1. (a) [3 points] Write the following statement as a limit:
" $f(x)$ increases without bound as x approaches a from the left".
(b) [4 points] TRUE or FALSE: "If f has a domain $[0,+\infty)$ and has no horizontal asymptote, then $\lim _{x \rightarrow+\infty} f(x)=+\infty$ or $\lim _{x \rightarrow+\infty} f(x)=-\infty \prime$.
[If TRUE, state the reason. If FALSE, illustrate graphically].
(c) [7 points] Sketch the graph of a function f that satisfies the following conditions:
i. $f(-1)=3$
ii. $\lim _{x \rightarrow-1^{-}} f(x)=4$
iii. $\lim _{x \rightarrow-1^{+}} f(x)=-\infty$
iv. $f(3)$ is undefined
v. $\lim _{x \rightarrow 3} f(x)=2$
vi. $\lim _{x \rightarrow+\infty} f(x)=+\infty$
vii. $\lim _{x \rightarrow-\infty} f(x)=0$
2. Find the limit if it exists.
(a) $[6$ points $] \lim _{x \rightarrow-4} \frac{x^{3}-16 x}{x+4}$
(b) $[6$ points $] \lim _{x \rightarrow 12} \frac{|12-x|}{x-12}$
(c) $[\mathbf{6}$ points $] \lim _{x \rightarrow 3} g(x)$, where $2 x-1 \leq g(x) \leq x^{2}-5 x+11$
(d) $\left[6\right.$ points] $\lim _{x \rightarrow 6^{+}} \tan ^{-1}(\ln (x-6))$
3. [8 points] Using the ϵ, δ definition of limit, prove that $\lim _{x \rightarrow 1}\left(-1+\frac{3}{2} x\right)=\frac{1}{2}$
4. [8 points] Let $f(x)=\left\{\begin{array}{lll}\sqrt{x+2} & \text { if } & -2 \leq x \leq 2 \\ x^{3}-2 x & \text { if } & x>2 .\end{array}\right.$ Is f continuous at $x=2$. If not, what kind of discontinuity does f have at $x=2$. Justify your answers.
5. [6 points] Where is the function $f(x)=\frac{1}{3-\sqrt{x}}$ continuous?
6. [8 points] Show that the equation $e^{-x}=2-x$ has a root in the interval $(1,2)$.
7. (a) $[8$ points $]$ Find $\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}+1}-x\right)$.
(b) [8 points] Find the horizontal asymptotes of $f(x)=e^{x-x^{2}}$.
8. [8 points] Find an equation of the tangent line to the curve $y=\frac{1}{x^{2}-x}$ at the point $\left(2, \frac{1}{2}\right)$. [You must use limits]
9. The displacement (in meters) of a particle moving in a straight line is given by the equation $s(t)=3 t^{2}-4 t+1$, where t is measured in seconds.
(a) $[\mathbf{2}$ points $]$ Find the average velocity over the time interval $[0,3]$.
(b) [6 points] Use limits to find the instantaneous velocity when $t=2$.
