
Chapter 6

Algorithms for solving the

educational testing problem

6.1 Introduction

The problem to be considered here is the educational testing problem. Such optimization

problems come up in many practical situations, particularly in statistics where we have a

matrix F which is usually a covariance matrix with varying elements. The educational testing

problem is; given a symmetric positive definite matrix F how much can be subtracted from

the diagonal of F and still retain a positive semi–definite matrix this can be expressed as

maximize eT θ θ ∈ <n

subject to F − diag θ ≥ 0

θi ≥ 0 i = 1, ..., n (6.1.1)

where e = (1, 1, ..., 1)T . An equivalent form to problem (6.1.1) is

minimize eT x x ∈ <n

subject to F̄ + diag x ≥ 0

xi ≤ vi i = 1, ..., n (6.1.2)
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where F̄ = F − Diag F, and diag v = Diag F.

An early approach in solving the educational testing problem is due to Bentler [1972].

He writes F − diag θ = CCT , where C is unknown and minimizes trace (CCT ) subject

to certain conditions. He found that there are a large number of variables, and also it does

not account for the bounds θi ≥ 0 ∀ i. Furthermore, some difficulties in convergence to the

optimum solution arise.

Woodhouse and Jackson [1977] have given a method for solving the problem by searching

in the space of θ. However their method does not work efficiently and failed for particular

examples.

Fletcher [1981b] has solved the problem in which the semi–definite constraint is reduced to

an eigenvalue constraint and standard nonlinear programming techniques are used. But still

some difficulties arise with the rates of convergence. Also the presumption that the eigenvalue

constraint would be smooth at the solution, except in rare cases, is not correct and in fact the

majority of such problems are nonsmooth at the solution.

In 1985 Fletcher developed a different algorithm for solving the educational testing problem.

He gives various iterative methods for solving the nonlinear programming problem derived from

the educational testing problem (6.1.2) using sequential quadratic programming techniques.

One of these algorithms is the use of an l1 exact penalty function. This algorithm works

well with second order convergence and the function converging to the optimal solution.

The only problem in these algorithms is the requirement to know the exact rank for the

matrix A∗ = F̄ + diag x∗ where x∗ solves (6.1.2).

Finally, Glunt [1991] describes a projection method for solving the educational testing

problem. His idea is to construct a hyperplane Lτ in <n and then carry out the

method of alternating projections (the von Neumann Algorithm 2.2.2) between the convex

set K = K< ∩ Koff ∩ Kb and the hyperplane Lτ . His method converges globally and the

order of convergence is very slow.

The statistical background involved in the educational testing problem is described in Sec-

tion 6.2. In Section 6.3 the educational testing problem is solved using the theory developed in

Section 2.3. Section 6.4 contains a brief description of the l1 SQP method for solving problem

(6.1.2). Finally in Section 6.5 numerical comparisons of these methods are carried out.

In Chapter 7 hybrid methods are considered. The projection method converges linearly or

slower while the l1 SQP method converges at second order but it requires the correct rank
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r∗ which can be gained from the projection method. Therefore, hybrid methods that take the

advantage of both projection and l1 SQP methods are described in Chapter 7.

6.2 The educational testing problem

This section explains the educational testing problem which arises from statistics. The problem

is to find lower bounds for the reliability of the total score on a test (or subtests) whose items

are not parallel using data from a single test administration. The educational testing problem

consists of a number of student (N) taking a test or examination consisting of (n) subtests.

The problem is to find how reliable is the students’s total score in the sense of being able to

reproduce the same total on two independent occasions. Specifically it is required to know what

evidence about reliability can be obtained by carrying out a test on one occasion only.

In this thesis we do not develop the entire theory (see Fletcher [1981b]) but just give enough

information to construct the test problem (6.1.1). The data for the problem is an N ×n table

of scores [Xij ] (see Table 6.2.1) such that Xij gives the observed score of student i on

subject j.

