of A which contains I. Then there

exists Q in Spec(A) such that I C Q C P and Q D S = 0.

PROOF. We claim that IAp is an 5-saturated ideal of Ap; in other words, if

u G Ap D S~1IAp, then u G IAp. To see this, note that there exists z £ A\P

such that zu G AD 5_1i. By hypothesis, zu G i. Hence, u = (zu)z_1 € IAp, as

claimed.

By the above comment, it follows that IAp n S = 0. Hence (cf. [10, Lemma

2.5]), there exists a prime ideal W of Ap such that IAp C W and W fl S = 0.

Then <Q = W fl A has the asserted properties.    D

We next set up riding hypotheses and notation for the rest of §2. Let T be a

domain of the form K + M, where if is a field and M is a (nonzero) maximal ideal

of T. Let D be a subring of K. Let fc be the quotient field of D (inside K) and let

R = D + M.
We are interested in knowing when R is universally catenarian. The next result

answers this completely in case fc = K.

THEOREM 2.2. Suppose that K is the quotient field of D. Then R is universally

catenarian if and only if both T and D are universally catenarian.

PROOF. The "only if" assertion follows from the fact that the class of universally

catenarian domains is closed under localization and factor domains [3, Corollary

3.3]. The point is that R/M = D; and, if S = D \ {0}, then S~1R = k + M =
K + M = T.

Conversely, suppose that both T and D are universally catenarian. Hence, both

are LFD. We claim that R is LFD. To see this, note first that R is the pullback

of the inclusion map D —► K and the canonical projection T —► K. Accordingly,

by [9, Theorem 1.4], Spec(iî) can be characterized up to homeomorphism. The

order-theoretic upshot is that, as a poset, Spec(iî) is obtained by "gluing" Spec(D)

onto Spec(T) in such a way that {0} G Spec(.D) coincides with M G Spec(T). In

particular, R is LFD.

It follows that A = R[X\,... ,Xn] is also LFD for each positive integer n. To

prove that A is catenarian, we consider Po C • ■ • C Ps — P, any saturated chain of

s + 1 distinct primes in A.

Suppose M[X\,... ,Xn] C Po- It will suffice to show ht(P/Po) = s. Note that

Po/M[Xu ...,Xn]c---C P3/M[Xi,. ..,Xn]

is a saturated chain of distinct primes in the catenarian domain A/M[X\,..., Xn] =

D[X\,... ,Xn]. Now, it is easy to see that if Ji C J2 are primes of a catenarian

domain, then ht(J2) - ht(Ji) = ht(J2/-ii)- Thus,

ht(P/M[Xt,.. .,Xn]) - ht(Po/M[X!, ...,Xn])= ht(P/P0).
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Since

ht(P/M [Xi,.. .,Xn]) = ht(P0/M[X,, .. .,Xn]) + s,

we conclude that ht(P/Po) = s, as required in this case.

Suppose next that M[X\,..., Xn] (£_ P0. It will suffice to show ht(P) — ht(P0) =

s. Let S = D \ {0}. We claim that Po is 5-saturated. Indeed, consider u G

A n S~1Po; we shall show that u G Po- Choose z G S such that zu G Po- As z

is a unit in T, we have zM = M, whence uM[X1,... ,Xn] = zuM[Xi,... ,Xn] is

contained in Po. Since Po is prime, it follows that u G Po, as claimed.

Since Po is 5-saturated, Po Pi 5 = 0. There exists an integer r such that

0<r <s, PrC\S = 0 and, if r < s, then Pr+i n S # 0. Defining

I = Pr+M[Xi,...iXn\,

we have

S~XI = S~lPr + S-lM[Xu. ..,Xn] = S-'Pr + M[XU.. .,Xn\.

Thus,

A n s-'i = (An s-'Pr) + M[xu ...,xn] = pr + M[x,,. ..,xn] = i-

that is, I is an 5-saturated ideal of A.

Suppose, for the moment, that r < s. Pick d G Pr+i fl S and observe that

M = d(d~lM) CdM C Pr+..

It follows that Pr+i contains i. Hence, Lemma 2.1 may be applied, yielding Q G

Spec(A) such that I C Q C Pr+i and QnS = 0. As Q ¿ Pr+. and ht(Pr+i/Pr) =
1, we have Q = Pr. In particular, Pr contains M[X\,... ,Xn]. Viewing the chain

induced in the catenarian domain A/M[Xi,... ,Xn] = D[X\,... ,Xn], we conclude

that

ht(P/M[X,,... ,Xn\) - ht(PT/M[Xu.. .,Xn]) = s-r.

