
Chapter 3

Algorithms for finding the

nearest Euclidean distance

matrix

3.1 Introduction

Symmetric matrices that have nonnegative offdiagonal elements and zero diagonal elements

arise as data in many experimental sciences. This occurs when the values are measurements

of distances between points in a Euclidean space. Such a matrix is referred to as a Euclidean

distance matrix. Because of data errors such a matrix may not be exactly Euclidean and it

is desirable to find the best Euclidean matrix which approximates the non–Euclidean matrix.

The aim of this chapter is to study methods for solving this problem.

This chapter contains the projection algorithm described by Glunt, Hayden, Hong and

Wells [1990]. This algorithm converges linearly or slower and globally using Algorithm 2.2.7.

The disadvantage of the projection algorithm is the slow rate of convergence. This can be

increased by using a quasi–Newton method which converges at superlinear order. Therefore,

new unconstrained methods based on using quasi–Newton methods are described here.

Some applications of the above problem are given in Section 3.2 along with the definition

of the Euclidean distance matrix and its characterization. The projection algorithm is given in
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Section 3.3. In Section 3.4 various iterative schemes for an unconstrained programming problem

are considered. In Section 3.5 other projection methods for solving the nearest Euclidean

distance matrix problem are discussed. In Section 3.6 numerical comparisons of projection

methods are carried out. Also numerical comparisons between the projection algorithm in

Section 3.3 and unconstrained methods in Section 3.4 are carried out. In addition an example

is given which gives more illustration of the unconstrained methods.

In Chapter 4 hybrid methods are considered. These methods take the advantage of both

the above methods.

3.2 Euclidean distance matrix

Definition 3.2.1 (Euclidean distance matrix)

A matrix D is called a Euclidean distance matrix if it satisfies the following conditions:

i. D is a symmetric matrix : dij = dji ∀ i, j = 1, . . . , n

ii. Diagonal elements are all zero: dii = 0 ∀ i = 1, . . . , n

iii. There exist n points : p1, . . . ,pn in <r (r ≤ n − 1) such that

dij = ‖ pi − pj ‖22 (1 ≤ i, j ≤ n).

The elements of D are the squared distances between pairs of points in r–dimensional

Euclidean space. Now the Euclidean distance matrix problem can be expressed in the following

form

Given a real symmetric matrix F ∈ <n×n, find the Euclidean distance matrix D ∈ <n×n

that minimizes

‖ F − D ‖F . (3.2.1)

The distance between A and B is defined by ‖ A − B ‖F .

A matrix F is an n×n symmetric data matrix with zero diagonal elements whose elements

are regarded as approximate squared distances between pairs of points in a r–dimensional
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Euclidean space. F is usually a distance matrix of squared distances fij between n points,

e.g. atoms, stars, cities. Therefore, F must have certain obvious properties regardless of how

distances are calculated, and how many spatial dimensions are allowed. The properties

can be described as follows:

Definition 3.2.2 (distance matrix)

A matrix F is called a distance matrix if it satisfies the following conditions:

i. F is a symmetric matrix: fij = fji ∀ i, j = 1, . . . , n

ii. Diagonal elements are all zero: fii = 0 ∀ i = 1, . . . , n

iii. All off–diagonal elements are strictly greater than zero:

fij > 0, ∀ i 6= j.

The motivation for this study arises from the statistical problems of multidimensional scaling

and ordination. In multidimensional scaling, an observed matrix is to be approximated by a

Euclidean distances in a specified dimension. The differences between observed and fitted

distances are minimized. A discussion of types of multidimensional scaling may be found in

De Leeuw et. al. [1980]. An application of multidimensional scaling has been applied in

geography Colledge and Rushton [1972], cartography Gilbert [1974], genetics Lalouel

[1977], archeology Kendall [1971] and biochemistry Crippen [1977,1978]. A broader review

of scaling with application and algorithms is given by Young [1984]. A book by Meulman

[1986] gives additional related applications in multivariate analysis.

Other applications arise in the conformation of molecular structures from nuclear magnetic

resonance data. For a given data matrix a Euclidean distance matrix can be minimized to

generate a molecular model in <3 (see Havel et. al. [1983] and Crippen [1977,1978]). In

conformation calculations Euclidean distance matrices are used to represent the squares of

distances between the atoms of a molecular structure. Attempts to determine such a structure

by nuclear–magnetic–resonance experiments give rise to a distance matrix F which because of

data errors, may not be Euclidean.

Important characterizations for the Euclidean distance matrix which are used in the follow-

ing sections are given in the following.
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Schoenberg [1935] gave a modern characterization of Euclidean distance matrices. Young

and Householder [1938] independently obtained similar result given in the following theorem.

Schoenberg uses the fact that the first vector p1 in the Euclidean distance matrix definition

can be translated to the origin.

Theorem 3.2.3

The distance matrix D ∈ <n×n is a Euclidean distance matrix if and only if the

n− 1× n− 1 symmetric matrix A defined by

aij = 1
2 [ d1i + d1j − dij ] (2 ≤ i, j ≤ n) (3.2.2)

is positive semi–definite, and D is irreducibly embeddable in <r (r < n) where

r = rank(A).

Moreover, consider the spectral decomposition

A = UΛUT . (3.2.3)

Let Λr be the matrix of non–zero eigenvalues in Λ and define X by

X = UrΛ1/2
r , then A = XXT (3.2.4)

where Λ1/2
r ∈ <r×r and Ur ∈ <n−1×r comprises the corresponding columns of U.

Then the columns of XT furnish coordinate choices for p2, p3, . . . , pn with p1 = 0.

Proof

First let D be Euclidean distance matrix and we aim to prove that A is positive semi–definite.