Define the mean observed score of subject j by

X̄j =
1
N

∑
i

Xij . (6.2.1)

Then the n × n matrix F given in (6.1.1) is constructed from an N × n data matrix

[Xij ] in the following way

fjk =
1

N − 1

∑
i

(Xij − X̄j)(Xik − X̄k) (6.2.2)

see Guttman [1945]. Then problem (6.1.1) is constructed with θ as the unknown vector. For

more about the statistical background for the educational testing problem and references see

Fletcher [1981b].



136

15 25 20 28 35 50 21 18 22 28 28 12 15 40 18 23 14 16 15 10
21 27 32 32 41 42 30 35 33 32 64 16 24 38 34 13 15 17 28 18
23 35 40 22 55 48 36 40 46 18 38 18 26 37 24 24 17 20 19 26
23 29 50 36 42 52 44 32 24 19 32 24 20 46 32 23 11 12 40 28
34 37 42 19 36 46 17 26 35 28 39 54 21 47 29 42 18 18 30 20
36 60 70 45 55 54 32 30 32 29 41 28 20 47 36 28 20 20 18 24
36 35 46 27 50 40 60 34 39 46 48 63 20 48 40 19 21 24 40 22
38 70 44 50 45 42 20 28 29 16 55 40 22 49 42 25 23 26 30 28
39 46 52 24 37 60 53 30 46 43 54 54 23 46 44 22 35 22 48 30
40 74 65 60 72 41 33 36 24 52 64 36 28 50 46 26 25 23 30 30
40 48 32 23 58 52 23 40 37 24 58 38 29 54 44 28 11 27 41 34
41 12 24 50 47 48 41 42 37 28 56 57 32 51 43 25 17 24 32 39
46 52 76 48 70 58 20 50 28 42 76 58 28 58 45 34 27 35 18 56
46 73 84 63 38 57 33 56 42 18 72 77 31 52 48 32 35 32 32 19
47 42 74 28 60 57 36 42 48 52 63 46 36 53 49 53 29 30 42 40
47 82 72 70 39 64 21 25 44 26 44 44 37 51 46 33 38 35 37 42
47 40 42 50 48 61 40 40 26 29 61 44 30 56 47 52 46 37 48 40
48 70 65 48 42 57 35 58 50 46 60 32 34 58 54 35 36 31 16 18
49 65 60 55 62 56 52 50 52 28 50 48 34 58 53 41 45 40 38 52
50 30 35 28 62 54 41 46 50 21 65 33 32 58 54 38 50 44 43 50
52 42 54 33 42 64 40 40 56 44 64 38 34 60 44 34 38 30 44 38
52 72 70 65 72 68 62 38 56 44 58 46 36 58 46 36 55 20 48 47
52 44 64 72 44 62 35 44 56 46 62 39 30 61 46 38 40 42 24 80
53 25 42 28 68 52 41 45 44 26 28 43 51 62 47 35 42 48 50 40
54 48 60 58 36 51 63 41 64 29 63 49 32 58 47 39 43 58 48 49
55 64 62 30 42 57 34 47 52 34 57 37 43 63 48 38 47 20 54 65
58 30 24 62 51 51 44 36 43 25 36 54 41 65 48 43 40 35 50 42
58 16 40 45 42 58 44 42 58 36 58 52 40 64 49 36 18 45 53 28
58 44 56 51 68 68 46 48 72 38 62 34 32 68 49 42 47 47 28 70
59 58 58 50 74 52 36 58 60 28 44 56 34 72 51 33 48 58 54 58
60 32 35 48 40 56 52 32 40 37 72 57 36 61 52 51 42 46 17 51
60 78 80 62 52 54 58 47 80 32 64 39 45 66 53 42 70 40 50 18
60 38 55 66 42 52 30 54 62 42 90 38 38 63 56 46 62 48 55 44
61 48 64 68 70 53 42 40 38 45 73 56 50 64 54 46 45 42 50 22
62 86 94 50 49 62 48 56 74 33 84 36 52 67 52 47 41 70 57 53
63 35 38 55 38 58 46 59 63 48 62 58 38 68 53 47 48 75 44 25
64 79 65 76 68 57 32 33 52 46 72 62 52 54 54 48 55 35 60 54
64 50 52 35 60 56 52 64 76 36 63 44 48 56 52 49 63 38 48 46

