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1. Introduction

Let D be the unit disk in the complex plane C, and dA = rdr dθπ be the nor-
malized Lebesgue area measure so that the measure of D equals 1. The Bergman
space L2

a is the Hilbert space consisting of the analytic functions on D that are also
square integrable with respect to the measure dA. We denote the inner product
in L2(D, dA) by 〈, 〉. It is well known that L2

a is a closed subspace of the Hilbert
space L2(D, dA), and has the set {√n+ 1zn | n ≥ 0} as an orthonormal basis.
We let P be the orthogonal projection from L2(D, dA) onto L2

a. For a bounded
function φ on D, the Toeplitz operator Tφ with symbol φ is defined by

Tφ(h) = P (φh) for h ∈ L2
a .

In the last two decades, a lot of work has been done in understanding the
algebraic properties of Toeplitz operators on the Bergman space. This includes
studying the semicommutators and commutators of Toeplitz operators. For two
Toeplitz operators Tφ and Tψ we define the semicommutator and the commutator
respectively by

(Tφ, Tψ] = Tφψ − TφTψ
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and
[Tφ, Tψ] = TφTψ − TψTφ .

Commuting Toeplitz operators with harmonic symbols were characterized by
Axler and the first author [4], and essentially commuting by Stroethoff [16]. The
zero semicommutators were studied by Zheng [18]. The natural question to ask is
when these objects are compact or finite rank. In this respect we should mention
here the characterization of compact Toeplitz operators by Axler and Zheng [5]
in terms of the Berezin transform of the symbol. In this context we also mention
the work of Suárez [17]. Very recently, Luecking [14] has proved that the only
finite rank Toeplitz operator is the zero operator. Finite rank commutators and
semicommutators of Toeplitz operators with harmonic symbols were characterized
by Guo, Sun and Zheng [10]. About the same time, finite rank perturbations of
related products of Toeplitz operators were studied by the first author [7]. Both
results in [10] and [7] were generalized in a recent paper by Choe, Koo and Lee [6].

In this paper we continue this line of investigation and study semicommu-
tators and commutators of quasihomogeneous Toeplitz operators. A function φ
is said to be quasihomogeneous of degree p if it is of the form eipθf , where f is
a radial function. In this case the associated Toeplitz operator Tφ is also called
quasihomogeneous Toeplitz operator of degree p. These Toeplitz operators were
studied in [8, 11, 12] and [13]. The reason that we study such family of symbols is
that any function f in L2(D, dA) has the following polar decomposition

f(reikθ) =
∑

k∈Z

eikθfk(r) ,

where fk are radial functions in L2([0, 1], rdr). Unlike the harmonic case where fi-
nite rank semicommutators and commutators are zero, we show that semicommu-
tators and commutators of two quasihomogeneous Toeplitz operators of opposite
degrees can be nonzero finite rank operators. Our techniques are very different
from those used in the harmonic case. We use the Mellin transform instead of the
Berezin transform. Moreover we support our results by giving an effective con-
stuction of nontrivial finite rank semicommutators and commutators of quasiho-
mogeneous Toeplitz operators. Finding examples of nontrivial Toeplitz operators
satisfying certain algebraic properties has been notoriously difficult, but such con-
structions are now possible using recent results due to the work of the first author
and Rao [8], the second author, Zakariasy and Strouse [11] and the second author
and Zakariasy [12].

2. Preliminaries

Before we state our results, we need to introduce the Mellin transform which
is going to be our main tool. The Mellin transform f̂ of a radial function f in
L1([0, 1], rdr) is defined by

f̂(z) =
∫ 1

0

f(r)rz−1 dr .
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It is well known that, for these functions, the Mellin transform is well defined on
the right half-plane {z : �z ≥ 2} and it is analytic on {z : �z > 2}. It is important
and helpful to know that the Mellin transform f̂ is uniquely determined by its
values on an arithmetic sequence of integers. In fact we have the following classical
theorem [15, p. 102].

Theorem 1. Suppose that f is a bounded analytic function on {z : �z > 0} which
vanishes at the pairwise distinct points z1, z2, . . ., where

i) inf{|zn|} > 0 and
ii)

∑
n≥1 �( 1

zn
) = ∞.

Then f vanishes identically on {z : �z > 0}.
Remark 1. Now one can apply this theorem to prove that if f ∈ L1([0, 1], rdr) and
if there exist n0, p ∈ N such that

f̂(pk + n0) = 0 for all k ∈ N ,

then f̂(z) = 0 for all z ∈ {z : �z > 2} and so f = 0.

