King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

MATH 101 EXAM I

Summer Term (083)

Time allowed: 120 Minutes

Name:		ID#:
Instructor:	Section:	Serial#:
Show All YouWRITE CleaCalculator an		

Q#	Marks	Maximum Marks
1		8
2		10
3		24
4		10
5		8
6		8
7		7
8		7
9		8
10		10
Total		100

1. (8 - points) Sketch the graph of an example of a function f that satisfies the following conditions:

$$\lim_{x \to -\infty} f(x) = 3; \quad \lim_{x \to \infty} f(x) = 1; \quad \lim_{x \to 1^{-}} f(x) = -\infty;$$

$$f'(-2) = 0;$$
 $\lim_{x \to 1^+} f(x) = 2;$ f has a removable discontinuity at $x = -1$.

2. (10 - points) Use the Squeeze Theorem to show that

$$\lim_{x \to 0^+} \left(\sqrt{x} \ e^{\sin\left(\frac{\pi}{\sqrt{x}}\right)} + 1 \right) = 1$$

3. (24 points: 6 points each) Evaluate the limit, if it exists

(3a)
$$\lim_{x \to 1} \frac{x^3 - 1}{\sqrt{2x + 2} - 2}$$

(3b)
$$\lim_{x \to 1^{-}} \frac{x^2 - |x - 1| - 1}{|x - 1|}$$

(3c) $\lim_{x\to \frac{1}{2}}(x-[|2x|])$, where $[|\ |]$ denotes the greatest integer function.

(3d)
$$\lim_{x \to \infty} \ln \left(\frac{e^{x+2} - 8}{e^x + 16} \right)$$

4. (10 - points) The displacement (in meters) of a particle moving in a straight line is given by the equation of motion $S(t) = \frac{3t-1}{t+2}$ where t is measured in seconds. Use limits to find the instantaneous velocity at t=3.

5. (8 - points) Use the Intermediate Value Theorem to show that the graphs of the functions $f(x) = \sqrt{x}$ and $g(x) = \cos x$ intersect on the interval $\left[0, \frac{\pi}{2}\right]$.

- 6. Given that $f(x) = (x-1)^{\frac{2}{3}}$ and $f'(x) = \frac{2}{3}(x-1)^{-\frac{1}{3}}$.
 - (6a) (3 points) Use limits to find, if any, the equation of the vertical tangent to the graph of f.

(6b) (5 - points) Find the equation of the normal line to the graph of f at x = 9.

7. **(7 - points)** Determine the intervals on which the function $f(x) = \frac{\ln(x) + \tan^{-1}(3x)}{x^2 - 4}$ is continuous.

8. (7 - points) Use limits to determine whether or not the following function is continuous at x=2

$$f(x) = \begin{cases} \frac{10}{3x - 1}, & \text{if } x < 2\\ \sqrt{3x - 2}, & \text{if } x \ge 2 \end{cases}$$

9. (8 - points) Given that $\lim_{x\to 2} \left(3x - \frac{2}{5}\right) = \frac{28}{5}$ and $\epsilon = 0.009$. Find the largest possible value of δ that satisfies the conditions given in the $\epsilon - \delta$ definition of a limit.

10. (10 - points) Use limits to find all vertical and horizontal asymptotes of the graph of

$$f(x) = \frac{6x}{\sqrt{2x^2 - 8}}$$