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Abstract
Hybrid methods for minimizing least distance functions with semi-definite

matrix constraints are considered. One approach is to formulate the problem as
a constrained least distance problem in which the constraint is the intersection
of three convex sets. The Dykstra-Han projection algorithm can then be used
to solve the problem. This method is globally convergent but the rate of con-
vergence is slow. However, the method does have the capability of determining
the correct rank of the solution matrix, and this can be done in relatively few
iterations. If the correct rank of the solution matrix is known, it is shown
how to formulate the problem as a smooth nonlinear minimization problem, for
which a rapid convergence can be obtained by l1SQP method. Also this paper
studies hybrid method that attempt to combine the best features of both types
of methods. An important feature concerns the interfacing of the component
methods. Thus, it has to be decided which method to use first, and when to
switch between methods. Difficulties such as these are addressed in the paper.
Comparative numerical results are also reported.
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1 Introduction

Minimizing a general function subject to semi–definite matrix constraint is a problem

which arises in many practical situations, particularly in statistics where the semi–

definite matrix constraint is usually a covariance matrix with varying elements. In

this paper a least distance problem of the following type is solved. Given a symmetric

positive semi–definite matrix F ∈ IRn×n then we consider

minimize xTx x ∈ IRn

subject to F̄ + diag x ≥ 0, x ≤ v (1.1)
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where diag v = Diag F and F̄ = F − Diag F. This kind of problem is important

by itself and it is also used subsequently in solving the educational testing problem

[1]. Problem (1.1) can be more general if we express it as

minimize ‖a − x‖2
2 x ∈ IRn

subject to F̄ + diag x ≥ 0, x ≤ v (1.2)

where a is an initial point and then we have a different problem with every different

a. Problems of this type can be solved in a similar way to methods of this paper.

Two methods are developed for solving (1.1). Firstly, a projection algorithm is

given for solving (1.1) which converges linearly or slower and globally. This method

is described in Section 2. Secondly an implementation of the l1 SQP method is used.

Fletcher [1985] developed an algorithm for solving linear objective function with semi-

definite matrix constraintsis. In Section 3 we follow his method but applyed to (1.1).

In Section 4 a hybrid method is described, which starts with the projection method

to estimate the rank r(k) and continues with the l1SQP method. Finally in Section 5

numerical comparisons of these methods are carried out. Hybrid methods have often

been used successfully in optimization, (e.g. and Al-Homidan and Fletcher [2] and

Al-Homidan [1]).

2 A Projection Algorithm

In this section a projection algorithm for solving (1.1) is described. The method

described here depends on the basic iterated projection algorithm by [7].

It is convenient to define three convex sets for the purpose of constructing the
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probem. The set of all n× n symmetric positive semi–definite matrices

KIR = {A : A ∈ IRn×n, AT = A and zT Az ≥ 0 ∀ z ∈ IRn} (2.1)

is a convex cone of dimension n(n + 1)/2. If F ∈ IRn×n is any given symmetric

positive definite matrix, then define

Koff = {A : A ∈ IRn×n, A − Diag A = F̄}. (2.2)

This is the set of matrices whose off–diagonal elements are equal to those of F . Define

Kb = {A : A ∈ IRn×n, A = Ā + diag x, xi ≤ vi i = 1, 2, ...n}. (2.3)

This is the set of matrices that is obtained by reducing the diagonal of A. Koff and

Kb are subspaces. Then (1.1) can be expressed as

minimize ‖F̄ − A‖

subject to A ∈ KIR ∩Koff ∩Kb. (2.4)

The matrix norm here means the Frobenius norm.

The projection on K =
⋂3

i=1 Ki is computed based on the Dykstra algorithm

[3] given in Algorithm 2.1. It follows from [3] that the resulting method is globally

convergent. (See also [5]).

Algorithm 2.1 Given any positive definite matrix F , let F (0) = F

For k = 0, 1, 2, . . .