Let x ∈ <n−1 then

xTAx = 1
2

n∑
i,j=2

(d1i + d1j − dij)xi−1xj−1

=
n∑

i=2

d1ix
2
i−1 +

n∑
i,j=2
i<j

(d1i + d1j − dij)xi−1xj−1. (3.2.5)
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Also

d1i + d1j − dij = ‖p1 − pi‖2 + ‖p1 − pj‖2 − ‖pi − pj‖2

=
r∑

k=1

p2
ik +

r∑
k=1

p2
jk −

r∑
k=1

(pik − pjk)2

= 2
r∑

k=1

pik pjk (3.2.6)

where pT
i = [pi1, . . . , pir]. Hence from (3.2.5) and (3.2.6)

xTAx =
n∑

i=2

x2
i−1

r∑
k=1

p2
ik + 2

n∑
i,j=2i

i<j

xi−1xj−1

r∑
k=1

pikpjk

=
r∑

k=1

(x1 p2k + x2 p3k + . . . + xn−1 pnk)2

=
r∑

k=1

(
n∑

i=2

xi−1pik)2

which is always nonnegative.

Conversly, let A be positive semi–definite, we shall prove that D is a Euclidean distance

matrix. Let X be the orthogonal matrix defined by (3.2.4). Denote p1 = 0 and

pi = Xei−1 i = 2, . . . , n

where ei denotes columns of the unit matrix. Now

‖p1 − pi‖2 = ‖pi‖2 = eT
i−1Aei−1 = aii = d1i.

Note that A ∈ <n−1×n−1 such that

A =


a22 . . . a2n

...
. . .

...

a2n . . . ann

 .
Also,

‖pi − pj‖2 = (ei−1 − ej−1)TA(ei−1 − ej−1)

= aii + ajj − 2aij

= d1i + d1j − 2[ 12 (d1i + d1j − dij)]

= dij
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which shows that p1, p2, . . . , pn are the n points satisfing the condition 3iii in Definition

3.2.1. Since e′is are independent and rank X = r then the p′is are irreducibly embeddable

in <r. 2

Now we want to gives an alternative characterization for the Euclidean distance matrix in

the following theorem and corollory. This will be used later in Section 3.3.

Theorem 3.2.4

Let D ∈ <n×n be a distance matrix; then D is a Euclidean distance matrix if and

only if

xT (−D)x ≥ 0 ∀ x ∈ M

where

M = { x ∈ <n : eT x = 0 }. (3.2.7)

Thus −D ∈ KM .

Proof

Define

P = I − eeT
1 (3.2.8)

where

eT
1 = [ 1 0 0 . . . 0 ]

then

P =



0 0 0 . . . 0

−1 1 0 . . . 0

−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1



which implies that
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P (−D)PT =



0 0 0 . . . 0

0 2 d21 d21 + d31 − d32 . . . d21 + dn1 − dn2

0 d21 + d31 − d32 2 d31 . . . d31 + dn1 − dn3

...
...

...
. . .

...

0 d21 + dn1 − dn2 d31 + dn1 − dn3 . . . 2 dn1



=

[
0 0T

0 A

]
. (3.2.9)

Now we show that P (−D)PT ≥ 0 if and only if −D is positive semi–definite in

M. First let P (−D)PT be a positive semi–definite then we have

xT (P (−D)PT ) x ≥ 0 ∀ x.

Then when xT e = 0 we have

0 ≤ xT (P (−D)PT ) x = (xT − xT eeT
1 )(−D)(x − eT

1 eT x)

= xT (−D)x

which implies that −D is positive semi–definite in M .

Conversly, let −D be a positive semi–definite in M then we have

yT (−D) y ≥ 0 ∀ yT e = 0.

We can express x = λ u + y where u is any vector such that uT e 6= 0. Take u = e1

then

x = y + λ eT
1

this implies that eT x = λ eT e1 = λ since yT e = 0 and eT e1 = 1. It then follows

that

y = x − λ u

= x − eT x e1

= (I − e1eT )x

= PT x.



67

For an arbitrary x, this gives

xT (I − e1eT )T (−D) (I − e1eT )x ≥ 0 ∀ x

xTP (−D)PT x ≥ 0. ∀ x.

Using Theorem 3.2.3 the proof is established. 2

Corollory 3.2.5

Let Q be the Householder matrix in (1.2.1) then the distance matrix D = DT ∈

<n×n is a Euclidean distance matrix if and only if the n− 1× n− 1 block D1 in

Q(−D)Q =

[
D1 d

dT δ

]
(3.2.10)

is positive semi–definite.

Proof

Follows from Theorem 1.3.6 2.

The advantage of the formulation in (3.2.10) over that given in (3.2.9) is that it provides

the basis for the construction of a projection algorithm.

In the rest of this section other characterizations for the Euclidean distance matrix are given.

The problem of characterizing the Euclidean distance matrices among the distance matrices

was first solved by Menger [1931] who based his analysis on the determinant of the form:

Ak = det



0 1 1 . . . 1 1

1 0 d12 . . . d1 k−1 d1k

1 d21 0 . . . d2 k−1 d2k

...
...

...
. . .

...
...

1 dk−1 1 dk−1 2 . . . 0 dk−1 k

1 dk1 dk2 . . . dk k−1 0


(k = 2, 3, . . . , n) (3.2.11)
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now known as Cayley–Menger determinant. The Menger result is given in a theorem due to

Blumenthal [1953, pp99–100] Four years later, Schoenberg [1935] gave his result in Theorem

3.2.3. Another characterization is given by Hayden et. al. [1988], who show that a distance

matrix D ∈ <n×n is a Euclidean distance matrix if and only if the bordered matrix:

A =

[
−D e

eT 0

]

=



0 −d12 . . . −d1n 1

−d21 0 . . . −d2n 1
...

...
. . .

...
...