We claim that ht(P) — ht(Pr) = s — r. By the above comments, it suffices to

show

ht(P) - ht(Pr) = ht(P/M[Xx,.. .,Xn]) - ht(Pr/M[Xu.. .,Xn]).

Setting p = P n R and pr = Pr n R, we infer from [10, Theorem 30.18] that

ht(P) = ht(p[Xu.. .,Xn]) + U(P/p[Xu. ■ -,Xn])

and

ht(Pr) = ht(pr[Xu.. .,Xn]) + ht(Pr/pr[Xu.. .,Xn]).

Now, viewing R as the pullback of D —* K and T —* K, we see via [1, Corollary

2.12] that R is a locally Jaffard domain, in the sense of [1]. It follows that ht(p) =

ht(p[Xi,..., Xn]), with a similar assertion for ht(pr). Hence, by the three previously

displayed equations, the claim will follow if we show

ht(p) - ht(pr) + ht(P/p[Xi,.. .,*„}) - ht(Pr/pr[Xi,.. .,Xn])

- ht(P/M[Xu .. .,Xn]) - \&{PrlM[Xu. ■ .,*«])•

Now, since A/M[Xi,..., Xn] = D[Xi,..., Xn] is catenarian,

httP/ppLj,...,Xn\) = ht((P/M[X,,...,Xn])/(p[Xl,...,Xn]/M[Xu...,Xn]))

= ht(P/M[Xi,..., Xn]) - ht(p[X!,..., Xn]/M[X1,..., Xn]).
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A similar rewriting of ht(Pr/pr[Xi,... ,Xn]) is possible.

Moreover, p[X\,..., Xn]/M[Xi,..., Xn] may be viewed as (p/M) [X\,..., Xn]

in the (universally catenarian, hence stably strong S-) domain D[Xi,... ,Xn].

Thus, ht(p[Xi,..., Xn]/M[Xi,..., Xn]) = ht(p/M); a similar assertion holds with

pr replacing p. Hence, the claim will follow if we show

ht(p) - ht(pr) + (ht(P/M[Xu..., Xn]) - ht(p/M))

- (rA(Pr/M[Xu .. .,Xn]) - ht(pr/M))

= ht(P/M[X,,... ,Xn]) - ht(Pr/M[Xu.. .,Xn]).

This, in turn, will follow if ht(p/M) = ht(p) - ht(M) and ht(pr/M) = ht(pr) -

ht(M). But these equations do hold. The reason is that R is catenarian. Since T

and D are catenarian, this fact follows from the earlier order-theoretic description

of Spec(iü). The upshot is that we have proved the claim, ht(P) - ht(Pr) = s — r,

in case r < s. Since this equation reduces to 0 = 0 in case r = s, the claim has

been established.

Finally, consider the saturated chain S~lP0 C • • • C S~1Pr of distinct primes in

the catenarian domain S~1A = (S~lR)[Xi,... ,Xn] = T[X\,... ,Xn]. We have

ht(Pr) - ht(P0) = ht(5-xPr) - ht(5_1P0) = HiS^Pr/S-iPo) = r.

Hence,

ht(P) - ht(P0) = (ht(Pr) - ht(P0)) + (ht(P) - ht(Pr)) = r+(s-r) = s.    D

COROLLARY 2.3. IfT and D are both universally catenarian and if K is alge-

braic over D, then R is universally catenarian.

PROOF. It will suffice to show that fc -I- M is universally catenarian. Indeed,

since M is a maximal ideal of k + M and D is universally catenarian, the conclusion

will then follow from the "if" assertion in Theorem 2.2. Thus, we may assume that

D = k is a field. By hypothesis, K is algebraic over fc, and so T is integral over

R. Hence, to show that R is universally catenarian, [3, Theorem 6.1] shows that

it suffices to prove ht(c7i) = ht (92) whenever qi, 92 G Spec(T) satisfy cji fl R =

92 fl R. However, this holds (indeed, tji =92) since pullback considerations, using

[9, Theorem 1.4] as in the proof of Theorem 2.2, yield that Spec(T) —► Spec(i?) is

a homeomorphism.    D

COROLLARY 2.4. Suppose that T is a finite-dimensional valuation domain

which is not a field and that D is finite-dimensional. Then R is universally cate-

narian if and only if D is universally catenarian and K is algebraic over D.