F (k+1) = F (k) + [PbPoffPIR(F (k)) − PIR(F (k))]
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The projection map PIR(A) formula on to KIR is given by [6]

PIR (F ) = UΛ+UT . (2.5)

where

Λ+ =
[
Λr 0
0 0

]
(2.6)

and Λr = diag [λ1, λ2, . . . , λr] is the diagonal matrix formed from the positive

eigenvalues of F . Since Koff consists of all real symmetric n×n matrices, in which

the off–diagonal elements are fixed to F (the given matrix), therefore

Poff (A) = F̄ + Diag A. (2.7)

Also, since Kb consists of all real symmetric n×n matrices, in which the diagonal

elements are not greater than diag v = Diag F , we have

Pb (A) = Ā + diag [h1, h2, ..., hn], (2.8)

where

h =
{

hi = aii if aii ≤ vi

hi = vi if aii > vi

}
.

3 The l1SQP Method

This section contains a brief description of the l1SQP method for solving (1.1).

Problem (1.1) can be expressed as

minimize
x

xTx x ∈ IRn

subject to Ā + diag x ∈ KIR ∩Koff (A), x ≤ v (3.1)

We can follow [4] for full details in solving (3.1). However, the problems are not the

same since the objective function here is quadratic, while it is linear in [4]. Therefore

we give a summary of what has been done in [4] with the appropriate changes.
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It is difficult to deal with the matrix cone constraints in (3.1) since it is not easy

to specify if the elements are feasible or not. Using partial LDLT factorization of

A, this difficulty is rectified. Assume that r, the rank of A∗, is known, then for A

sufficiently close to A∗, the partial factors A = LDLT can be calculated where

L =
[
L11

L21 I

]
, D =

[
D1

D2

]
, A =

[
A11 AT

21

A21 A22

]
.

Then

D2(A) = A22 − A21A
−1
11 AT

21, (3.2)

and D2(x) = D2(Ā + diag x) = D2(A). Therefore an equivalent problem to (3.1)

with the constraint D2 = 0 is considered and expressed as

minimize
x

xTx x ∈ IRn

subject to D2(x) = 0, x ≤ v (3.3)

To eliminate the variables xi, i = r + 1, . . . , n , (3.2) is exploited by using the

diagonal elements of D2(x)

dii(x) = xi −
r∑

k,l=1

aik [A−1
11 ]kl ail = 0 i = r + 1, . . . , n (3.4)

where aik and ail are elements in A21. Therefore the unknown variables are

reduced to x = [x1, x2, . . . , xr]
T ∈ IRr. This formulation will enable us to

derive algorithms with a second order rate of convergence. Now, using the constraint

D2 = 0, will produce an equivalent problem to (3.3). The number of variables in

this new problem can be reduced to r variables which gives the new reduced problem

minimize
x

f(x) =
r∑

k=1

x2
k +

n∑
i=r+1

x2
i (x)

subject to dij(x) = 0, i 6= j, x ≤ v. i, j = r + 1, . . . , n (3.5)
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where xi(x) indicates that xi is the function of x determined by

xi(x) =
r∑

k,l=1

aik[A
−1
11 ]kl ail i = r + 1, . . . , n.

The Lagrangian for (3.3) is L(x, Λ, π) = xTx − Λ : D2(x) + πT (x − v). The

expressions for the derivatives ∂dij

∂xs
and ∂2dij

∂xs∂xt
are given in [4] which enable us to

find expressions for ∇ f, ∇2 f and W = ∇2L(x, Λ, π), where

∇ f = 2x − 2
n∑

i=r+1

xi(x) ∇dii, (3.6)

∇2 f = 2I − 2
n∑

i=r+1

[xi(x) ∇2dii − (∇dii)(∇dii)
T ] (3.7)

and

W (k) = ∇2L(x(k), Λ(k), π(k))

= 2I + 2
n∑

i=r+1

[(∇dii(x
(k)))(∇dii(x

(k)))T ] −
n∑

i,j=r+1

λ
(k)
ij ∇2dij(x

(k)). (3.8)

Then using these expressions the QP subproblem

minimize
δ

f (k) + ∇f (k)δ + 1
2

δT W (k)δ δ ∈ IRr

subject to d
(k)
ij + ∇ d

(k)T
ij δ = 0 i 6= j i, j = r + 1, . . . , n

x(k) + δ ≤ v (3.9)

is defined. Thus the SQP method applied to (3.5) requires the solution of the QP

subproblem (3.9). The matrix W (k) is positive semi–definite.