−dn1 −dn2 . . . 0 1

1 1 . . . 1 0


. (3.2.12)

has exactly one negative eigenvalue. Further, the n points represented by the matrix D (see

Definition 3.2.1iii) are irreducibly embeddable in <r(r ≤ n − 1) if and only if

r = n − 1 − dim N(D)

where N(D) is the null space of D.

Other characterizations of the Euclidean distance matrix are also given in the literature.

3.3 The projection algorithm

Glunt et. al. [1990] give a description of an algorithm for computing the nearest Euclidean

distance matrix, using the alternating projection method of Dykstra [1983] which guarantees

convergence to the solution of problem (3.2.1). First an equivalent problem to (3.2.1) is given.

This section includes a projection algorithm based on Dykstra’s algorithm. The projection

algorithm requires formulae, which are also given, for calculating the projection maps on to

Kd (see (3.3.1)) and on to KM . However in the first stage a formula for Kd and the normal

cone of the intersection of Kd and KM is given. The latter is used in problem (3.3.3) below.
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Define

Kd = {A : A ∈ <n×n, AT = A, aii = 0, i = 1, 2, . . . , n}, (3.3.1)

then KM ∩Kd is a convex cone.

The normal cone ∂KM (A) at A ∈ KM is given in (1.3.25).

Let A ∈ Kd then it is clear that

∂Kd(A) = {B : B = diag [b1, b2, . . . , bn]}. (3.3.2)

A general result for the normal cone of the intersection of two sets has been given in (1.3.9).

Using this we have the following theorem.

Theorem 3.3.1

If A ∈ KM ∩Kd then

∂(KM ∩Kd)(A) = ∂KM (A) + ∂Kd(A)

Proof (this is a special case of Rockafellar [1970])

Clearly from Theorem 3.2.4 D ∈ KM ∩ Kd if and only if −D is Euclidean distance

matrix. Further, the matrices in KM are characterized by (3.2.10). Thus, the minimization

problem (3.2.1) is a special case of the following problem:

Given a distance matrix − F ∈ <n×n

minimize ‖ F − D ‖F

subject to D ∈ KM ∩ Kd. (3.3.3)

Note that in problem (3.2.1) F and D are different from F and D in this problem. Now

∂KM (A) and ∂Kd(A) are given in (1.3.25) and (3.3.2) respectively. From Theorem 3.3.1 and

(2.1.3) we can deduce that D∗ solves problem (3.3.3) if and only if

F −D∗ = Q

U
[
0 0

0 H

]
UT 0

0T 0

Q + B. (3.3.4)
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Then (3.3.4) is equivalently to

F = Q

U
[

Λr 0

0 H

]
UT d

dT δ

Q + B

since

D∗ = Q

U
[

Λr 0

0 0

]
UT d

dT δ

Q (3.3.5)

this is true from Theorem 1.3.6 and (1.3.24) and D∗ ∈ KM from (3.3.3).

Dykstra’s algorithm depends crucially upon the computational complexity of the relevant

projections. The minimization problem (3.3.3) is solved by applying Algorithm 2.2.7 to it.

Problem (3.3.3) is to find the projection of a matrix to the intersection of two convex sets by

a sequence of projections to the individual set successively. First we need definition for the

projection maps Pd(·) and PM (·), later formulae for them are obtained.

Definition 3.3.2

Let

K = {A : A ∈ <n×n, A = AT },

then define the projection map PM (A) from K on to KM and the projection map

Pd(A) from K on to Kd.

Since Kd is the subspace consisting of all real symmetric n×n matrices with zero diagonals

then Pd (F ) is straightforwardly given by

Pd (F ) = F − Diag (F ) (3.3.6)

i.e., Pd maps F to the matrix obtained by replacing each diagonal element by zero.

The projection map PM (A) formula on to KM is now introduced but first a

theorem due to Higham [1988] is given which is used in proving the formula.
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Theorem 3.3.3

Let F1 ∈ <n−1×n−1 be a symmetric matrix and F1 = UΛUT be its spectral

decomposition, then D1 = UΛ+UT solves the following problem

minimize ‖F1 − D1‖F

subject to D1 ≥ 0

where

Λ = diag [λ1, λ1, . . . , λn−1]

and

Λ+ = diag [λi : λi =

 λi, λi ≥ 0

0, λi < 0

 i = 1, . . . , n− 1 ].

Proof

Take any D1 ≥ 0 express D1 = UY UT where Y ≥ 0 then

‖F1 − D1‖2F = ‖Λ − Y ‖2F

=
n−1∑
i,j=1
i6=j

y2
ij +

n−1∑
i=1

(λi − yii)2

≥
∑
λi<0

(λi − yii)2.

It then follows because Y is positive semi–definite and λi < 0 that − 2λiyii ≥ 0 which

implies that

‖F1 − D1‖2F ≥
∑
λi<0

λ2
i .

This lower bound is attained uniquely for the matrix Y = Λ+ because



72

‖F1 − D1‖2F = tr(F1 − D1)(F1 − D1)

= (Λ − Λ+)(Λ − Λ+)

=
n−1∑
i=1

λi −
n−1∑
i=1

λ+
i

=
∑

i:λi<0

λ2
i .

that is D1 = UΛ+UT . 2

Now for calculating PM (F ) we need to solve the following problem

minimize ‖F − D‖F

subject to D ∈ KM . (3.3.7)

Let

F = Q

[
F1 f

fT ζ

]
Q and D = Q

[
D1 d

dT δ

]
Q

then ‖F − D‖F is minimized by minimizing

‖F1 − D1‖F (3.3.8)

since

‖F − D‖F = ‖Q(F − D)Q‖F =

∥∥∥∥∥F1 − D1 f − d

fT − dT ζ − δ

∥∥∥∥∥
F

.