The use of the Mellin transform in the study of Toeplitz operators was in-
troduced for the first time by the first author and Rao in [8]. They used it to
characterize all bounded Toeplitz operators which commute with Teipθrm , where m
and p are integers.

A direct calculation gives the following lemma which we shall use often.

Lemma 1. Let k, p ∈ N and let f be an integrable radial function. Then

Teipθf (z
k) = 2(k + p+ 1)f̂(2k + p+ 2)zk+p

and

Te−ipθf (z
k) =

{
0 if 0 ≤ k ≤ p− 1
2(k − p+ 1)f̂(2k − p+ 2)zk−p if k ≥ p .

Proof. For p ≥ 0 and all k ∈ N, we have

Teipθf (z
k) = P (eipθfzk) =

∑

n≥0

(n+ 1)〈eipθfzk, zn〉zn

=
∑

n≥0

(n+ 1)
(∫ 1

0

∫ 2π

0

f(r)rk+n+1ek+p−n
dθ

π
dr

)
zn

= 2(k + p+ 1)f̂(2k + p+ 2)zk+p .

A similar calculation gives the values of the quasihomogeneous Toeplitz operator
of negative degree on the elements of the basis of L2

a. �



432 Z̆. C̆uc̆ković and I. Louhichi Comp.an.op.th.

3. Product of n Toeplitz operators

It was shown in [1], that if TfTg = 0 with both f and g harmonic, then one of the
symbols must be equal to the zero function. This result was extended in [10], by
showing that the same result remains true if we assume that the product TfTg is
of finite rank. In [2], it was proved that if one of the symbols f or g is a radial
function and the other is arbitrary and if TfTg = 0, then also f or g should be
zero. However the “zero product” problem without any restriction on the symbols
is still open.

In our first theorem, we show that, if the product of n quasihomogeneous
Toeplitz operators is of finite rank, then one of the symbols must be zero.

Theorem 2. Let p1, p2, . . . , pm be integers and let f1, . . . , fm be bounded radial
functions on D. If the product Teipmθfm

. . . Teip1θf1 is of finite rank N , then fj = 0
for some j ∈ {1, . . . ,m}.
Proof. We denote by S the product of Toeplitz operators Teipmθfm

. . . Teip1θf1 . For
every k ≥ ∑m

j=1 |pj |, we have

S(zk) = 2(k + p1 + 1)f̂1(2k + p1 + 2)2(k + p1 + p2 + 1)f̂2(2k + 2p1 + p2 + 2)

. . . 2(k + p1 + · · · + pm + 1)f̂m(2k + 2p1 + · · · + pm + 2)zk+p1+···+pm .

Thus the set {S(zk) : k ≥ ∑m
j=1 |pj|} is a linearly independent set which is included

in the range of S. Hence {S(zk) : k ≥ ∑m
j=1 |pj |} contains at most N elements.

This implies that there exists some positive integer n0 ≥ N +
∑m

j=1 |pj | such that

S(zk) = 0 for all k ≥ n0 ,

which is equivalent to

f̂1(2k+p1 +2) . . . f̂m(2k+2p1+ · · ·+2pm−1+pm+2) = 0 , for all k ≥ n0 . (1)

Let l = min{p1, 2p1 + p2, . . . , 2p1 + · · · + 2pm−1 + pm}. Then (1) implies that

(rp1−lf1)∧(2k + l+ 2) . . . (r2p1+···+pm−lfm)∧(2k + l + 2) = 0 , for all k ≥ n0 .

Thus the function (rp1−lf1)∧ . . . (r2p1+···+pm−lfm)∧,which is the product of bound-
ed analytic functions in the right half-plane {z : �z > 2}, vanishes on the arith-
metic sequence (2k+ l+2)k≥n0 . By Theorem 1, it must be zero and hence at least
one of its bounded analytic factors should be equal to zero, i.e., there exists some
j ∈ {1, . . .m} such that fj = 0. �

4. Finite rank semicommutators

On the Hardy space H2 of the unit disk D, the question for which symbols f and g
the semicommutator (Tf , Tg] or the commutator [Tf , Tg] is of finite rank, has been
completely solved in [3] and [9]. On the Bergman space, the zero semicommutator
or commutator of two Toeplitz operators with harmonic symbols has been com-
pletely characterized in [4] and [18]. Recently, those results were generalized by
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Guo, Sun and Zheng [10]. In fact they proved that if the semicommutator or the
commutator of two Toeplitz operators with bounded harmonic symbols has finite
rank, then it must be zero.

