
Chapter 2

Projection methods

2.1 Introduction

The purpose of this chapter is to provide a background about the projection methods for

solving certain linear and least distance convex programming problems in which the feasible

region is the intersection of a finite number of convex sets. The following least distance convex

programming problem which arises in Chapters 3 and 5 is studied.

For a given point f find the point x∗ which is the unique solution to the least distance

problem

minimize ‖ f − x ‖2

subject to x ∈
m⋂

i=1

Ki (2.1.1)

where
⋂m

i=1Ki is the intersection of a finite number of convex sets K1 , K2 , ..., Km.

This minimization problem is one of a wide class of problems which arises in many applications.

Projection methods for solving this kind of problem were first given by von Neumann

[1950], later improved by Dykstra [1983] and independently by Han [1988].

First some definitions relating to projections are introduced. If K is a subspace in Hilbert

space H then define

K⊥ = {x ∈ H : 〈x,y〉 = 0 ∀ y ∈ K}.

42



43

K⊥ called the orthogonal complement of the set K.

Definition 2.1.1

If K is a subspace in Hilbert space, then the projection of x ∈ H onto K is x1

where x = x1 + x2 and x1 ∈ K and x2 ∈ K⊥. The projection is denoted by

PK(x) = x1 and x1 is unique.

To show that x1 is a unique point, let x = x1 + x2 = y1 + y2 with y1 ∈ K and

y2 ∈ K⊥.

Now since 〈x1, x2〉 = 0, it follows that 〈x1, y1 + y2 − x1〉 = 0 and hence

〈x1,y1 − x1〉 = 0

since 〈x1,y2〉 = 0. Likewise from 〈y1,y2〉 = 0 it follow that

〈y1,x1 − y1〉 = 0.

These two equations show that 〈x1 − y1,x1 − y1〉 = 0 and hence

x1 = y1.

Theorem 2.1.2

A necessary and sufficient condition that P be a projection onto K is that

i. 〈PK(x),y〉 = 〈x, PK(y)〉 ∀ x,y ∈ H

ii. P 2
K(x) = PK(x) ∀ x ∈ H

Proof (see von Neumann [1950]).

If y ∈ H then the projection map is completely characterized by the condition

〈x − y,x − z〉 ≤ 0 ∀ z ∈ K. (2.1.2)

where x = PK(y). Clearly we can observe from the normal cone definition (1.3.7) that



44

y − x ∈ ∂K(x). (2.1.3)

Also in this chapter the following linear convex programming problem is considered.

minimize eT x x ∈ <n

subject to x ∈
m⋂

i=1

Ki (2.1.4)

where e = [1, 1, . . . , 1]T ∈ <n.

Such optimization problems come up in many practical situations, for example in linear

programming problem where K is the set of linear constraints, although projection methods

are not the best for solving such problems. Here we are interested in the case where one of

the Ki is a positive semi–definite matrix cone. An example of this is the educational testing

problem in statistics.

In Section 2.2 the algorithms of von Neumann [1950], Dykstra [1983] and Han [1988] are

described. The von Neumann algorithm simply iterates using succesive projections on to each

Ki, while in the Dykstra and Han algorithms a more complex calculation is made. This section

also includes some other important results. In Section 2.3 Glunt [1991] describes a projection

method for solving the linear convex programming problem (2.1.4). His idea is to construct a

hyperplane in <n and then carry out the method of alternating projections (von Neumann’s

method) between the convex set K and the hyperplane. His method converges globally. The

general theory of Glunt’s method for minimizing the linear function subject to a convex set in

Hilbert space is given in that section.

2.2 The Dykstra algorithm

In this section the least distance convex programming problem given by (2.1.1) is considered.

The basic idea of the iterated projections was first discussed by von Neumann [1950]. He

showed that if m = 2, K1 and K2 are subspaces of Hilbert space H and P1 and

P2 are respectively the orthogonal projections onto K1 and K2, then the sequence of

alternating projections is generated by the following algorithm:



45

Algorithm 2.2.1 (von Neumann algorithm)

Given a point f , in each subsequent iteration 2 vectors are computed as follows :

Set x(0)
2 = f

For k = 1, 2, ...