Therefore from Theorem 3.3.3

PM (F ) = Q

[
UΛ+UT f

fT ζ

]
Q, (3.3.9)

is the solution of problem (3.3.7). Here Λ+ corresponds to

[
Λr 0

0 0

]
in (3.3.5) such that

[
Λr 0

0 0

]
≡ Λ+
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In Chapter 2 von Neumann’s algorithm was given which solves problem (3.3.3) in Algorithm

2.2.1. However, Example 2.2.4 illustrates the failure of von Neumann algorithm in solving

problem (3.3.3) for general n. Moreover Algorithm 2.2.7 was given which successfully solves

problem (3.3.3) for general n.

In particular, we have a matrix projections PM and Pd given by (3.3.9) and (3.3.6)

respectively. Using Algorithm 2.2.7 in case m = 2 with the projections P1 = PM and

P2 = Pd we have the following algorithm

Algorithm 3.3.4 (projection algorithm)

Given any distance matrix − F ∈ <n×n, let F (0) = F

For k = 1, 2, . . .

F (k+1) = F (k) + [PdPM (F (k)) − PM (F (k))] (3.3.10)

This algorithm is given by Glunt et. al. [1990]. The convergence of this algorithm follows

from Theorem 2.2.8 in which P1 = Pd and P2 = PM . Given any distance matrix

−F = −FT ∈ <n×n, then the sequences {PM (F (k))} and {PdPM (F (k))} generated by

Algorithm 3.3.4 converge in the Frobenius norm to the solution D∗ of (3.3.3).

It is important to realize whether a distance matrix − F is a Euclidean distance matrix

or not before solving problem (3.3.3). This is because if − F is a Euclidean distance matrix

then D∗ = F and there is no problem to solve. In the following a test is given to indicate if

the matrix −D(k) is Euclidean distance matrix or not.

It follows by induction that off–diagonal elements of F (k), k = 1, 2, . . . in Algorithm 3.3.4

are the same as F (0)(= F ). Denote

∆(k) = F (k) − F (3.3.11)

which is diagonal. Then (3.3.10) can now be written

∆(k+1) = ∆(k) − Diag (D(k)) (3.3.12)

where D(k) = PM (F + ∆(k)). Therefore given any F (k) (or ∆(k)), the test

Diag (D(k)) = 0 (3.3.13)
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where D(k) = PM (F (k)) = PM (F + ∆(k)) determines whether the matrix − D(k) is

Euclidean distance matrix or not. This test is useful in Chapter 4.

3.4 Unconstrained methods

In this section we shall consider a different approach to the problem (3.3.3). The main idea is

to replace the problem (3.3.3) by an unconstrained optimization problem in order to use the

superlinearly convergent quasi–Newton methods. Three methods for solving problem (3.3.3)

will be given along with an example showing how the points p′is are represented in the space

with different methods. In the end of this section a strategy is described of how to choose the

initial matrix X and the rank r.

Schoenberg [1935] and Young et. al. [1938] independently formulated a characterization

of the Euclidean distance matrix in Theorem 3.2.3. Using this theorem problem (3.2.1) can be

expressed as:

minimize
D

φ

subject to A ≥ 0 (3.4.1)

where

φ = ‖F − D‖2F ,

−F is a distance matrix and A is a function of D given by (3.2.2). ( Note that the matrix

−D is the Euclidean distance matrix).

In the following analysis an equivalent unconstrained problem to (3.4.1) is derived.

From Definition 3.2.1 −D is represented in the space <r by the following vectors

p1, p2, . . . , pn. (3.4.2)

It is always possible to put the first vector p1 at the origin by transforming each vector pi to

pi − p1 i = 1, 2, . . . , n. Assume that the rank of A is known to be r ( 1 ≤ r < n ).

The columns of XT are the vectors p2, p3, . . . , pn (see Theorem 3.2.3). For quasi–Newton
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methods it will be convenient to store the matrix X as a one vector with r(n− 1) variables

as follows

XT =


x1 x2 . . . xn−1

xn xn+1 . . . x2(n−1)

...
...

. . .
...

xt1 xt2 . . . xr(n−1)

 . (3.4.3)

where t1 = (r − 1)(n− 1) + 1 and t2 = (r − 1)(n− 1) + 2. Hence

pT
2 = [x1 xn . . . xt1 ]

pT
3 = [x2 xn+1 . . . xt2 ]

...

pT
n = [xn−1 x2(n−1) . . . xr(n−1)] (3.4.4)

and

XT = [p2 p3 . . . pn]. (3.4.5)

The constraint A ≥ 0 is equivalent to A = XXT , which can be expressed as

A = XXT =


pT

2 · p2 . . . pT
2 · pn

...
. . .

...

pT
n · p2 . . . pT

n · pn

 . (3.4.6)

Therefore satisfying the constraint in problem (3.4.1) is equivalent to expressing the elements

of the matrix D as a function of X. Hence from Definition 3.2.1iii and using (3.4.4)

dij = dji = ‖pi − pj‖2 i, j = 2, . . . , n

=
r−1∑
k=0

(xi+km−1 − xj+km−1 )2, i, j = 2, . . . , n (3.4.7)

and

d1i = d1j =
r−1∑
k=0

x2
i+km−1. i, j = 2, . . . , n (3.4.8)
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where m = n − 1 and r = rank X (through out this section). Thus there exists a matrix

X that satisfies (3.4.6) and hence the constraint A ≥ 0 in problem (3.4.1).

An alternative way of deriving these expressions is the following, since A = XXT

then

aij =
r∑

k=1

xi+km−1 · xj+km−1

=
r∑

k=1

(x2
i+km−1 + x2

j+km−1 − (xi+km−1 − xj+km−1 )2)

= 1
2 [ d1i + d1j − dij ],

d1i =
r−1∑
k=0

x2
i+km−1 and d1j =

r−1∑
k=0

x2
j+km−1 i, j = 2, . . . , n (3.4.9)

and

dij = dji =
r−1∑
k=0

(xi+km−1 − xj+km−1 )2, i, j = 2, . . . , n (3.4.10)

which is equivalent to (3.4.8) and (3.4.7).