The situation for the semicommutator involving quasihomogeneous Toeplitz
operators is different. We shall show that, for p and s both positive, if the semi-
commutator (Teipθf , Teisθg] has finite rank, then the semicommutator must be zero.
However if p and s have opposite signs, then we prove that there exists a nonzero
semicommutator (Teipθf , Teisθg] of finite rank. The main ingredient in our proofs is
Theorem 6.1 in [11], which gives necessary and sufficient conditions for the prod-
uct of two quasihomogeneous Toeplitz operators to be a Toeplitz operator too.
Also in certain cases, it gives an explicit formula for the symbol of the product.
This formula is essentially a Mellin convolution equation. We recall that the Mellin
convolution of two radial functions φ and ψ in L1([0, 1], rdr), denoted by φ ∗M ψ,
is defined by:

(φ ∗M ψ)(r) =
∫ 1

r

φ
(r
t

)
ψ(t)

dt

t
, for 0 ≤ r < 1 .

It is easy to see that the Mellin transform converts a convolution product into a
pointwise product, i.e., that

̂(φ ∗M ψ)(r) = φ̂(r)ψ̂(r)

and that, if φ and ψ are in L1([0, 1], rdr) then so is φ ∗M ψ.
Below we state Theorem 6.1 in [11] for completeness.

Theorem 3. Let p, s ∈ N, p ≥ s and let f and g be two integrable radial functions
on D such that Teipθf and Te−isθg are bounded. Then

TeipθfTe−isθg

is equal to a Toeplitz operator if and only if there exists an integrable radial func-
tion h such that
(a) Tei(p−s)θh is bounded;
(b) ĥ(2k + p− s+ 2) = 0 if 0 ≤ k ≤ s− 1;
(c) h is a solution to the equation

11 ∗M rp+sh = rpf ∗M rsg ,

where 11 denotes the constant function with value one.
In this case:

TeipθfTe−isθg = Tei(p−s)θh .

Remark 2. The case where both Toeplitz operators are of positive quasihomo-
geneous degrees can be treated similarly. Under the same hypothesis as in the
theorem above, the product TeipθfTeisθg is a Toeplitz operator if and only if there
exists an integrable radial function h such that
(a) Tei(p+s)θh is bounded;
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(b) h is a solution to the equation

rs ∗M rph = rp+sf ∗M g .

In this case:
TeipθfTeisθg = Tei(p+s)θh .

We are now ready to state and prove our results about semicommutators.

Theorem 4. Let p and s be two positive integers and let f and g be two integrable
radial functions on D such that Teipθf , Teisθg and Tei(p+s)θfg are bounded operators.
If the semicommutator (Teipθf , Teisθg] has finite rank, then it is equal to zero.

Proof. Let denote by S the semicommutator (Teipθf , Teisθg]. Suppose that S has a
finite rank N . As in the proof of the Theorem 2, the range of S contains at most N
linearly independent vectors. Thus there exists n0 ≥ N , such that

S(zk) = 0 for all k ≥ n0 .

Lemma 1 implies that

2(k + s+ 1)f̂(2k + p+ 2s+ 1)ĝ(2k + s+ 2) = f̂ g(2k + p+ s+ 2) , (2)

for all k ≥ n0. Since:

1̂1(2k + 2s+ 2) = r̂s(2k + s+ 2) =
1

2(k + s+ 1)
,

then (2) is equivalent to:

̂(rp+sf ∗M g)(2k + s+ 2) = ̂(rs ∗M rpfg)(2k + s+ 2) .

Now the functions ̂(rp+sf ∗M g) and ̂(rs ∗M rpfg) are both analytic on the right
half-plane {z : �z > 2} and the sequence (2k + s + 2)k≥n0 is arithmetic, then
Remark 1 implies that

rp+sf ∗M g = rs ∗M rpfg .

Hence TeipθfTeisθg = Tei(p+s)θfg by Remark 2. �

Remark 3. If p and s are both negative, the same theorem above remains true by
considering the adjoint of the semicommutator.

We shall next consider the case of a semicommutator of two quasihomoge-
neous Toeplitz whose degrees have opposite signs.

Theorem 5. Let p ≥ s be two positive integers and let f and g be two integrable
radial functions on D such that Teipθf , Teisθg and Tei(p−s)θfg are bounded operators.
If the semicommutator (Teipθf , Te−isθg] has finite rank N , then N is at most equal
to the quasihomogeneous degree s.
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Proof. Let denote by S the semicommutator (Teipθf , Te−isθg]. By Lemma 1, we
have

S(zk) =

⎧
⎪⎨

⎪⎩

2(k + p− s+ 1)f̂ g(2k + p− s+ 2)zk+p−s , if k ≤ s− 1
2(k + p− s+ 1)

[
f̂ g(2k + p− s+ 2)−

2(k − s+ 1)f̂(2k + p− 2s+ 2)ĝ(2k − s+ 2)
]
zk+p−s , if k ≥ s .