4 Hybrid Methods

In this section, a new method for solving (1.1) is introduced. The methods described

here depend upon both the projection and l1SQP methods using a hybrid method.
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The hybrid method works in two stages. During the first stage, the projection method

converges globally and, hence, is potentially reliable but often converges slowly. Dur-

ing the second stage, the l1SQP method and the method, described in Section 3, has a

second order convergence rate if the correct rank r∗ is given. The main disadvantage

of the l1SQP method is that it requires the correct r∗. A hybrid method is one which

switches between these methods and aims to combine their best features. To apply

the l1SQP method requires a knowledge of the rank r∗ which can be gained from the

progress of the projection method.

The main disadvantage of the l1SQP method is finding the exact rank r∗. Since

it is not known in advance, it is necessary to estimate it by an integer r(k). It is

suggested that the best estimate of the matrix rank r(k) is obtained by carrying out

some iterations of the projection method given in Section 2. This is because the

projection method is a globally convergent method.

Considering Λr in (2.6), then at the solution, the number of eigenvalues in Λr is

equal to the rank r∗. Thus

No. Λ∗r = r∗, (4.1)

where No. Λ is the number of positive eigenvalues in Λ. An equation similar to (4.1)

is used to calculate an estimated rank r(k), given by

No. Λ(k)
r = r(k),

where Λr is given by (2.6). Then, the l1SQP method will be applied to solve the

problem as described in Section 3.

The projection–l1SQP algorithm can now be described as follows.

Algorithm 4.1 Given any matrix F = F T ∈ IRn×n, let s be a positive integer.
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Then the following algorithm solves (1.1)

i. Let F (0) := F .

ii. Apply Algorithm 2.1 until

No. Λ(k)
r = No. Λ(k+j)

r j = 1, 2, . . . , s. (4.2)

iii. r(k) = No. Λ(k)
r .

iv. Use the result vector x from Algorithm 2.1 as an initial vector for the

l1SQP method.

v. Apply the l1SQP method for solving (1.1).

The integer s in Algorithm 4.1 can be any positive number. If s is small, then the

rank r(k) may not be accurately estimated, but the number of iterations taken by

projection method is small. On the other hand, if s is large, then a more accurate

rank is obtained but the projection method needs more iterations.

The advantage of using the projection method as the first stage of the projection–

l1SQP method is that if F (0) is positive semi–definite and singular of rank r∗, then

the projection method terminates at the first iteration. Moreover, it gives the best

estimate for r(k).

5 Numerical Results and Comparisons

In this section, numerical problems are obtained from the data given by [8]. The data

set is a 64× 20 data. Various selections from the set of subsets of columns are used

to give various test problems to form the matrix A. These subsets are those given in

the first columns of Tables 5.1 and 5.2, the value of n is the number of elements in
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each subset. Numerical examples for Algorithm 4.1 are given in some detail in Table

5.1. Also the same numerical examples are given in Table 5.2. for Algorithm 2.1,

l1SQP algorithm and Algorithm 4.1.

The results obtained by Algorithm 4.1 are tabulated in Table 5.1. Using ‖x(k+1)‖−

‖x(k)‖ < 10−8 as a stopping criterion it is estimated that the xi are accurate to 4− 5

decimal places and ‖x‖2 is accurate to 6− 7 decimal places. In Table 5.1 the column

headed by NI gives the number of iterations used by the projection method. It is clear

from Table 5.1 that when the bounds are active the number of iterations becomes

very large. The x∗i elements marked by (∗) are the active elements.

Moreover Table 5.1 gives the correct rank r∗ for each particular problem. The

order of convergence is very slow as seen in Table 5.1. Also in Table 5.1 the optimal

x∗i for i = 1, 2, ..., n and ‖x∗‖2 are given. The eigenvalues for the projection method

are solved using the NAG library.