Table 6.2.1:(to be continued in the next page)
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65 37 42 70 50 58 58 62 66 34 53 64 62 72 53 50 74 45 62 57
65 82 74 63 36 62 60 58 60 38 57 63 58 70 51 51 55 55 64 58
67 44 46 54 52 58 55 68 80 40 28 65 50 71 54 52 65 70 74 68
67 48 56 80 44 64 62 35 70 62 58 72 56 72 60 41 78 38 75 68
68 62 78 56 50 53 62 54 80 64 62 48 54 74 62 76 58 45 80 36
69 39 30 42 38 62 40 32 68 56 68 71 58 73 56 43 79 47 73 70
70 52 20 76 69 61 64 56 69 54 64 66 58 78 52 72 32 47 71 71
72 54 72 38 54 51 66 65 76 72 54 49 60 74 57 42 68 62 22 46
72 42 48 70 70 57 42 40 68 53 62 74 60 78 58 52 55 48 72 75
74 64 66 70 42 60 40 78 53 48 69 67 76 77 59 68 58 55 16 60
78 68 62 63 35 56 63 80 74 43 71 78 62 76 59 68 70 75 72 75
79 37 42 28 64 52 40 38 72 72 56 52 58 82 60 61 75 66 58 58
80 62 30 65 59 51 68 57 74 48 78 71 42 54 61 62 78 69 78 58
82 85 80 52 44 57 70 69 64 71 85 76 64 56 63 67 44 70 60 26
82 40 74 52 52 64 74 64 76 46 64 46 51 80 63 68 65 55 70 67
84 42 76 70 55 61 90 80 56 41 58 82 72 72 67 73 85 60 76 78
84 42 54 60 42 58 42 60 52 70 77 68 68 74 59 71 79 65 44 76
86 85 88 80 37 63 80 72 79 42 73 42 68 82 65 73 85 62 80 82
87 53 51 62 68 56 60 42 78 42 62 74 62 84 65 75 63 75 68 83
89 41 60 40 60 54 88 88 83 57 84 64 64 80 62 65 90 78 88 52
90 73 78 77 52 42 56 50 58 59 72 84 70 84 62 63 82 85 78 87
90 81 74 64 48 38 86 52 80 63 66 68 60 62 63 74 75 81 84 94
96 85 88 90 72 44 58 62 70 74 64 74 72 64 64 84 85 78 88 54
97 56 55 35 68 70 78 76 56 72 83 69 65 86 65 76 82 89 92 90
99 75 65 88 54 42 80 90 88 58 78 88 70 88 63 82 72 71 98 80
100 65 75 70 70 60 83 85 70 62 72 90 72 84 64 78 88 80 80 72

Table 6.2.1: The Woodhouse [1976] data which corresponds to 64 students and 20 subtests.

6.3 A projection algorithm for solving the educational

testing problem

In this section a projection algorithm for solving the educational testing problem is described.

The method described here depends on Algorithm 2.3.1 developed in Section 2.3.

The constraints in problem (6.1.2) can be expressed as

F̄ + diag x ∈ K< ∩ Koff ∩ Kb.