PROOF. Since T is an LFD Prüfer domain, T is universally catenarian, by

results recalled in §1. The "if" assertion is therefore a special case of Corollary

2.3. Conversely, suppose that R is universally catenarian. Then so is R/M = D,

by [3, Corollary 3.3]. By universal catenarity, [3, Corollary 3.3] shows that the

valuative dimension of R (resp., D; resp., T) coincides with its (Krull) dimension.

Viewing R as the pullback of D —> K and T —> K, we may thus infer from [1,

Theorem 2.6] that dim(Ä) = dim(D) + dim(T) + t.d.(if/fc). However, it is well

known (cf. [10, Exercise 12(4), pp. 202-203]) that dim(R) = dim(D) + dim(T).
Hence, t. d.(K/k) = 0; that is, K is algebraic over D.    D

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



382      D. F. ANDERSON, D. E. DOBBS, SALAH KABBAJ AND S. B. MULAY

We do not know if the converse of Corollary 2.3 is valid. We shall close this

section with some remarks in this regard.

REMARK 2.5. (a) Suppose that R is universally catenarian. Then, by [3,

Corollary 3.3], so are D and fc + M; and the valuative dimension of R (resp., D)

coincides with its dimension. Now, if R is also assumed finite-dimensional and if T

is quasilocal but not a field, various pullback results [1, Lemma 2.1(d) and Theorem

2.6(a)] yield that K is algebraic over D (that is, over fc).

(b) If either fc + M or T is catenarian, then so is the other. This follows from

the order-isomorphism Spec(T) —+ Spec(fc + M): see [9, Theorem 1.4].

(c) Assume that D = fc, K/k is algebraic, and A = R[X\,... ,Xn], where R

is universally catenarian. With S = k[Xi,... ,Xn] \ {0}, we have that 5_1A =

k(Xi,..., X„) + S~1M[Xi,..., Xn] is universally catenarian. Since K is algebraic

over fc, B = T[Xlf. ..,Xn] satisfies S^B = K(XU. ..,Xn) + S^Mpf,,... ,Xn].

By applying (b), we infer that S_1B is catenarian. It follows, via [9, Theorem

1.4] as in the proof of Theorem 2.2, that K[XU ...,Xn] + S~1M[X1,. ..,Xn] is

catenarian. For this reason, we suggest that this ring's relation to T[X\,... ,Xn]

merits closer attention.

We are also led to raise the following question. Let A = E © P be a domain,

where E is a subring and P G Spec (A). Let S denote E \ {0} and assume that

B = E + S_1P is catenarian. Under what conditions is A catenarian?

Note that some conditions need to be imposed, for A need not be catenarian

in general. For instance, take E to be a catenarian domain such that E[X] is

not catenarian, as in [13, Example 2, p. 203]. Put P = XE[X] and let L denote

the quotient field of E. Then, since L[X] and E are catenarian, one may use [9,

Theorem 1.4] as in the proof of Theorem 2.2 to conclude that B = E + S~1P =

E + XL[X] is catenarian. However, in this example, A = E + P = E[X] is not

catenarian.

(d) Suppose that R is universally catenarian. In studying whether T must be

universally catenarian, we may assume that D = fc is a field (since, by (a), k + M

is universally catenarian). We claim that if the field extension K/k is (algebraic)

purely inseparable, then T is universally catenarian.

For a proof, note first that T (= K + M) is integral over R (= k + M). Indeed,

since K/k is purely inseparable and KM C M, each element of T has a power

in R. This property is inherited by the extension R[XX,..., Xn] c T[Xi,... ,Xn].

Hence, for all n > 1, Spec(i2[Xi,... ,Xn]) and Spec(T[Xi,... ,Xn]) are homeomor-

phic, and therefore order-isomorphic. (This can also be seen by showing that T

is the weak normalization of R in T and using the fact that weak normalization

is a universal homeomorphism [2, Teorema 1].) In particular, T[Xi,... ,Xn] is

catenarian, proving the claim.

