1. The value of the integral $\int_{0}^{\pi / 4} \frac{\sin (2 x)}{[1+\cos (2 x)]^{3}} d x$ is
(a) $\frac{3}{16}$
(b) $\frac{1}{8}$
(c) $\frac{1}{16}$
(d) $\frac{1}{2}$
(e) 1
2. If $y=\int_{1-3 x}^{1} \frac{u^{3}}{1+u^{2}} d u$, then $\frac{d y}{d x}=$
(a) $\frac{3(1-3 x)^{3}}{1+(1-3 x)^{2}}$
(b) $\frac{-3(1-3 x)^{3}}{1+(1-3 x)^{2}}$
(c) $\frac{(1-3 x)^{3}}{1+(1-3 x)^{2}}$
(d) $\frac{27 x^{3}}{1+9 x^{2}}$
(e) $\frac{81 x^{3}}{1+9 x^{2}}$
3. The area of the region bounded by the graphs of $y=x^{2}-2$ and $y=x$ is
(a) $\frac{9}{2}$
(b) $\frac{3}{2}$
(c) $\frac{7}{2}$
(d) $\frac{5}{2}$
(e) $\frac{11}{2}$
4. The sum of the series $1-\ln 3+\frac{(\ln 3)^{2}}{2!}-\frac{(\ln 3)^{3}}{3!}+\cdots$
(a) is equal to $\frac{1}{3}$
(b) is equal to 3
(c) does not exist
(d) is equal to $e^{1 / 3}$
(e) is equal to e^{3}
5. The volume of the solid generated by rotating the region enclosed by the curves $y=x$ and $y=\sqrt{x}$ about the y-axis is
(a) $\pi \int_{0}^{1}\left(y^{2}-y^{4}\right) d y$
(b) $\pi \int_{0}^{1}\left(y-y^{2}\right) d y$
(c) $\pi \int_{0}^{1}\left(x^{2}-x\right) d x$
(d) $\pi \int_{-1}^{1}\left(y+y^{2}\right) d y$
(e) $\pi \int_{-1}^{0}\left(x-x^{2}\right) d x$
6. The sequence $\left\{(2-e)^{n}\right\}_{n=1}^{+\infty}$
(a) converges to 0
(b) converges to $-e$
(c) converges to $\frac{2}{e}$
(d) converges to 2
(e) diverges
7. If the n-th partial sum of a series $\sum_{n=1}^{+\infty} a_{n}$ is $s_{n}=2-\frac{(-1)^{n}}{n^{2}}$, then the series $\sum_{n=1}^{+\infty} a_{n}$
(a) converges and its sum is 2
(b) converges and its sum is 1
(c) diverges
(d) converges and its sum is $\frac{3}{2}$
(e) converges and its sum is $\frac{1}{2}$
8. The series $\sum_{n=1}^{+\infty} \frac{(-3)^{n+1}}{2^{3 n}}$
(a) converges and its sum is $\frac{9}{11}$
(b) converges and its sum is $\frac{9}{5}$
(c) converges and its sum is $\frac{-24}{11}$
(d) converges and its sum is $\frac{-3}{11}$
(e) diverges
9. The series $1+\frac{1}{2^{2} \sqrt{2}}+\frac{1}{3^{2} \sqrt{3}}+\frac{1}{4^{2} \sqrt{4}}+\cdots$ is
(a) a convergent p-series with $p=\frac{5}{2}$
(b) a divergent series
(c) a convergent p-series with $p=2$
(d) a divergent series by the integral test
(e) a divergent p-series with $p=\frac{1}{2}$
10. Suppose that $f(1)=1, f(4)=7, f^{\prime}(1)=-1, f^{\prime}(4)=3$, and $f^{\prime \prime}$ is continuous. Then the value of $\int_{1}^{4} x f^{\prime \prime}(x) d x$ is equal to [Hint: Use integration by parts]
(a) 7
(b) 2
(c) 5
(d) 12
(e) 0
11. The average value of the function $f(x)=\frac{x}{(x+3)^{3}}$ over the interval $[-1,1]$ is
(a) $\frac{-1}{64}$
(b) $\frac{3}{32}$
(c) $\frac{-5}{32}$
(d) $\frac{5}{64}$
(e) 0
12. The series $\sum_{n=2}^{+\infty} \frac{1}{n \ln n}$
(a) diverges by the integral test
(b) converges by the integral test
(c) converges by the comparison test with $b_{n}=\frac{1}{n}$
(d) diverges by the comparison test with $b_{n}=\frac{1}{n^{2}}$
(e) diverges by the ratio test
13. The error in approximating the sum of the series $\sum_{n=1}^{+\infty} \frac{(-1)^{n} n}{5^{n}}$ by the sum of the first four terms is less than or equal to
(a) $\frac{1}{5^{4}}$
(b) $\frac{1}{4 \cdot 5^{4}}$
(c) $\frac{6}{5^{6}}$
(d) $\frac{1}{5^{5}}$
(e) $\frac{4}{5^{5}}$
14. The length of the curve $y=\ln (\sec x), \quad 0 \leq x \leq \frac{\pi}{4}$, is
(a) $\ln (1+\sqrt{2})$
(b) $\ln (\sqrt{2})$
(c) $1+\sqrt{2}$
(d) $\ln (\sqrt{2}+\sqrt{3})$
(e) $2+\sqrt{2}$
15. The improper integral $\int_{0}^{2} \frac{x^{3}}{\sqrt{4-x^{2}}} d x$
(a) has the value $\frac{16}{3}$
(b) has the value $\frac{22}{3}$
(c) has the value $\frac{11}{3}$
(d) has the value $\frac{19}{3}$
(e) is divergent
16. The integral $\int \frac{e^{-x}}{e^{-2 x}+3 e^{-x}+2} d x$ equals
