1. If $f(x)=3 x^{2}-1$, then $\frac{f(x+h)-f(x)}{h}$ is equal to
(a) $6 x$
(b) $6 x+3 h^{2}$
(c) $6 x+3 h$
(d) 6
(e) h
2. The x-intercept of $f(x)=\left[-3 x+\frac{3}{2}\right]$, where $[x]$ denotes the greatest integer functions are:
(a) $\left\{0, \frac{1}{2}\right\}$
(b) $[0,1]$
(c) $\left[-\frac{1}{3}, 0\right]$
(d) $\left[0, \frac{1}{3}\right]$
(e) $\left(\frac{1}{6}, \frac{1}{2}\right]$
3. If $(1,5)$ is the midpoint of a line segment with one end point $(2,8)$, the other end point is:
(a) $(-1,3)$
(b) $(4,18)$
(c) $(-5,21)$
(d) $(0,2)$
(e) $(5,21)$
4. Which of the following statement is TRUE
(a) The y-intercept of the line $3 x-4 y=20$ is -5 .
(b) The line $6 y=-5 x$ does not pass through the origin.
(c) The midpoint of $(2 a+1,2 b-1)$ and $(1,-1)$ is (a, b).
(d) The slope of a horizontal line is undefined.
(e) The points $(-2,6),(8,0)$ and $(18,-6)$ lie on the same line.
5. If the distance between the center of the circle $x^{2}+y^{2}-2 y=5$ and the vertex of the parabola $x=-5 y^{2}+m$ is $\sqrt{10}$, then m is equal to
(a) ± 3
(b) ± 10
(c) ± 8
(d) ± 7
(e) ± 5
6. If the graph of $y=2 x^{2}+3 x-1$ is translated by 1 unit to the left and 3 units upwards, then the equation of the new graph is:
(a) $y=2 x^{2}-x-5$.
(b) $y=2 x^{2}+7 x+7$
(c) $y=2 x^{2}+6 x-5$
(d) $y=2 x^{2}+5 x-4$
(e) $y=2 x^{2}+3 x+5$
7. One of the x-intercept of the graph of the function $f(x)=3 x^{2}+k x-4$ is 4 . The second x-intercept is equal to
(a) -4
(b) 1
(c) -11
(d) $-\frac{1}{3}$
(e) $\frac{1}{3}$
8. The domain D and the range R of the function $y=|x+1|-1$ are given by
(a) $D=[0, \infty), R=[1, \infty)$
(b) $D=[-2, \infty), R=[1, \infty)$
(c) $D=[-2, \infty), R=[-1, \infty)$
(d) $D=(-\infty, \infty), R=[-1, \infty)$
(e) $D=(-\infty,-2) \cup(-2, \infty), R=(-\infty,-1]$
9. The domain D and the range R of the function $f(x)=\frac{\sqrt{4-9 x^{2}}}{2}$ is given by
(a) $D=\left[-\frac{2}{3}, \frac{2}{3}\right], R=[0, \infty)$
(b) $D=\left[\frac{2}{3}, \infty\right), R=[0,1)$
(c) $D=\left(-\infty,-\frac{2}{3}\right], R=[0, \infty)$
(d) $D=\left[-\frac{2}{3}, \frac{2}{3}\right], R=[0,1]$
(e) $D=\left[-\frac{2}{3}, \frac{2}{3}\right], R=(-\infty, 0]$
10. Consider the function $f(x)=2-|x|$. Find the following
(a) x-intercept(s) (if any)
(b) y-intercept(s) (if any)
(c) Sketch the graph of the function $f(x)$.
(d) Find the domain and the range of $f(x)$.
11. If a point (a, b) lies in the Quadrant II, then the point $(4, a b)$ lies in the
(a) Quadrant I
(b) Quadrant IV
(c) Quadrant III
(d) Quadrant II
12. Let $A=\{(4,7),(3,7),(2,5),(8,-8)\}$ and $B=\{(5,1),(-3,4),(-3,2)\}$, be two sets of ordered pairs of the form (x, y). We can define y as a function of x from
(a) the set B only
(b) the set a only
(c) both sets A and B
(d) neither the set A nor the set B.
13. Find the equation of the circle that has a diameter with end points $(3,-1)$ and $(5,7)$. Write your answer in the standard form.
14. Let $f(x)=\left\{\begin{array}{cll}3 & \text { if } & x \leq-2 \\ x^{2} & \text { if } & -2<x \leq 3 \\ -x+2 & \text { if } & 3<x \leq 7\end{array}\right.$
(a) Sketch the graph of $f(x)$.
(b) find the x-intercept(s)
(c) find the y-intercept(s)
(d) The interval where $f(x)$ is increasing.
(e) The interval where $f(x)$ is decreasing.
15. Let $g(x)=\lfloor x\rceil$, where \rceil is the greatest integer function. Find the value of

$$
\frac{g(x-a)+g(a-x)}{g(x / a)}
$$

where $x=1.5$ and $a=0.6$.
16. If the center of the circle $x^{2}+4 x+y^{2}-6 y=-9$ is $(2 a+1,2 b-1)$, then the value of $a b$ is equal to
(a) $\frac{-3}{4}$
(b) -3
(c) $\frac{-4}{3}$
(d) $\frac{1}{-3}$
(e) $\frac{-2}{3}$
17. The graph of the function $y=f(x)$ is shown in the adjacent figure. The domain D and the range R of the function $y=-f(x+1)+2$ are

Figure 1: Exc. 17
(a) $D=[0, \infty)$ and $R=(-\infty, \infty)$
(b) $D=[-2,3]$ and $R=[0,4]$
(c) $D=[0,5]$ and $R=[-4,4]$
(d) $D=[-2,2]$ and $R=[-3,2]$
(e) $D=[-3,2]$ and $R=[-2,2]$