If S has finite rank N , then as before there exists n ≥ s such that

S(zk) = 0 for k ≥ n .

The preceding equation is equivalent to

f̂ g(2k + p− s+ 2) = 2(k − s+ 1)f̂(2k + p− 2s+ 2)ĝ(2k − s+ 2) , for k ≥ n .

Using the fact that 1̂1(2k − 2s+ 2) = 1
2(k−s+1) , we obtain

1̂1(2k − 2s+ 2)r̂p+sfg(2k − 2s+ 2) = r̂pf(2k − 2s+ 2)r̂sg(2k − 2s+ 2) ,

for k ≥ n . (3)

Since the sequence (2k − 2s+ 2)k≥n is arithmetic, then Remark 1 and (3) imply
that

1̂1(z)r̂p+sfg(z) = r̂pf(z)r̂sg(z) , for �z > 0 .
In particular if z = 2k − 2s+ 2 with k ≥ s, we have

1̂1(2k−2s+2)r̂p+sfg(2k−2s+2) = r̂pf(2k−2s+2)r̂sg(2k−2s+2) , for k ≥ s .

Hence
S(zk) = 0 for k ≥ s .

Therefore the rank N of S is at most equal to s. �

Below we give an effective construction of a nonzero semicommutator of finite
rank.

Example 1. Using Theorem 3, one can find many nonzero finite rank semicommu-
tators of quasihomogeneous Toeplitz operators. Using the notation of Theorem 3,
let p = s = 1 and let f(r) = 1/r. The function f is not bounded but it is a so
called “nearly bounded function” [2, p. 204]. Thus the Toeplitz operator with sym-
bol eiθ1/r is bounded. Now it is easy to see that any radial function g will satisfy
the Mellin convolution equation in the condition (c) of Theorem 3 with h = fg.
Take for example g(r) = r. Using Lemma 1, we have that

Teiθ 1
r
Te−iθr(z

k) = T11(zk) , for k ≥ 1 .

However
Teiθ 1

r
Te−iθr(1) = 0 ,

but
T11(1) = 1 .

Therefore (Teiθ 1
r
, Te−iθr] has rank one.
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5. Finite rank commutators

We now pass to the commutator of two quasihomogeneous Toeplitz operators.
Here the situation is the same as for the semicommutator. We shall prove that
if two quasihomogeneous Toeplitz operators have both positive or both negative
degrees and if their commutator has finite rank, then the commutator must be zero.
However if the degrees of operators have opposite signs, then the commutator can
have finite rank without being equal to zero.

Theorem 6. Let p and s be two positive integers and let f and g be two integrable
radial functions on D such that Teipθf and Teisθg are bounded operators. If the
commutator [Teipθf , Teisθg] has a finite rank, then it is equal to zero.

Proof. Let S denote the commutator [Teipθf , Teisθg]. If S has finite rank N , then
as before there exists n ≥ N such that

S(zk) = 0 , for k ≥ n ,

which is equivalent, using Lemma 1, to

2(k+s+1)f̂(2k+p+2s+2)ĝ(2k+s+2) = 2(k+p+1)f̂(2k+p+2)ĝ(2k+2p+s+2) ,

for k ≥ n. Since 1̂1(2k + 2s + 2) = 1
2(k+s+1) and 1̂1(2k + 2p+ 2) = 1

2(k+p+1) , then
the preceding equality implies that

1̂1(2k+2p+2)f̂(2k+p+2s+2)ĝ(2k+s+2)=1̂1(2k+2s+2)f̂(2k+p+2)ĝ(2k+2p+s+2) ,

for all k ≥ n. Now each of the functions 1̂1, f̂ and ĝ is bounded analytic function
in the right half-plane {z : �z > 2} and the sequence (2k + 2)k≥n is arithmetic,
then using Remark 1, we have that

1̂1(z + 2p)f̂(z + p+ 2s)ĝ(z + s) = 1̂1(z + 2s)f̂(z + p)ĝ(z + 2p+ s) , for �z ≥ 2 .

In particular for z = 2k + 2, with k ≥ 0, we obtain that

1̂1(2k+2p+2)f̂(2k+p+2s+2)ĝ(2k+s+2)=1̂1(2k+2s+2)f̂(2k+p+2)ĝ(2k+2p+s+2) ,

and this is true for all k ≥ 0. Hence

S(zk) = 0 , for k ≥ 0 .