(e) Suppose that (T, M) is quasilocal and finite-dimensional. Under these con-

ditions, we may use (a) and (d) to reduce the converse of Corollary 2.3 to the

following question. If fc + M is universally catenarian and the field extension K/k

is separable, is T — K + M necessarily universally catenarian?

3. Examples. In this section, we apply Corollary 2.4 to construct the new

family of universally catenarian domains promised in §1.

EXAMPLE 3.1. For each integer n > 2, there exists an n-dimensional non-

Noetherian universally catenarian domain Rn such that gl.dim(i?n) > 2 and Rn
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is neither a going-down strong 5-domain nor a polynomial ring over a universally

catenarian domain.

PROOF. Let fc be a field and take n indeterminates Xi,...,Xn~i, Y over fc.

Consider the discrete (rank 1) valuation ring Vn — k(Xi,... ,Xn-i)[Y](Y) = Kn +

Mn, where Kn = fc(ATi,... ,Xn_i) and Mn = YVn. Put Rn = Dn + Mn, where

Dn = k[Xi,... ,Xn-i]. Then, by well-known properties of the classical D + M

construction, dim(iîn) = dim(£>„) + dim(V„) = (n - 1) + 1 = n (cf. [10, Exercise

12(4), pp. 202-203]); and R„ is not Noetherian (cf. [10, Exercise 8(3), pp. 270-

271]). As Dn is universally catenarian (because fc is), Corollary 2.4 yields that Rn

is also universally catenarian.

Note that gl. dim(V„) = 1 and gl. dim(£>„) = n - 1. Hence, by [7, Proposition

2.1(1)], we have that gl. dim(iün) = n—1 if p. d.Dn(Kn) < n-1, and gl.dim(i?„) = n

if p.d.Dn(Kn) — n — 1. Thus, gl.dim(i2n) > 2 if n > 3. For the case n = 3, we

must choose fc more carefully: take fc to be any uncountable field, for instance R.

Then [11, Theorem 2] assures that p.d.D3(K3) = 2, and so the above consequence

of [7] yields gl.dim(i?3) = 3. Hence, for all n > 2, gl.dim(n„) > 2.

In Spec(i?„), X\Dn + Mn and X2Dn + Mn are incomparable prime ideals con-

tained in the maximal ideal (Xi,..., Xn-i) + Mn. Thus Rn is not treed; hence by

[6, Theorem 2.2], Rn is not a going-down (strong S-) domain. Finally, Rn is not

a polynomial ring because it has a unique height 1 prime ideal, namely Mn.    □

REMARK 3.2. (a) Note that, for the above construction, it is necessary to

assume n > 2. Indeed, any one-dimensional domain is a going-down domain; and,

by [8, Corollary], so is any two-dimensional domain that is constructed via the

classical D + M construction.

(b) It remains to discuss the possibility of "new" examples for dimensions 1 and

2. In dimension 1, [3, Corollary 6.3] or [4, Theorem 1] tells the whole story: a one-

dimensional domain is universally catenarian if and only if it is a strong 5-domain.

As for dimension 2, let (V, M) be a non-Noetherian one-dimensional valuation

domain. Then A = V[X](Mx) is a two-dimensional non-Noetherian universally

catenarian domain, of global dimension at least 3, such that A is neither a going-

down (strong S—) domain nor a polynomial ring (over a universally catenarian

domain).

We shall make only three comments by way of proof, with the rest of the verifica-

tion left to the reader. If {i,} is a strictly ascending chain of ideals in V, then {UA}

is also strictly ascending, and so A is non-Noetherian. If a and b are nonassociated

elements of M in V, then a calculation shows (X + a)(X + 6)_1 ^ A, and so A is

not a valuation domain. Since A is integrally closed and has valuative dimension

2, it follows from [6, Proposition 2.7] that A is not a going-down domain.

(c) The construction in (b) generalizes to give another new family of examples,

as follows. Let n > 2 and (V, M) be an (n — l)-dimensional valuation domain.

Assume that Vp is not Noetherian, where P is the unique height 1 prime of V.

Then A = V^X]^,*) is an n-dimensional non-Noetherian universally catenarian

domain, of global dimension at least 3, such that A is neither a going-down domain

nor a polynomial ring.

The proof is nearly the same as in (b), with the following exception. To see that

gl.dim(A) > 2, note that B = V[X]^X) = Vp[X](Pp,x) is a localization of A and

gl.dim(B) >2by (b).
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