Therefore, problem (3.4.1) above can be expressed in unconstrained form as follows:

minimize
X

φ (3.4.11)

where φ = ‖F − D‖2F , − F is a distance matrix and the elements of the matrix D are

given by (3.4.9) and (3.4.10).

Now three methods for solving problem (3.4.11) will be given. The quasi–Newton method

(Algorithm 1.6.3) is used to solve problem (3.4.11) and the BFGS formula is used to

update the Hessian matrix H(k+1). Quasi–Newton methods require only the function

f and the first derivative g where f is φ and g = ∇φ. However some difficulties

arise, one of these is that the index r (= rank(A)) used in partitioning A (= XXT ) is

not known in advance. Fortunately it can be shown that by solving a sequence of problems

for different r, each of which is well behaved, the correct value of r can be located.

Excluding the function φ and the derivative ∇φ which differ from one method to

another, the procedures in the three methods are the same.

Method 3.4.1
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Consider the matrix X with the vector p1 untranslated to the origin. Thus the vectors

p1, p2, . . . , pn are all vectors of variables, so that

pT
1 = [x1 xn+1 . . . x(r−1)n+1]

pT
2 = [x2 xn+2 . . . x(r−1)n+2]

...

pT
n = [xn x2n . . . xrn ]. (3.4.12)

Then

XT =



x1 x2 . . . xn

xn+1 xn+2 . . . x2n

x2n+1 x2n+2 . . . x3n

...
...

. . .
...

xt3 xt4 . . . xrn


. (3.4.13)

where t3 = (r− 1)n+ 1 and t4 = (r− 1)n+ 2. So the elements of the matrix D ∈ <n×n

take the form

dij = dji =
r−1∑
k=0

(xi+kn − xj+kn )2 (3.4.14)

then

φ =
n∑

i,j=1

(dij − fij)2

=
n∑

i,j=1

{
r−1∑
k=0

(xi+kn − xj+kn )2 − fij)2

= 2
n∑

i,j=1
i<j

{
r−1∑
k=0

(xi+kn − xj+kn )2 − fij)2 (3.4.15)

and

∇φ = [ ∂φ
∂x1

∂φ
∂x2

. . . ∂φ
∂xrn

]T
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where

∂φ

∂xs
= 2

n∑
j=1

{2[
r−1∑
k=0

( xl+kn − xj+kn )2 − flj ] 2( xs − xj+tn )}

= 8
n∑

j=1

{[
r−1∑
k=0

( xl+kn − xj+kn )2 − flj ]( xs − xj+tn )} (3.4.16)

for all s = 1, . . . , rn where t = (s−l)
n and l = mod (s, n) and if l = 0 then l = n.

Method 3.4.2

In this method, as explained earlier the first vector p1 is transformed to the origin (see Figures

3.4.1 and 3.4.2), so the number of variables is reduced from rn to r(n − 1). The matrix

XT is given in (3.4.3). The elements of the matrix D take the form

di1 = d1j =
r−1∑
k=0

x2
i+km−1 i = 2, . . . , n (3.4.17)

dij = dji =
r−1∑
k=0

(xi+km−1 − xj+km−1 )2 i, j = 2, . . . , n (3.4.18)

where r = rank X and m = n− 1. Hence

φ =
n∑

i,j=1

(dij − fij)2

= 2{
n∑

i=1

(di1 − fi1)2 +
n∑

i,j=2
i>j

(dij − fij)2}

= 2{
n∑

i=1

(
r−1∑
k=0

x2
i+km−1 − fi1)2 +

n∑
i,j=2
i>j

(
r−1∑
k=0

(xi+km−1 − xj+km−1 )2 − fij)2} (3.4.19)

and
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∇φ = [ ∂φ
∂x1

∂φ
∂x2

. . . ∂φ
∂xr(n−1)

]T .

where

∂φ

∂xs
= 8xs{

r−1∑
k=0

x2
l+km − fl+1 1}

+ 8{
m∑

j=1

[
r−1∑
k=0

( xl+km − xj+km )2 − fl+1 j+1]( xs − xj+tm )} (3.4.20)

for all s = 1, . . . , r(n − 1) where t = (s − l)
m and l = mod (s,m) and if l = 0 then

l = m.

Method 3.4.3

In this method translation and rotation are used. First, the vector p1 transformed to the

origin so the number of variables will be reduced to r(n− 1) as in the second method. Since

−D is a Euclidean distance matrix, it is always possible to make rotation about the origin,

axes, planes and spaces depending on the dimension of r (e.g. if r = 3 2 rotations, r = 4

3 rotations etc.). Make a rotation in the second vector p2 around the origin until the vector

p2 is located on one of the axes. Then the components of p2 are zeros except one, assume

it is the first component. Similarly, rotate the vector p3 but this time around the axis where

p2 located until p3 is located in one of the planes. Then the components of p3 are

zeros except two; assume they are the first two.

Figures 3.4.1–6 shows an example of translation then rotation of vectors p1, p2 and p3

in the space <3.

If we continue likewize with the rest of the vectors p4, p5, . . . , pr then matrix XT

has the following form

XT =



x1 x2 x3 . . . . . . . . . xn−1

0 xn xn+1 . . . . . . . . . x2n−3

0 0 x2n−2 . . . . . . . . . x3n−6

...
...

...
. . .

...