Therefore the commutator [Teipθf , Teisθg] equals to zero. �

Theorem 7. Let p ≥ s be two positive integers and let f and g be two integrable
radial functions such that the Toeplitz operators Teipθf and Te−isθg are bounded. If
the commutator [Teipθf , Te−isθg] has finite rank N , then N is at most equal to the
quasihomogeneous degree s.

Proof. Let S denotes the commutator [Teipθf , Te−isθg]. Then
if k ≤ s− 1:

S(zk) = −2(k + p− s+ 1)ĝ(2k + 2p− s+ 2)2(k + p+ 1)f̂(2k + p+ 2)zk+p−s ,
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and if k ≥ s:

S(zk) = 2(k + p− s+ 1)
[
2(k − s+ 1)f̂(2k + p− 2s+ 2)ĝ(2k − s+ 2)

− 2(k + p+ 1)ĝ(2k + 2p− s+ 2)f̂(2k + p+ 2)
]
zk+p−s .

If S has finite rank N , then there exists n ≥ s such that

S(zk) = 0 , for all k ≥ n .

Hence, for every k ≥ n, we have

2(k−s+1)f̂(2k+p−2s+2)ĝ(2k−s+2) = 2(k+p+1)ĝ(2k+2p−s+2)f̂(2k+p+2) .

As in the proof of Theorem 5, the above equation implies that

2(k−s+1)f̂(2k+p−2s+2)ĝ(2k−s+2) = 2(k+p+1)ĝ(2k+2p−s+2)f̂(2k+p+2) ,

for all k ≥ s. Thus
S(zk) = 0 , for k ≥ s .

Therefore the rank N of S is less or equal to s. �

Here we present an example of a nonzero commutator of finite rank.

Example 2. It has been proved in [12, Proposition 8, p. 252], that quasihomo-
geneous Toeplitz operators whose quasihomogeneous degrees have opposite signs
never commute. Below we will construct a radial function g such that

TeipθrmTe−isθg(z
k) = Te−isθgTeipθrm(zk) , for k ≥ s , (4)

where p ≥ s > 0 and m are given positive integers.
Equation (4) implies that for k ≥ s, we have

2k − 2s+ 2
2k + p− 2s+m+ 2

ĝ(2k − s+ 2) =
2k + 2p+ 2

2k + p+m+ 2
ĝ(2k + 2p− s+ 2) .

Thus for k ≥ s

r̂−sg(2k + 2p+ 2)

r̂−sg(2k + 2)
=

(2k − 2s+ 2)(2k + p+m+ 2)
(2k + 2p+ 2)(2k + p− 2s+m+ 2)

.

Now, using Remark 1, we obtain that

r̂−sg(z + 2p)

r̂−sg(z)
=

(z − 2s)(z + p+m)
(z + 2p)(z + p− 2s+m)

, for �z ≥ s+ 2 . (5)

Let F be the analytic function defined for �z > 2s by

F (z) =
Γ

(
z−2s
2p

)
Γ

(
z+p+m

2p

)

Γ
(
z+2p
2p

)
Γ

(
z+p−2s+m

2p

) ,
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where Γ denotes the gamma function. Then, using the well-know identity Γ(z+1) =
zΓ(z), (5) implies that

r̂−sg(z + 2p)

r̂−sg(z)
=
F (z + 2p)
F (z)

, for �z > 2s . (6)

Equation (6), combined with [13, Lemma 6, p. 1428], gives us that there exists a
constant c such that

r̂−sg(z) = cF (z) , for �z > 2s . (7)

For a choice of p = 2, s = 1 and m = 6, and again using the identity Γ(z + 1) =
zΓ(z), one can see that

F (z) =
z + 4

(z − 2)(z + 2)
=

3
2

1
z − 2

− 1
2

1
z + 2

.

Since 1
z±2 = r̂±2(z), then (7) becomes

r̂−1g(z) =
c

2
(
3r̂−2(z) − r̂2(z)

)
, for �z > 2 .

Now the preceding equation and Remark 1 imply that

g(r) = c

(
3
r
− r3

)
, where c is a constant .

It is clear that the function g is not bounded but it is nearly bounded so that the
Toeplitz operator Te−iθg is bounded.

Finally, by taking the constant c to be equal to 1, the radial function g(r) =
3/r − r3 satisfies

Te2iθr6Te−iθg(z
k) = Te−iθgTe2iθr6(z

k) , for k ≥ 1 .

However, using Lemma 1, it is easy to see that

Te2iθr6Te−iθg(1) = 0 ,

but
Te−iθgTe2iθr6(1) �= 0 .

Therefore the commutator [Te2iθr6 , Te−iθ( 3
r −r3)] has rank one.

References
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