(a) $\ln \left(\frac{2+e^{-x}}{1+e^{-x}}\right)+C$
(b) $\ln \left(\frac{2+e^{-x}}{1+e^{x}}\right)+C$
(c) $\ln \left(\frac{2-e^{-x}}{1-e^{-x}}\right)+C$
(d) $\ln \left(2+e^{-x}\right)+\ln \left(1+e^{-x}\right)+C$
(e) $\ln \left(2-e^{-x}\right)+\ln \left(1-e^{-x}\right)+C$
17. The value of the integral $\int_{1}^{16} \frac{1}{\sqrt{x}+\sqrt[4]{x}} d x$ is equal to
(a) $2+4 \ln (1.5)$
(b) $3-\ln 16$
(c) $2-4 \ln 3$
(d) $4+\ln (1.5)$
(e) $\ln (81)$
18. The series $\sum_{n=1}^{+\infty} n \sin \left(\frac{1}{n}\right)$
(a) diverges
(b) converges and its sum is 1
(c) converges and its sum is 0
(d) converges
(e) converges and its sum is $\frac{1}{3}$
19. The series $\sum_{n=1}^{+\infty} \frac{n^{2}+1}{n^{5}+n^{4}+1}$ is
(a) convergent
(b) divergent
(c) convergent and its sum is 1
(d) divergent by the test of divergence
(e) convergent by the ratio test
20. The series $\sum_{n=1}^{+\infty} \frac{(-1)^{n} 3 n}{4 n-1}$ is
(a) divergent
(b) convergent
(c) absolutely convergent
(d) conditionally convergent
(e) neither convergent nor divergent
21. The integral for the area of the surface obtained by rotating the curve $y=\tan x$ from $(0,0)$ to $\left(\frac{\pi}{4}, 1\right)$ about the y-axis is
(a) $2 \pi \int_{0}^{\pi / 4} x \sqrt{1+\sec ^{4} x} d x$
(b) $2 \pi \int_{0}^{\pi / 4} x \sqrt{1+\tan ^{4} x} d x$
(c) $2 \pi \int_{0}^{\pi / 4} \tan x \sqrt{1+\sec ^{4} x} d x$
(d) $2 \pi \int_{0}^{1} y \sqrt{1+\frac{1}{1+y^{2}}} d y$
(e) $2 \pi \int_{0}^{\pi / 4} \tan x \sqrt{1-\tan ^{2} x} d x$
22. The area of the region between the x-axis and the curve $y=\frac{x}{e^{x}}$ for $x \geq 0$ is
(a) 1
(b) 2
(c) $\frac{1}{2}$
(d) $\frac{3}{2}$
(e) 3
23. $\int_{1 / 2}^{3 / 2} \frac{d x}{5-4 x+4 x^{2}} d x=$
(a) $\frac{\pi}{16}$
(b) $\frac{3 \pi}{16}$
(c) $\frac{3 \pi}{4}$
(d) $\frac{5 \pi}{8}$
(e) $\frac{3 \pi}{8}$
24. The series $\sum_{n=1}^{+\infty}\left(\frac{1+\ln n}{n^{2}+3}\right)^{n}$ is
(a) convergent by the root test
(b) divergent by the root test
(c) a convergent geometric series
(d) a series with which the root test is inconclusive
(e) divergent by the test of divergence
25. The interval of convergence and the radius of convergence R of the power series $\sum_{n=0}^{+\infty} \frac{(-3)^{n+1}(2 x+1)^{n}}{\sqrt{n+1}}$ are
(a) $\left(\frac{-2}{3}, \frac{-1}{3}\right] ; \quad R=\frac{1}{6}$
(b) $\left(\frac{-2}{3}, \frac{-1}{3}\right) ; \quad R=\frac{2}{9}$
(c) $\left[\frac{-2}{3}, \frac{1}{3}\right] ; \quad R=\frac{1}{6}$
(d) $\left(\frac{-2}{3}, \frac{-1}{3}\right] ; \quad R=\frac{1}{9}$
(e) $\left(\frac{-2}{3}, \frac{1}{3}\right] ; \quad R=\frac{1}{6}$
26. The value of the integral $\int_{0}^{1 / 3} \frac{x^{2}}{1+x^{7}} d x$ is equal to
(a) $\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(7 n+3) \cdot 3^{7 n+3}}$
(b) $\sum_{n=0}^{+\infty} \frac{(-1)^{n} \cdot 3^{7 n+3}}{7 n+3}$
(c) $\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(7 n+1) \cdot 3^{7 n+1}}$
(d) $\sum_{n=0}^{+\infty} \frac{1}{(7 n+1) \cdot 3^{7 n+3}}$
(e) $\sum_{n=1}^{+\infty} \frac{(-1)^{n}(7 n+3)}{3^{7 n+1}}$
27. If the region bounded by the curves $y=\sqrt{x-1}, y=0$, and $x=5$ is rotated about the line $y=3$, then the volume of the generated solid is
(a) 24π
(b) 10π
(c) 6π
(d) 36π
(e) 4π
28. The Maclaurin series of $f(x)=x \cos \left(x^{3}\right)$ is
(a) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{6 n+1}}{(2 n)!}$
(b) $\sum_{n=0}^{+\infty} \frac{x^{6 n}}{(2 n)!}$
(c) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{6 n+1}}{(6 n+1)!}$
(d) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{3 n+1}}{(2 n)!}$
(e) $\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{5 n+1}}{(2 n)!}$
