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1. The graph of f(x) =
x4 + x2

(x2 + 9)(x + 1)
has

one slant asymptote and one vertical asymptote(a)

two slant asymptotes and two vertical asymptotes(b)

one horizontal asymptote and two vertical asymptotes(c)

one slant asymptote and three vertical asymptotes(d)

one horizontal, one vertical, and one slant asymptote(e)

2. The function f(x) =
ln(x− 1)

2−√x
is continuous on

(1, 4) ∪ (4, +∞)(a)

[0, +∞)(b)

(
√

2, +∞)(c)

(2, +∞)(d)

(1, +∞)(e)
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3. Using Newton’s Method to find a root of the equation

3x− sin(2πx) = 1

starting with x1 =
1

2
, we find that x2 =

π + 1

2π + 3
(a)

2π − 1(b)

1

4π + 6
(c)

1

2π + 1
(d)

1

2
(e)

4. lim
x→5+

4− x

(x− 5)3

4

5
(a)

−1(b)

1

2
(c)

+∞(d)

−∞(e)
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5. The number of the inflection points of the graph of y =
1

56
x8− 1

30
x6+80

is

4(a)

6(b)

3(c)

2(d)

1(e)

6. The slope of the tangent line to the curve cos(xy2) = y3− x +
π

2
− 1 at

(
π

2
, 1

)
is

−1

3
(a)

1

3
(b)

1(c)

0(d)

−1(e)
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7. The sum of the critical numbers of the function f(x) =
3
√

x2 − x is

1(a)

3

2
(b)

−1

2
(c)

1

2
(d)

2(e)

8. All values of x where the tangent line to the graph of y = tan2 x is
horizontal are given by

nπ, n is integer(a)

2n− 1

2
π, n is integer(b)

n

2
π, n is integer(c)

(2n− 1) π, n is integer(d)

(
n +

1

2

)
π, n is integer(e)
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9. If g is a differentiable function and f(x) = [g(x2)]2, then f ′(x) =

2g′(x2)(a)

4xg′(x2)(b)

4xg(x2)g′(x2)(c)

4x3g′(x4)(d)

2g(x2)(e)

10. If f(t) = tet sin t, then f ′(t) =

et cos t + t sin t(a)

tet sin t− tet cos t(b)

et cos t(c)

tet cos t + (t + 1)et sin t(d)

tet cos t + tet sin t(e)
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11. An equation of the tangent line to the curve y = x(2x) at the point
(1, 1) is

y =
1

2
x +

1

2
(a)

y = 3x− 2(b)

y =
1

3
x +

2

3
(c)

y = 2x− 1(d)

y = x(e)

12. If f ′′(x) = −3x−2, f ′(3) = 2, f(1) = −1, then f(e) =

e− 3(a)

3

e
+ 1(b)

−3

e2
(c)

0(d)

e + 1(e)
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13. If f(x) = e1−2x, then f (n)(x) =

(−2)n e1−2x(a)

e1−2x(b)

2n e1−2x(c)

(−1)n e1−2x(d)

(1− 2x)n e1−2x(e)

14. Sand is being dumped from a truck at a rate of 0.5 ft3/min to form a
pile in the shape of a cone whose height is always equal to the diameter
of its base. When the pile is 2 ft high, the height of the pile is increasing

at a rate of [The volume of a cone is V =
1

3
πr2h]

1

2π
ft/min(a)

π

2
ft/min(b)

2

π
ft/min(c)

2π ft/min(d)

1

2
ft/min(e)
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15. If

f(x) =





x2 + 1 if x < 1

ax + b if 1 ≤ x < 3
3− 2x if x ≥ 3

is continuous on (−∞, +∞), then f(2) =

5(a)

7

2
(b)

−1

2
(c)

2(d)

−5

2
(e)

16. If x6 + y6 = 1, then y′′ =

−5x4

y11
(a)

−x5

y5
(b)

10x4

y10
(c)

x6 + 1

y5
(d)

−1

y6
(e)
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17. Let f(x) = ex + sin x. Using the linear approximation of f at a = 0,

we find that f(0.1) ≈

1.2(a)

1(b)

2.2(c)

2(d)

1.5(e)

18. Which one of the following statements is TRUE?

if f ′(x) = g′(x) for all x, then f(x) = g(x) for all x.(a)

If f is continuous at a, then f is differentiable at a.(b)

If f(x) = π4, then f ′(x) = 4π3.(c)

if f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.(d)

If f has an absolute minimum value at c, then f ′(c) = 0.(e)
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19. If tanh x = −2

3
, then cosh x =

± 3√
5

(a)

3√
5

(b)

− 1√
5

(c)

± 1√
5

(d)

− 3√
5

(e)

20. If G(x) =
1 + sinh x

1 + cosh x
, then G(0) + G′(0) =

1/4(a)

0(b)

3/4(c)

2(d)

1(e)
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21. If the point (x, y) lying on the line y + 3x = 3 is the closest point to
the origin, then x + 2y =

6

5
(a)

3

5
(b)

3

2
(c)

2(d)

3(e)

22. The graph of f(x) = 3
√

x (2− x)

is concave down on the interval (−∞, 0)(a)

is concave up on the intervals (−∞,−1) and (0, 1)(b)

has one inflection point only(c)

has an inflection point at x = 1(d)

is concave up on the interval (−1, 0)(e)
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23. If an equation of the tangent line to the curve y = ex that is parallel
to the line x− 4y = 1 is given by y = ax + b, then 4(b− a) =

ln 4(a)

1(b)

0(c)

1 + ln 4(d)

2− ln 4(e)

24. lim
x→0+

(1− tan−1(2x))1/x =

e(a)

−e(b)

e−2(c)

e−1(d)

√
e(e)
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25. The function f(x) = xe2x

is increasing on (−1, +∞)(a)

is increasing on
(
−∞,−1

2

)
(b)

has a local maximum at x = −1

2
(c)

has a local minimum at x = −1(d)

is increasing on
(
−1

2
, +∞

)
(e)

26. If M and m are respectively the absolute maximum and absolute minimum

values of f(x) = x + 2 cos x on
[
0,

π

3

]
, then 3M −√3m =

π + 3
√

3(a)

π

3
+ 2(b)

2π +
√

3(c)

2(d)

π

2
+
√

3(e)
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27. The value(s) of c satisfying the conclusion of the Mean Value Theorem

for f(x) =
x

x + 2
on [1, 4] is(are)

4(a)

−2± 3
√

2(b)

−2− 3
√

2(c)

−2 + 3
√

2(d)

1, 2(e)

28. lim
x→0

cos(mx)− cos(nx)

x2
= (m and n are constants)

does not exist(a)

1(b)

1

2
(n2 −m2)(c)

0(d)

n2 + m2(e)
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Q MM V1 V2 V3 V4

1 a a c a b
2 a a b a b
3 a a b d a
4 a e a b a
5 a d a b a
6 a d b b e
7 a b d e c
8 a a e a c
9 a c a d a
10 a d c c a
11 a d c d c
12 a e d a b
13 a a b b c
14 a a b e e
15 a c a d c
16 a a c c a
17 a a d e b
18 a d c a c
19 a b b d d
20 a e d c a
21 a c a d e
22 a e b d d
23 a a b b e
24 a c e a c
25 a e a c d
26 a e b e e
27 a d d c d
28 a c a d c