Then problem (6.1.2) can be expressed as

minimize
x

eT x x ∈ <n

subject to F̄ + diag x ∈ K< ∩ Koff ∩ Kb (6.3.1)
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where K<, Koff and Kb are given in (1.3.1), (1.3.5) and (1.3.6) respectively. Therefore prob-

lem (6.3.1) is a special case of problem (2.1.4) which can be solved by Algorithm 2.3.1. To solve

(6.3.1) in this way we need the hyperplane Lτ given by (2.3.1) and we define K =
⋂m

i=1Ki

by K = K< ∩Koff ∩Kb. However Lτ must be defined on the space of n × n matrices,

and this can be done by

Lτ = {Y = Ȳ + diag y ∈ <n×n| eT y = τ}

= {Y ∈ <n×n| tr(Y ) = τ} (6.3.2)

where Diag Y = diag y and τ is chosen such that

τ < min
x∈K

eT x (6.3.3)

We also need the projection PLτ
(Y ), and following (2.3.8) with e replaced by I we can

write

PLτ
(Y ) = Y +

τ − tr(Y )
n

I. (6.3.4)

In Algorithm 2.3.1 the projection PK(.) in (2.3.4) is given. In particular for problem (6.1.2)

we need the projection PK(A) where K = K< ∩ Koff ∩ Kb for any matrix A. In fact

this projection was solved by Algorithm 5.2.2 and hence we just include Algorithm 5.2.2 as an

inner iteration inside the following algorithm which is a special case of Algorithm 2.3.1. This

algorithm solves the educational testing problem.

Algorithm 6.3.1

Given any positive definite matrix F , let F (0) = F

For k = 1, 2, ...

F (k+1) = PLτ (F (k))

For l = 1, 2, ... (6.3.5)
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A(0) = F (k+1)

A(l+1) = A(0) + PbPoffP<(A(0)) − P<(A(0))

End (6.3.6)

F (k+1) = F (0) − diag F (0) + diag P<(A∗)

End

where A∗ is the solution for the inner iteration and P<, Poff and Pb are given in

(5.2.3), (5.2.5) and (5.2.6) respectively.

From Theorem 2.3.2 P<(A(k)) and PbPoffP<(A(k)) converges to the solution of problem

(6.3.1). Also in Theorem 2.3.2 x(k)
1 ≡ F (k) and x(k)

2 ≡ A(k). Equations (6.3.5)–(6.3.6) are

the inner loop and they are the same as Algorithm 5.2.2. In Section 6.5 numerical results for

Algorithm 6.3.1 are given.

6.4 The l1SQP method

This section contains a brief description of l1SQP method for solving the educational testing

problem. The l1SQP methods in Section 1.7 are used. This method was given by Fletcher

[1985].

The constraints in problem (6.1.2) can be expressed as

F̄ + diag x ∈ K< ∩ Koff ∩ Kb.

Then problem (6.1.2) can be expressed as

minimize
x

eT x x ∈ <n

subject to Ā + diag x ∈ K< ∩Koff , x ≤ v (6.4.1)

where diag v = Diag A(0). This problem is similar to problem (5.3.1) in Section 5.3, therefore

the method is given in detail in that section. Thus for solving problem (6.4.1) one follows the

details of Section 5.3, changing only the definition of the objective function. However in this

section we give a summary of what has been given in Section 5.3. The first order necessary

conditions for x∗ to solve (6.4.1) are similar to what given in (5.3.4) with the condition (5.3.4a)

replaced by
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e + b∗ + π∗ = 0.

It is difficult to deal with the matrix cone constraints in (6.4.1), since it is not easy to

specify if the elements are feasible or not. An equivalent problem to (6.4.1) with the constraint

D2 = 0 is considered. This problem is similar to problem (5.3.5) with the objective function

xT x replaced by eT x. This formulation will enable us to derive algorithms with a second

order rate of convergence.

Now using the constraint D2 = 0 in the form (5.3.9), this will produce an equivalent

problem to (6.4.1). The number of variables in this new problem can be reduced to r variables

which gives the new reduced problem

minimize
x

f(x) =
r∑

k=1

xk +
n∑

i=r+1

xi(x)

subject to dij(x) = 0, i 6= j, x ≤ v. i, j = r + 1, . . . , n (6.4.2)

The expressions for the derivatives ∂dij

∂xs
and ∂2dij

∂xs∂xt
given in (5.3.13) and (5.3.14) respec-

tively enable us to finding expressions for ∇ f, ∇2 f and W (k). Then using these expressions

the QP subproblem

minimize
δ

f (k) + ∇f (k)δ + 1
2 δTW (k)δ δ ∈ <r

subject to d
(k)
ij + ∇ d

(k)T
ij δ = 0 i 6= j i, j = r + 1, . . . , n

x(k) + δ ≤ v (6.4.3)

is defined. Thus the SQP method applied to (6.4.2) requires the solution of the QP subproblem

(6.4.3). The matrix W (k) is positive semi–definite see Fletcher [1985].