0 0 0 . . . xp . . . xq


(3.4.21)
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where p = (r− 1) m − r(r−1)
2 and q = rm − r(r+1)

2 . Then the vectors p1, p2, . . . , pn

have the form

pT
1 = [0 0 0 . . . 0 0]

pT
2 = [x1 0 0 . . . 0 0]

pT
3 = [x2 xn 0 . . . 0 0]
...

pT
r = [xr−1 xn+r−3 x2n+r−4 . . . xp+r−m 0]

pT
r+1 = [xr xn+r−2 x2n+r−5 . . . xp+r−m+1 xp]
...

pT
n = [xn−1 x2n−3 x3n−6 . . . xp−1 xq] (3.4.22)

In this method, the number of variables is reduced to rm − r(r + 1)
2 where m = n− 1.

Thus the number of variables is reduced by r(r+1)
2 from Method 3.4.2. The elements of the

matrix D ∈ <n×n (−D is the Euclidean distance matrix) take the form

di1 = d1j =
p−1∑
k=0

x2
i+t i = 2, 3, . . . , n (3.4.23)

with p = min (i− 1, r) and t = km − k(k + 1)
2 − 1

dij = dji =
l−2∑
k=0

(xi+t − xj+t)2 +
p−1∑

k=l−1

x2
j+t

for i = 2, . . . , r and j = i+ 1, . . . , n (3.4.24)

where l = min (i, j), p = min (j − 1, r), t = km − k(k + 1)
2 − 1 and m = n− 1.

Also

dij = dji =
r−1∑
k=0

(xi+t − xj+t)2 ∀ i, j = r + 1, , .. , n (3.4.25)
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Thus

φ =
n∑

i,j=1

[dij − fij ]2

= 2{
n∑

i=2

[di1 − fi1]2

+
r∑

i=2

n∑
j=i+1

[dij − fij ]2

+
n∑

i,j=r+1
i>j

[dij − fij ]2}

= 2{
n∑

i=2

[
p∑

k=0

x2
i+t − fi1]2

+
r∑

i=2

n∑
j=i+1

[
l−2∑
k=0

(xi+t − xj+t)2 +
p−1∑

k=l−1

x2
j+t − fij ]2

+
n∑

i,j=r+1
i>j

[
r−1∑
k=0

(xi+t − xj+t)2 − fij ]2} (3.4.26)

and the gradient vector ∇φ can be calculated from Algorithm 3.4.4 where

∇φ = [ ∂φ
∂x1

∂φ
∂x2

. . . ∂φ
∂xq

]T

with q = rm− r(r−1)
2 .

Algorithm 3.4.4 (gradient calculation : ∇φ)

q = 0

is = rm− r(r − 1)
2

For s = 1, 2, . . . , is

q = (s − 1 +
q(q + 1)

2
)/m
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l = s − qm +
q(q + 1)

2

For k = 1, 2, . . . , n

bk = dl+1 k − fl+1 k

p = min ( r, q + 1 )

If k ≤ p Then

bk = 8 bkxs

Else

t = mq − q(q + 1)
2

− 1

bk = 8 bk ( xs − xk+t)

End If

End For

∂φ

∂xs
=

n∑
k=1

bk

End For

Example 3.4.5

As an example illustrating translation and rotation for Method 3.4.2 and Method 3.4.3, let

XT =


2 6 4

3 5 4

2 4 5

 .

First transform p1 = (2, 3, 2) to the origin then

X
′T =


0 4 2

0 2 1

0 2 3

 .
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Figure 3.4.1: Transform the point p1 to the origin in order to reduce the number of variables
from rn to r(n− 1).

Rotating p2 around the origin (see Figures 3.4.4 and 3.4.5) gives

X
′′T =


0 4.99 3.26

0 0 1.58

0 0 1.41


whilst a second rotation around the x–axis of p3 located in the plane of y,z–axes (see Figures

3.4.5 and 3.4.6) gives

X
′′′T =


0 4.99 3.26

0 0 1.83

0 0 0

 .
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Figure 3.4.2: The location for each point after the translation.

An important consideration is the choice of the initial matrix X. In the following a proce-

dure is given for finding a suitable initial matrix X. Let − F be the given distance matrix,

and let r(0) be the estimated rank. The initial matrix X for Method 3.4.2 can be calculated

using Theorem 3.2.3 as follows:

Define the elements of A from F by

aij = − 1
2 [ f1i + f1j − fij ] (2 ≤ i, j ≤ n). (3.4.27)
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Figure 3.4.3: Rotate the point p2 around the origin so that it is located on the x-axis. This
removes r − 1 variables.

Figure 3.4.4: The location for each point after the first rotation.
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Figure 3.4.5: Rotate the point p3 around the x–axis so that it is located on the x,y–axis. This
removes r − 1 variables.

Figure 3.4.6: The final location for each point with variables reduced from 9 variables to only
3 variables.
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Consider the spectral decomposition

A = U Λ UT ,

then the initial matrix X for the unconstrained Method 3.4.2 is given by

X = U Λ1/2
r (3.4.28)

where Λr = diag [λ1, λ2, . . . , λr], are the r largest eigenvalues in Λ.

The above equations can be used to form an initial matrix X for Method 3.4.1 and Method

3.4.3. However, the initial matrix X can be any independent vectors. The independence is

important because if one of the vectors is dependent on the other vectors, error will occur in

the minimizer of φ(X), and D will be embeddable in <r−1 when it should be irreducibly

embeddable in <r. For example if

XT = [p1, p2, p3]

and D∗ is irreducibly embeddable in <2, choose p3 such that it is dependent on p2 and p1

then the resultant matrix will be embeddable in <1 which is not correct (see Figure 3.4.7–8).