In Table 5.2 three methods are compared: Algorithm 2.1 (PM), l1SQP algorithm

and Algorithm 4.1 (Pl1SQP). In Table 5.2 the columns headed by NI give the number

of iterations used by the projection method and the columns headed by NQP gives

the number of times that the major l1SQP is solved. r(0) in the column headed by

l1SQP gives the initial rank for F. r(0) in the column headed by Pl1SQP gives the

initial rank for F using Algorithm 4.1. The three methods converge to approximately

the same values.

In l1SQP one of the variables in almost every test example is adjusted by a small

unit (< 2.0) so that the matrix Ā + diag x∗ is exactly singular and positive semi–

definite for all methods. In l1SQP most cases require a few iterations for solving (3.5)

as r increases. For each value of r second order convergence is obtained.
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Columns which

determine F r∗ NI x∗i i = 1, 2, .., n
√∑

(x2∗
i )

1,2,5,6 3 63 182.7042 146.9628 69.6629 45.8211 248.8602
1,3,4,5 2 115 235.0096 88.4015 189.1918 67.6986 321.5913

1,2,3,6,8,10 5 141 367.4156 273.0114 279.8192 50.4784 616.2334
228.0582 193.2790

1,2,4,5,6,8 4 881 317.4348 146.2721 244.8117 65.6893 491.7348
4.1061 235.3253

1–6 5 336 222.2243 282.8910 262.8245 238.0719 510.3758
71.5195 14.2313

1–8 6 387 369.8391 290.2214 255.5179 176.0771 640.5922
56.6419 48.0679 223.0925 194.3380

1–10 8 954 401.7844 299.7303 249.6374 194.1057 736.9839
35.6192 50.3791 240.8572 214.9912
232.9831 171.9279

1–12 10 1360 386.8981 286.8628 264.6721 195.7548 800.0756
67.2526 39.7566 232.4680 227.8524
266.8375 187.5834 131.9821 252.7745

1–14 12 854 404.4696 294.5210 265.8667 213.4180 882.7606
73.4999 35.6596 254.5520 235.9188
250.0652 191.7257 161.8923 250.0233
267.8237 160.7042

1–16 14 3663 407.5394(*) 290.8398 275.5972 215.0889 945.4555
81.3601 33.5239 248.6281 244.9842
261.4713 197.1172 168.2075 258.6026
259.0489 159.3373 99.1123 294.4601

1–18 15 30326 407.5394(*) 296.5150 265.6089 216.2863 1108.5326
98.2078 44.7847 260.8753 246.8023
248.7318 185.1102 176.9004 270.7481
258.8518 160.6789 101.7151 308.4449
435.4937 358.0457

1–20 18 11037 407.5394(*) 312.4666 258.1156 227.1807 1253.6603
120.1546 49.2651 292.7023 272.3617
244.4578 201.3850 175.7458 279.3872
250.5748 158.5493 100.0581 310.8974
457.7386 356.8083 406.2569 327.4915

Table 5.1: Results for (1.1) from projection Algorithm 2.1.
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Columns which PM l1SQP Pl1SQP
determine A r∗ NI r(0) NQP NI r(0) NQP

1,2,5,6 3 63 2 10 5 3 4
1,3,4,5 2 115 2 16 6 2 5

1,2,3,6,8,10 5 141 3 11 10 4 9
1,2,4,5,6,8 4 881 3 20 8 4 7

1–6 5 336 3 22 12 5 9
1–8 6 387 5 18 13 5 11
1–10 8 954 6 19 7 8 7
1–12 10 1360 8 27 16 8 24
1–14 12 854 10 30 20 10 14
1–16 14 3663 11 35 27 10 33
1–18 15 30326 13 33 38 12 13
1–20 18 11037 15 45 55 15 27

Table 5.2: Numerical comparisons between methods of this paper.

The projection method is a very slowly convergent method especially when the

bounds are active. Therefore it will be used only for estimating the rank r.

6 Conclusions

In this paper we have studied certain problems involving the positive semi–definite

matrix constraint. One is the projection method, and the other is l1SQP method. The

hybrid method developed in Section 4 give a good rate of convergence as compared

with the methods of Sections 2 and 3. The projection method is not very effective in

determining the rank when n ≥ 12 and a more effective method is required to give a

better estimate for r∗.
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