It is shown in Section 1.7 that the SQP method may not converge globally and it is usually

modified by the exact penalty function (5.3.25). Now a similar technique to what stated in

Section 5.3 is followed to take over the problem of non–globality convergent using the l1 exact

penalty function (5.3.25).

This section is concluded by some restrictions and conditions in similar manner to those

considered at the end of Section 5.3.

For more about the l1 SQP methods for solving the educational testing problems see

Fletcher [1985].
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6.5 Numerical results and comparisons

In this section numerical problems are obtained from the data given in Table 6.2.1, by Wood-

house [1976]. The Woodhouse data set is a 64 × 20 data which corresponds to 64 students

and 20 subtests. Various selections from the set of subsets of columns are used to give various

test problems to form the matrix A. These subsets are those given in the first columns of Tables

6.5.1–2, the value of n is the number of elements in each subset. Equation (6.2.2) gives the

formula for calculating the educational testing problems from Table 6.2.1.

In Algorithm 6.3.1 τ must satisfy the condition (6.3.3). Since x∗ not known in advance

and with elements fij

'
> 100 then it is clear that the diagonal elements F̄ + diag x(k) is

greater than about 100 so eT x
'
> 100n since F is positive definite. Therefore from (6.3.3)

the choice τ = 100 is recommended. In fact we recommend this choice since the elements

fij are close to each either in magnitude. However, in general the off-diagonal elements can

play a role in making a better estimate for τ . If τ chosen randomly and does not satisfy the

condition (6.3.3) then the matrix F − diag x(k) is not positive semi–definite and the method

is rerun with different τ. In Chapter 7 more information is available and a different strategy

is followed.

Glunt [1991] and Fletcher [1985] tested their methods on the twelve test problems originally

due to Woodhouse [1976]. The same test problems are applied for the methods in this chapter.

This section contains numerical results for the projection method given in Table 6.5.1. Numer-

ical results for the l1 SQP algorithm are given in Table 6.5.2. In all the tables of this section

NOI gives the number of outer iteration when solved by Algorithm 6.3.1, TNII gives the total

number of inner iteration used by Algorithm 5.2.2 in Algorithm 6.3.1 and r(0) gives the

number of positive eigenvalues in the first iteration of Algorithm 6.3.1.

In Table 6.5.1 a comparison between τ = −100 and τ = 100 is given for the same test

problems using Algorithm 6.3.1. We choose τ = −100 for comparison purposes which shows

that when τ is remote from condition (6.3.3) then the method takes more inner iterations. It

is clear that with τ = 100 the method takes fewer inner iterations in most of the examples.

Because of Algorithm 5.2.2 the projection method is very slow and the number of iterations

taken by the projection method is very large especially when the bounds are active. The results

obtained by the l1SQP method of Section 6.4 are tabulated in Table 6.5.2 as given by Fletcher

[1985] and mentioned here for comparison purposes. The iterates converge to essentially the

same values of x∗ in both methods.
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The projection method is very expensive in the sense that it consumed a large number of

iterations whilst the l1SQP method takes a very small number of iterations.

The NAG routine is used here to find the eigenvalues and eigenvectors for the matrix

F̄ + diag x(k). This matrix is reduced to a real symmetric tridiagonal matrix by House-

holder’s method. Then the eigenvalues and eigenvectors are calculated using the QL algorithm.

The amount of work required by these algorithms is approximately 4
3n

3 multiplications per

one inner iteration (Golub and Van Loan [1989]).