Another important consideration for the unconstrained method is how the integer

r∗ = rank(D∗1) = X∗ (D1 given in (3.2.10)) can be identified correctly. Since

r∗ is not known in advance it is necessary to estimate it by an integer denoted by r(k). Any

change to r(k) causes a change to φ(X), and the number of variables in φ(X). It is

important to consider the effect of making a fixed incorrect estimate r to r∗. If r(k) < r∗

then the methods described so far converges satisfactorily and ultimately at a superlinear rate

of convergence to a minimizer of φ(X). Since r is too small the minimizer of φ(X) is not a

solution of (3.4.11), however the matrix −D(k) is a Euclidean distance matrix but it is not

the nearest Euclidean distance matrix to F (0). On the other hand if r(k) > r∗ then the

methods converges to the minimizer of φ(X), which is the solution of (3.4.11) but the

rate of convergence is very slow because the number of variables in φ(X) are increased.

It seems to be difficult to find an estimate of the rank r∗ from the structure of the

distance matrix − F .



88

Figure 3.4.7: Illustrates the dependence of p1, p2 and p3 which makes D embeddable in
<1.

Figure 3.4.8: Illustrates the independence of p1, p2 and p3 which makes D irreducibly
embeddable in <2.
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A strategy has been selected to estimate r∗. The above observations suggest we should

choose r(0) arbitrarily as a small integer. Subsequently r(k) is increased by one and φ(X)

is minimized by the methods described above for each r(k). Let −D(k) denote the resulting

Euclidean distance matrix. If D(k) = D(k+1) then the algorithm terminates. Otherwise

r(k) is increased by one which adds n − 1 new variables to problem (3.4.11), and it is

necessary to add a new vector to the matrix X. This vector is determined randomly. It is

important that the independence mentioned above is satisfied by the new vector. In Chapter

4 an alternative approach is studied in which the projection method is used to give a better

estimate of the new vector. After adding one to r(k) the problem (3.4.11) is minimized again

using one of the unconstrained methods and the above procedures are repeated. As r(k)

can only be increased, the correct value r∗ will be identified after a few repetitions of the

iterative process.

Finally, an advantage of unconstrained method is that it allows the spatial dimensions to be

chosen by the user. This is useful where the rank is already known. For example if the distance

matrix are distances between cities then the dimension will be no more than r = 2. Likewize

if the distance matrix are distances between atoms in a molecule or stars in space, then the

maximum dimension is r = 3.

The disadvantage of Methods 3.4.1–3 is if the rank is unknown. The algorithm may have

to be repeated many times before we find the correct rank. This makes convergence very slow.

Therefore in Chapter 4 new methods will be introduced for solving problem (3.4.11) (or

equivalently problem (3.3.3)) which avoid this disadvantage.

3.5 The Elegant algorithm

In the previous sections a complete description of the projection method and unconstrained

methods have been given. The projection method along with Method 3.4.2 described in the

previous section are used to construct the methods in Chapter 4.

In this section another method for solving problem (3.3.3) is given. The Elegant algorithm

is described by Takane [1977] using a method related to the alternating least squares

approach, later modified by Browne [1987].

Their methods are based on computing the gradient of
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φ = ‖F − D‖. (3.5.1)

It is then found that if

P = I − eeT

n

and

S(F ) = diag [
n∑

j=1

f1j , . . . ,
n∑

j=1

fnj ]

then

∂φ

∂D
= (F − D − S(F ) + S(D)) PDP = 0

which is a necessary condition for minimality.

Let −F be a distance matrix, then this matrix can be transformed into a n×n matrix

A = − 1
2 PFP.

Now let Λr = diag [λ1, λ2, . . . , λr] be the diagonal matrix formed from the r positive

eigenvalues of A, and Ur the n× r matrix of corresponding eigenvectors, and define

Y = UrΛ1/2
r . (3.5.2)

Now the Elegant algorithm can be expressed as

Algorithm 3.5.1 (Elegant algorithm)

Given any distance matrix − F ∈ <n×n, choose α, 0 < α < 1, let F (0) = F

For k = 1, 2, . . .

F (k+1) = α(F − S(F ) + S(F (k))) + (1− α)Y (k)Y (k)T

where Y is given in (3.5.2).

To improve the rate of convergence, Browne [1987] added a penalty function to (3.5.1) and

introduced an intermediate Newton–Raphson step, he called this method the Newton–Raphson

method.
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NRA EA PA
n NI CPU NI CPU NI CPU
4 18 0.12 21 0.17 26 0.16
8 31 0.25 17 0.29 19 0.22
16 71 1.94 16 1.62 30 0.78
32 175 32.0(0.05) 14 17.64(2.3) 36 5.01(0.08)
64 367 2189.4(5.23) 14 233.23(17.4) 56 53.46(2.9)
100 708 3095.0(540) 13 948.11(529.8) 68 241.56(16.0)

Table 3.6.1: Numerical comparisons between the three projection algorithms.

PA: Projection Algorithm 3.3.4.
EA: Elegant Algorithm 3.5.1.
NRA: Newton–Raphson algorithm.
NI: Average number of iteration.
CPU: Average CPU time in seconds.
(): Standard deviation in CPU time.

3.6 Numerical results

In this section numerical examples are given for unconstrained methods. First an example

of order 4 is given in some detail and then another six examples are given showing how the

unconstrained methods behave.

However in the first part comparisons between the projection algorithm and methods of

Section 3.5 are considered. In Chapter 4 larger examples for both Algorithm 3.3.4 and Method

3.4.2 are given.

Table 3.6.1 given by Glunt et. al. [1990] compares the three algorithms: the projection

Algorithm 3.3.2, the Elegant Algorithm 3.5.1 and the Newton–Raphson algorithm. In Elegant

Algorithm α = 1
2 as long as F (k) is monotonically decreasing and then reducing α by a

factor of 1
2 at non–decreasing. All three algorithm converge to essentially the same values.

The matrices in Table 3.6.1 were randomly generated distance matrices. Table 3.6.1 shows

that the projection method consumes less CPU time than the other methods. Therefore it will

be used in Chapter 4.

