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1. Which one of the following statements is FALSE: (f and
g are continuous)

If f is even on[−a, a], then
∫ a

−a
f(x) dx = 2

∫ 0

−a
f(x) dx(a)

∫ b

a
[f(x)− 3g(x)]dx =

∫ b

a
f(x)dx− 3

∫ b

a
g(x) dx(b)

∫ b

a
f(x)dx = area below the graph of f from x = a to x = b.(c)

If 2 ≤ f(x) ≤ 6 on [0, 3], then 6 ≤
∫ 3

0
f(x) dx ≤ 18.(d)

If f(x) ≤ g(x) on [a, b], then
∫ b

a
g(x) dx ≥

∫ b

a
f(x) dx.(e)

2. If f(x) =





3

x
if x ≤ −1

−3 if x > −1,
then

∫ 0

−3
f(x) dx

is equal to 3− 3 ln 3(a)

does not exist(b)

is equal to 3 + 3 ln 3(c)

is equal to − 3− ln 3(d)

is equal to − 3− 3 ln 3(e)
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3. If g(x) =
∫ 1

ex
t ln t dt, then g′(x) =

e2x(a)

xex(b)

−ex(c)

−xex(d)

−xe2x(e)

4.
∫ 1

−1
(3x− 2)19 dx =

1− 520

60
(a)

0(b)

57(1− 518)(c)

520

60
(d)

520 − 1

20
(e)
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5. Using three approximating rectangles and midpoints, the

area under the graph of f(x) =
x

x− 1
from x = 2 to x = 8

is approximately equal to

29

3
(a)

41

12
(b)

47

6
(c)

59

6
(d)

43

6
(e)

6.
∫ (x− 3

√
x)2

3
√

x2
dx =

7

3
x7/3 − x4/3 + 2x + C(a)

3

7
x7/3 − 3

5
x5/3 + x + C(b)

3

2
x2/3 +

6

5
x4/3 +

1

2
x2 + C(c)

3

7
x7/3 − 6

5
x5/3 + x + C(d)

1

3
x3 − 6

7
x7/3 +

3

5
x5/3 + C(e)



Math102, Exam I, Term 081 Page 4 of 10 001

7.
∫

ex2+ln x dx =

1

x
ex2

+ C(a)

1

2
ex2

+ C(b)

ex2+ln x

(
2x + 1

x

) + C(c)

ex2+ln x
(
2x +

1

2

)
+ C(d)

ex ln x + C(e)

8. Using the definition of the definite integral, the value of the
limit

lim
n→+∞

n∑

i=1

2

n

√√√√4 +
3i

n

is equal to

32√
7

(a)

4√
3

(b)

2

3
(7
√

7− 8)(c)

4

9
(7
√

7− 8)(d)

28
√

7

9
(e)
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9. If F (x) =
∫ x2

x

sin(2t)

t2
dt, then F (1) + F ′(1) =

0(a)

sin 2

2
(b)

sin 2(c)

1 + sin 2(d)

3 sin 2(e)

10. If the line x = k divides the region bounded by the curves
y =

√
x, y = 0 and x = 4 into two regions with equal area,

then k =

3
√

16(a)

4(b)

8(c)

3
√

4(d)

2(e)
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11. By interpreting it as an area, the value of the integral

∫ 1

0
(|x− 1|+ 2

√
1− x2) dx

is equal to

π + 1

2
(a)

2π +
1

2
(b)

π + 1(c)

π +
1

4
(d)

π +
1

2
(e)

12. The volume of the solid generated by revolving the region

between the y-axis and the curve x =
2

y
, 1 ≤ y ≤ 4,

about the y-axis is equal to

3π(a)

π(b)

6π

7
(c)

10π(d)

−3π(e)
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13.
∫ 1

sec t− cos t
dt =

ln | sin t|+ C(a)

cot t + C(b)

− sec t + C(c)

ln | sec t− cos t|+ C(d)

− csc t + C(e)

14. The acceleration (in m/s2) and the initial velocity for a
particle moving along a line are given by

a(t) = 2t− 1, v(0) = −2, 0 ≤ t ≤ 2.

The distance traveled by the particle during the given time
interval is

13

3
m(a)

5m(b)

18

3
m(c)

4m(d)

10

3
m(e)
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15.
∫ 2

−2
x4(xe−x2

+ 5)dx =

16(a)

−8(b)

32(c)

64(d)

0(e)

16. The area of the region bounded by the curves x = −2y2

and y = x + 1 is

5

24
(a)

5

8
(b)

27

8
(c)

1

24
(d)

9

8
(e)
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17. A solid has a circular base of radius 1 and center (0, 0). If
the cross-sections of the solid perpendicular to the x-axis
are semicircles, then the volume of the solid is equal to

2π

3
(a)

16π

3
(b)

8π

3
(c)

π

3
(d)

4π

3
(e)

18. If the region enclosed by the curves y = x2 and y = 2x
is rotated about the line y = 5, then the volume of the
resulting solid is given by

π
∫ 2

0
[(5− x2)2 − (5− 2x)2] dx(a)

π
∫ 4

0


(
√

y)2 −
(
1

2
y

)2
 dy(b)

π
∫ 2

0
[(2x + 5)2 − (x2 + 5)2] dx(c)

π
∫ 2

0
[(2x)2 − (x2)2] dx(d)

π
∫ 4

0


(5−√y)2 −

(
5− 1

2
y

)2
 dy(e)
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19.
∫ x + 2

3
√

3− x
dx =

−15(3− x)1/3 +
3

4
(3− x)4/3 + C(a)

ln(3− x) + (3− x) + C(b)

5

3
ln(3− x) +

1

4
(3− x)4/3 + C(c)

3

5
(3− x)5/3 +

15

2
(3− x)2/3 + C(d)

3

5
(3− x)5/3 − 15

2
(3− x)2/3 + C(e)

20. If
∫ 2

−1
f(x) dx = 4 and

∫ 2

1
f(2x) dx = 1, then

∫ 4/3

−1/3
f(3x) dx =

2

3
(a)

3(b)

4(c)

5(d)

2(e)
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Q MM V1 V2 V3 V4

1 a c b e e
2 a e d c e
3 a e d c a
4 a a a b b
5 a c c c e
6 a d e d e
7 a b c e d
8 a d b c b
9 a c b a c
10 a a e c a
11 a a b c b
12 a a e c e
13 a e e d e
14 a e a c d
15 a d d d d
16 a e b a b
17 a a c d a
18 a a c e a
19 a e a a e
20 a e c d d