Again the NAG routine is used this time for solving the QP subproblem (6.4.3) which is

one iteration of the SQP method. The method used by the NAG routine to solve the QP

subproblem requires the solution for the system

Z(k) W Z(k)T p(k) = − Z(k)T (c + W x(k)) (6.5.1)

where c = ∇f and Z(k) is a matrix whose columns form a basis for the null space of A(k) (

the matrix of coefficients of the bounds and active constraints). p(k) is a search direction. The

matrix Z(k) is obtained from the TQ factorization of A(k), in which A(k) is represented

as

A(k)

[
Z(k)

Q

]
= [0 T (k) ] . (6.5.2)

The Lagrange multipliers λ(k) are defined as the solution of the system

A(k) λ(k) = c + W x(k). (6.5.3)

Eqautions (6.5.1) and (6.5.2) costs approximately 7
3n

3 multiplications to solve and (6.5.3)

costs approximately 8
3n

3 multiplications to solve (Golub and Van Loan [1989]). Thus one

iteration of the SQP method costs approximately 15
3 n

3 multiplications.

Thus one iteration of the SQP method costs about 6 times greater as one iteration of the

projection method. Nonetheless the SQP method is much better than the projection method

since the number of iterations taken by the projection method is about 60 times greater than

the number of iterations taken by the SQP method. However in Chapter 7 hybrid methods are

carried out which use even fewer iterations.
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Columns which τ = − 100 τ = 100
determine A NOI TNII NOI TNII

1,2,5,6 3 197 4 240

1,3,4,5 2 224 3 266

1,2,3,6,8,10 3 580 3 522

1,2,4,5,6,8 4 4994 4 4518

1–6 3 1351 3 1243

1–8 4 1948 4 1702

1–10 3 2918 3 2534

1–12 3 2403 3 2442

1–14 3 3196 3 3143

1–16 3 5215 3 4796

1–18 3 14043 3 14171

1–20 3 8255 3 7978

Table 6.5.1: Results for the educational testing problem from the projection Algorithm 6.3.1



144

Columns which
determine A r(0) r∗ NQP

∑
θ∗i

1,2,5,6 2 3 14 542.77356

1,3,4,5 2 2 12 633.15784

1,2,3,6,8,10 3 5 9 305.48170

1,2,4,5,6,8 3 4 13 564.46331

1–6 3 4 14 535.36227

1–8 5 6 29 641.83848

1–10 6 8 34 690.78040

1–12 8 9 29 747.48921

1–14 10 12 36 671.27506

1–16 11 14 42 663.46204

1–18 13 15 27 747.50574

1–20 15 18 39 820.34265

Table 6.5.2: Results for the educational testing problem from the l1SQP method of Section 6.4.
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Table 6.5.3 investigates the effect of varying τ. It shows the outcome from Algorithm 6.3.1

for the following example

F̄ =


0 1 2 −2

1 0 3 2

2 3 0 1

−2 2 1 0

 v =


2

4

8

10


with different τ. From Table 6.5.3 it is clear that small τ increases the total number of

iterations performed by Algorithm 5.2.2, whilst on the other hand bigger τ decreases the

total number of inner iterations and increases the number of outer iterations which are very

cheap to calculate using the projection (6.3.4) which costs approximately n multiplications

while one inner iteration costs approximately 4
3n

3 multiplications. Hence it is recommended

to increase τ to be close to the boundary of the condition (6.3.3) which is compatible with

the choice in Table 6.5.1.
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τ NOI TNII
∑
x∗i r(0) r∗

-30.0 2 2679 15 0 2

-20.0 2 2215 15 1 2

-10.0 2 1734 15 2 2

-5.0 2 1571 15 2 2

0.0 2 1291 15 2 2

5.0 3 1308 15 2 2

10.0 3 960 15 2 2

14.0 6 787 15 2 2

14.9 15 891 15 2 2

15.0 30 792 15.0051 2 2

Table 6.5.3: Numerical comparisons for same example with different τ .


