1. The function $f(x)=\left\{\begin{array}{lll}a x^{2}+b x & \text { if } & x \leq 1 \\ x+a^{2} & \text { if } & x>1\end{array}\right.$
is twice differentiable everywhere. Then $a^{2}+b^{2}=$
a) 1
b) 0
c) $\frac{5}{4}$
d) 2
e) 5
2. If $f(x)=(2 x-1)^{\frac{2}{3}}$, then the equation of the vertical tangent to the graph of f is
a) $x=\frac{1}{2}$
b) $x=-\frac{1}{2}$
c) $x=\frac{2}{3}$
d) $x=-\frac{2}{3}$
e) $x=\frac{4}{3}$
3. The equations of the horizontal tangents to the curve $y=x^{3}-3 x-2$ are
a) $y=0$ and $y=-4$
b) $y=1$ and $y=-1$
c) $x=1$ and $x=-1$
d) $y=-4$ and $y=1$
e) $y=0$ and $y=-1$
4. At how many real values of x does the curve $y=x^{6}-3 x^{2}+x+5$ have a tangent line parallel to the line $y=x$?
a) 3
b) 1
c) 2
d) 4
e) 5
5. If $f(x)=x e^{x}$ and n is a positive integer, then $f^{(n)}(1)=$
a) $(n+1) e$
b) $n e$
c) $(n-1) e$
d) $(n+2) e$
e) $n e+1$
6. If $y=\frac{1+\sin x}{1+\cos x}$, then $\frac{d y}{d x}=$
a) $\frac{1+\sin x+\cos x}{(1+\cos x)^{2}}$
b) $\frac{\sin x+\cos x}{1+\cos x}$
c) $\frac{\sin x+\cos x}{(1+\cos x)^{2}}$
d) $\frac{1+\sin x}{(1+\cos x)^{2}}$
e) $\frac{2}{1+\cos x}$
7. $\lim _{\theta \rightarrow 1} \frac{\sin (\theta-1)}{\theta^{2}+\theta-2}=$
a) $\frac{1}{3}$
b) 0
c) $\frac{1}{2}$
d) 2
e) 1
8. If $y=\sin \left(x^{2}\right)$ and $x=\cos t$, then $\frac{d y}{d t}=$
a) $-\sin 2 t \cos \left(\cos ^{2} t\right)$
b) $\sin 2 t \cos \left(\cos ^{2} t\right)$
c) $-\sin t \cos \left(\cos ^{2} t\right)$
d) $-\sin 2 t \cos ^{3} t$
e) $\sin 2 t \cos ^{3} t$
9. Let f and g be differentiable functions and $h(x)=f\left(x^{2} g(x)\right)$. If $g(2)=-2$ and $g^{\prime}(2)=2$, then $h^{\prime}(2)=$
a) 0
b) -2
c) 2
d) 3
e) -3
10. The equation of the tangent line to the curve given implicitly by

$$
\sqrt{x+y}=y^{2}
$$

at the point $(0,1)$ is
a) $3 y-x=3$
b) $2 y+x=1$
c) $3 y+x=3$
d) $2 y-x=2$
e) $2 y+x=3$
11. The equation of the normal line to the curve $y=\tan ^{-1}(\sqrt{x-1})$ at $x=2$ is
a) $y=-4 x+8+\frac{\pi}{4}$
b) $y=\frac{1}{4} x-\frac{1}{2}+\frac{\pi}{4}$
c) $y=4 x-8+\frac{\pi}{4}$
d) $y=-\frac{1}{4} x+\frac{1}{2}+\frac{\pi}{4}$
e) $y=-4 x+8-\frac{\pi}{4}$
12. If $f(x)=\left(x^{2}+2 x\right)^{50}$, then $f^{(100)}(1)=$
a) 100 !
b) 100
c) 0
d) $3(99$!)
e) $2(50!)$
13. The slope of the tangent line to the graph of $y=(2 x+1)^{\sin 3 x}$ at $x=\frac{\pi}{6}$ is
a) 2
b) $4\left(\frac{\pi}{3}+1\right)$
c) 6
d) $2\left(\frac{\pi}{3}+1\right)$
e) $\frac{4}{\frac{\pi}{3}+1}$
14. If $y=\frac{(x+2)^{2}(2 x-1)^{3}}{\sqrt{x+1}}$, then $y^{\prime}(0)=$
a) 22
b) $-\frac{11}{2}$
c) 44
d) 24
e) -11
15. The position function of a particle moving along a line is

$$
s(t)=\sin t+\cos t
$$

where t is measured in seconds and s in meters. The total distance traveled by the particle in the interval $[0, \pi]$ is
a) $2 \sqrt{2}$ meters
b) 2 meters
c) 4 meters
d) $2 \sqrt{2}+2$ meters
e) $2 \sqrt{2}-2$ meters
16. The position function of a particle moving along a line is

$$
s(t)=t^{3}-6 t^{2}+9 t \quad(0 \leq t \leq 5)
$$

The time interval(s) where the particle is moving forward is (are)
a) $(0,1)$ and $(3,5)$
b) $(0,3)$
c) $(0,3)$ and $(4,5)$
d) $(1,3)$
e) $(0,2)$ and $(3,5)$
17. The two equal sides of an isosceles triangle have length $4 m$. If the angle between them is increasing at a rate of $0.06 \mathrm{rad} / \mathrm{s}$, then the rate at which the area of the triangle is changing when the angle between the sides of the triangle is $\frac{\pi}{3}$ equals
a) $0.24 \mathrm{~m}^{2} / \mathrm{s}$
b) $-0.24 \mathrm{~m}^{2} / \mathrm{s}$
c) $2.4 \mathrm{~m}^{2} / \mathrm{s}$
d) $-2.4 \mathrm{~m}^{2} / \mathrm{s}$
e) $0.024 \mathrm{~m}^{2} / \mathrm{s}$
18. If a snow ball melts so that its surface area decreases at a rate of $1 \mathrm{~cm}^{2} / \mathrm{min}$, then the rate at which the diameter changes, when the diameter is 10 cm equals

Hint: Surface area of a sphere $=4 \pi r^{2}$
a) $\frac{-1}{20 \pi} \mathrm{~cm} / \mathrm{min}$
b) $\frac{1}{20 \pi} \mathrm{~cm} / \mathrm{min}$
c) $\frac{-1}{40 \pi} \mathrm{~cm} / \mathrm{min}$
d) $\frac{1}{40 \pi} \mathrm{~cm} / \mathrm{min}$
e) $\frac{-1}{10 \pi} \mathrm{~cm} / \mathrm{min}$
19. The equation of the tangent line to the graph of $y=\ln x$ and passes through the origin is
a) e $y=x$
b) $y=e x$
c) $y=\frac{1}{e}(x-1)$
d) $y=\frac{1}{e}(x+1)$
e) $y=2$ e x

