- 1. Using the method of cylindrical shells, set up, but do not evaluate, an integral for the volume of the solid obtained by rotating
 - (a) the region bounded by the curves $y = x x^2$ and y = 0 about the line x = -1. Sketch the region and a typical rectangle. (5 points)

(b) the region bounded by the curves $y = \ln x, y = 0$, and x = 2 about the x-axis. Sketch the region and a typical rectangle. (5 points)

2. Find all numbers b such that the average value of $f(x) = \sqrt{x}$ on the interval [0, b] is 6. (7 points)

3. Evaluate the following integrals:

(a)
$$\int \tan^2 t \sec^4 t \, dt$$
. (7 points)

(b)
$$\int e^{-x} \cos(2x) dx.$$
 (7 points)

$$\text{(c)} \int \frac{1}{x^3 \sqrt{x^2 - 1}} \, dx.$$

(7 points)

(d)
$$\int x^3 e^{x^2} dx.$$

(7 points)

(e)
$$\int \frac{1}{5 + 3\cos x} \, dx$$

(7 points)

(f)
$$\int \frac{1}{(-x^2 - 2x)^{3/2}} dx.$$

(7 points)

4. (a) Write out the form of the partial fraction decomposition of $\frac{x-2}{x(x^3+x)^2}$. Do not determine the numerical values of the coefficients. (5 points)

(b) Evaluate
$$\int \frac{x^3 - 4x - 10}{x^2 - x - 6} dx$$
. (8 points)

5. Evaluate the integral or show that it is divergent.

(a)
$$\int_{-\infty}^{0} \frac{3x}{(5x^2+6)^2} dx$$
. (7 points)

(b)
$$\int_0^2 \frac{1}{(x-1)^3} dx$$
. (7 points)

- 6. (a) Find the arc length of the curve $y = x^2 \frac{1}{8} \ln x$, $1 \le x \le 3$.
- (7 points)

- (b) Find the area of the surface generated by rotating the curve $y=\sqrt{4-x^2},\quad 0\leq x\leq 1 \text{ about the } y\text{-axis}.$
- (7 points)