King Fahd University of Petroleum and Minerals
Department of Mathematics and Statistics
MATH 101 EXAM I
Summer Term (083)
Time allowed: 120 Minutes

Name: \qquad ID \#: \qquad

Instructor: \qquad Section: \qquad Serial\#: \qquad

- Show All Your WORK
- WRITE Clear Steps
- Calculator and Mobiles are not allowed

Q\#	Marks	Maximum Marks
1		8
2		10
3		24
4		10
5		8
6		7
7		8
8		10
9		100
10		
Total		

MATH 101 - EXAM (Term 083)

1. (8-points) Sketch the graph of an example of a function f that satisfies the following conditions:

$$
\begin{array}{ll}
\lim _{x \rightarrow-\infty} f(x)=3 ; & \lim _{x \rightarrow \infty} f(x)=1 ; \quad \lim _{x \rightarrow 1^{-}} f(x)=-\infty ; \\
f^{\prime}(-2)=0 ; & \lim _{x \rightarrow 1^{+}} f(x)=2 ; \quad f \text { has a removable discontinuity at } x=-1
\end{array}
$$

2. (10-points) Use the Squeeze Theorem to show that

$$
\lim _{x \rightarrow 0^{+}}\left(\sqrt{x} e^{\sin \left(\frac{\pi}{\sqrt{x}}\right)}+1\right)=1
$$

MATH 101 - EXAM (Term 083)
3. ($\mathbf{2 4}$ points: $\mathbf{6}$ points each) Evaluate the limit, if it exists
(3a) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{\sqrt{2 x+2}-2}$
(3b) $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-|x-1|-1}{|x-1|}$
(3c) $\lim _{x \rightarrow \frac{1}{2}}(x-[|2 x|])$, where [| |] denotes the greatest integer function.

MATH 101 - EXAM (Term 083)
(3d) $\lim _{x \rightarrow \infty} \ln \left(\frac{e^{x+2}-8}{e^{x}+16}\right)$
4. (10 - points) The displacement (in meters) of a particle moving in a straight line is given by the equation of motion $S(t)=\frac{3 t-1}{t+2}$ where t is measured in seconds. Use limits to find the instantaneous velocity at $t=3$.

MATH 101 - EXAM (Term 083)
5. (8-points) Use the Intermediate Value Theorem to show that the graphs of the functions $f(x)=\sqrt{x}$ and $g(x)=\cos x$ intersect on the interval $\left[0, \frac{\pi}{2}\right]$.
6. Given that $f(x)=(x-1)^{\frac{2}{3}}$ and $f^{\prime}(x)=\frac{2}{3}(x-1)^{-\frac{1}{3}}$.
(6a) (3-points) Use limits to find, if any, the equation of the vertical tangent to the graph of f.
(6b) (5 - points) Find the equation of the normal line to the graph of f at $x=9$.

MATH 101 - EXAM (Term 083)
7. $(7$ - points $)$ Determine the intervals on which the function $f(x)=\frac{\ln (x)+\tan ^{-1}(3 x)}{x^{2}-4}$ is continuous.
8. (7-points) Use limits to determine whether or not the following function is continuous at $x=2$

$$
f(x)=\left\{\begin{array}{l}
\frac{10}{3 x-1}, \text { if } x<2 \\
\sqrt{3 x-2}, \\
\text { if } x \geq 2
\end{array}\right.
$$

MATH 101 - EXAM (Term 083)
9. (8-points) Given that $\lim _{x \rightarrow 2}\left(3 x-\frac{2}{5}\right)=\frac{28}{5}$ and $\epsilon=0.009$. Find the largest possible value of δ that satisfies the conditions given in the $\epsilon-\delta$ definition of a limit.
10. (10-points) Use limits to find all vertical and horizontal asymptotes of the graph of

$$
f(x)=\frac{6 x}{\sqrt{2 x^{2}-8}}
$$

