Question1

For each number, check all that apply.

	Natural	Integer	Rational	Irrational	Real	Prime	Composite	Perfect Square
1								
0								
$\sqrt{3}$								
$\sqrt{4}$								
$\frac{2}{3}$								
$-\frac{1}{\pi}$								
3.14								
51								
$1.222 \ldots$								
$3.121221222 . .$.								
105								
10.5								

Question2

Identify the property of real numbers or the property of equality that is illustrated in the following statements.

1) $a(b c)=a(b c)$
2) $a(b c)=a(c b)$
3) $(a b) c=a(b c)$
4) $a(b-c)=a b-a c$
5) If $x=a$ and $a=y+2$, then $x=y+2$
6) If $x=4$ and $y=x-2 a$, then $y=4-2 a$

Question3

Let $A=\{x \mid x$ is a prime number $\leq 11\}$
$B=\{z \mid z=x+2$, where x is an integer number with $-1 \leq x<5\}$.

1) List all elements of A and B
2) Find $A \cap B$

Question4

Write each of the following without absolute value symbols
a) $|x-3|+|x-6|, 4 \leq x \leq 5$
b) $\left|\frac{x}{|x|+|x+3|}\right|,-3<x<0$

Question5

TRUE or FALSE

1) $0,1,2,3,4$, are positive integers.
2) Any integer is either prime or composite.
3) The operation of division of real numbers is commutative.
4) The multiplicative inverse of $-2 \frac{2}{3}$ is $-\frac{3}{4}$.
5) If x is any real number, then $|-x|=x$.
6) If $x<0$, then $|-x|=-x$.
7) The inequality $x \leq-5$ or $2<x \leq 6$ can be written in interval notation as $(-\infty,-5] \cap(2,6]$.
8) If the distance between a real number x and -3 is not more than 8 , then $|x+3| \leq 8$.