In the rest of this section the numerical result for the quasi–Newton methods of Section 3.4

are discussed. A Fortran program has been written to solve problem (3.4.11) on a Sun computer.

The results in this section are accurate to 7–8 decimal places in the distance between the given

matrix and the Euclidean distance matrix.
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Initial Optimal no. of no. of Distance
Methods X X variables line search

3.4.1 1 0 1.8104 0.5052 8 15 0
0 1 0.4601 0.9253
0 0 0.0400 -0.4253
0 0 -1.3105 -0.0052

3.4.2 1 0 -1.3682 -0.3581 6 19 0
0 1 -1.7261 1.0100
0 0 -3.0943 0.6523

3.4.3 1 -1.4142 5 22 0
0 1 -1.4142 1.4142
0 0 -2.8284 1.4142

Table 3.6.2: Results from example (3.6.1).

In the following an example is given in which −F is a 4 × 4 Euclidean distance matrix

given by

−F =


0 2 4 10

2 0 2 4

4 2 0 2

10 4 2 0

 . (3.6.1)

This matrix is embedded in <2 and F1 is of rank 2 see Figure 3.6.1. Table 3.6.2 shows

the results from the three methods of Section 3.4. They confirm that the programs work since

the three distances are zero (see Table 3.6.2). In Table 3.6.2, Method 3.4.1 gives the optimal

solution X which implies that the matrix D is the optimal matrix and it turns out to be the

same as the matrix − F in (3.6.1) since − F is already a Euclidean distance matrix. This

is also true for Methods 3.4.2 and 3.4.3. The distances in Figure 3.6.1 are squared before being

stored in the matrix − F .

Another thing which is worth noting is that the matrix X is not unique. For example, X

for Method 3.4.3 in Table 3.6.2

XT =

[
−1.41421 −1.4142 −2.8284

1.4142 1.4142

]
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Figure 3.6.1: The Euclidean distance matrix represented in <2.

can be replaced by the matrix

XT =

[
1.41421 1.4142 2.8284

1.4142 1.4142

]

which gives the same result.

Finally the initial matrix X is chosen to be [e1, e2, 0] , but using equations (3.4.27–28)

to reform the given distance matrix − F to an initial matrix X for Method 3.4.2 reduces

the number of line searches to zero. The superlinear convergence turns out to be true in this

example.

In Table 3.6.3 six examples are chosen randomly to show how the three methods behave.
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The initial matrix

XT = [e1, e2, . . . , er, 0, . . . , 0]

is used for all three methods. Probably the best method when n is large (n ≥ 9) is Method

3.4.2 because it has the least number of line searches. On the other hand, Method 3.4.1 is

better when n is sufficiently small (n < 9).

Method 3.4.3 is the worst because it takes the greatest number of line searches. Also, it

fails with certain initial matrices and different initial matrix is needed to solve the problem.

Specially when the given matrix is already a Euclidean distance matrix (see Table 3.6.3 n = 11

).

In the first example ( n = 11) the given matrix is a Euclidean distance matrix and Method

3.4.3 fails to find the optimal solution for many given initial vectors when r > 5 (marked

by (*)). In the other methods sometimes the above initial matrix does not find the optimal

solution and a different initial matrix is used (marked by (**)). Perhaps, the reason behind

this is that Method 3.4.1 and Method 3.4.2 have more freedom to choose the optimal vectors

pi’s near the initial vectors(The optimal vectors pi’s are not unique). In Method 3.4.3 because

of rotation, the initial vectors have to search further for the optimal vectors because they are

more specific. One can see this from Table 3.6.3, when r is small, where very few rotations

occur, the number of line searches is almost similar with the other methods. When r is bigger

the difference in the number of line searches becomes greater. It is clear that Method

3.4.2 is better than 3.4.1 because its number of variables is less than those of Method 3.4.1

by r variables.

In Table 3.6.3 there are two columns for Method 3.4.2. The first column for 3.4.2

has the above initial matrix as initial data every time we increase r(k). This make it

comparable with the other methods. In the second column for Method 3.4.2 the initial matrix

is reformed from F using equations (3.4.27–28), updating the initial matrix every time we

increase r(k) using the previous result. This gives faster convergence for the method.
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NL NL NL NL NIP Dist–
n r(k) 3.4.1 3.4.2 3.4.2(+) 3.4.3 method ance
11 1 23 23 14 23 25.573

2 40 38 32 33 16.449
3 49 50 59 63 10.090
4 63 71 48 86 7.026
5 80 84 50 198 5.289
6 91 79 62 109(*) 3.967
7 90 77 69 81(*) 2.638
8 92 78 52 83(*) 1.684
9 70 79 70 99(*) 0.961
10∗ 66 72 58 72(*) 3 0

10 1 30 25 17 26 149.63
2 41 37 31 43 71.407
3∗ 45 41 37 47 62.3131
4 52 51 38 65 47 62.3131

10 1 21 21 17 21(**) 856.302
2 39 38 26 43 785.213
3∗ 42 55 13 66 785.190
4 55 62 16 79 56 785.190

10 1 29 30(**) 16 43 8107.56
2 66(**) 48 40 62 6767.53
3 53 59 47 76 6061.81
4∗ 179(**) 77 26 103 5904.95
5 84 113 52 141 64 5904.95

10 1∗ 29 35 5 35 990.88
2 37 48 18 37 125 990.88

10 1 25 26 19 27(**) 34.021
2 33 30 27 30 26.021
3 43 40 34 41 24.172
4∗ 46 48 40 62 23.973
5 55 54 45 82 30 23.973

Table 3.6.3: Numerical comparisons between unconstrained methods and the projection algo-
rithm.

(+): Using equations (3.4.27–28). Then updating the initial matrix
every time we increase r(k).

NL: Number of line searches.
NIP: Number of iterations for projection method.