Set x(k)
0 = x(k−1)

2

For i = 1, 2

x(k)
i = Pi(x

(k)
i−1)

End

End. (2.2.1)

The sequence in Algorithm 2.2.1 converges to P
K1∩K2

(f), which is the orthogonal projection

onto the intersection of K1 and K2.

The von Neumann algorithm can be generalised for m subspaces in the following form

Algorithm 2.2.2

Given a point f , subspaces K1, K2, . . . , Km and the corresponding projections

P1, P2, . . . , Pm . In each subsequent iteration m vectors are computed as follows :

Set x(0)
m = f

For k = 1, 2, ...

Set x(k)
0 = x(k−1)

m

For i = 1, 2, . . . ,m

x(k)
i = Pi(x

(k)
i−1)

End

End. (2.2.2)

Deutsch [1983] showed that the rate of convergence in Algorithm 2.2.1 decreases with the

angle θ between the two subspaces, where θ ∈ [0, π
2 ] and is defined by



46

θ = cos−1{ sup
a∈K1,b∈K2

| 〈a− P
K1∩K2

a, b− P
K1∩K2

b〉 |
‖a‖ ‖b‖

}

where P
K1∩K2

is the orthogonal projection on to K1 ∩K2. This result is derived for the case

m = 2 and nothing is said about the rate of convergence in the general case. Also it is not

easy to find the angle between the two subspaces in order to get the rate of convergence.

Cheney and Goldstein [1959] prove some important results. In one of these they showed

that if in Algorithm 2.2.1 the subspaces are replaced by convex sets K1 and K2, and

P1 and P2 are respectively the orthogonal projections onto K1 and K2, then they gave

the following theorem

Theorem 2.2.3

Let K1 and K2 be two convex sets in Hilbert space H. Let P1 and P2 represent,

respectively, the projections onto K1 and K2. Given any point f ∈ H, then algorithm

(2.2.1) generate sequences {x(k)
1 }, {x(k)

2 }. If one of the sets is compact or finite

dimensional and if the distance between them is attained, then the sequences {x(k)
1 } and

{x(k
2 } converge to points x1 and x2 respectively such that

‖x1 − x2‖2 = inf
y1∈K1, y2∈K2

‖y1 − y2‖2 (2.2.3)

Proof (See Cheney and Goldstein [1959])

This result is useful in the next section.

Dykstra [1983] pointed out that if K1 and K2 are not subspaces then the von Neumann

algorithm does not necessarily converge. Likewise, Han [1988] stated that the von Neumann

algorithm cannot be applied successfully to problem (2.1.1) for general n. This can be seen

from the following simple example in <2.

Example 2.2.4



47

Figure 2.2.1: This example illustrates the failure of von Neumann algorithm to solve problem
(2.1.1) for general n.

Let

K1 = {(x, y) : y ≤ 0)}

and

K2 = {(x, y) : x+ y ≤ 0)},

then the straightforward projection method does not work for any point f outside K1 and K2

with x 6= 0 and x 6= y. For example if x(0)
2 = f = (1, 1.5) then x(1)

1 = P1((1, 1.5)) = (1, 0)

and x(1)
2 = P2P1((1, 1.5)) = P2((1, 0)) = (0.5,−0.5) hence P2P1((0.5,−0.5)) = (0.5,−0.5)

and Algorithm 2.2.1 stops at P2P1(f) = (0.5,−0.5) while x∗ = (0, 0) (see Figure 2.2.1).

Dykstra’s algorithm is based on an ingeniously simple modification of Algorithm 2.2.2. Han



48

[1988] independently discovered the same algorithm. In both algorithms the outer normal vector

y(k)
i of the set Ki at x(k)

i is calculated and the previous outer normal y(k−1)
i is added to

x(k)
i−1 before projecting it to the set Ki. Therefore, by each projection an old outer normal

vector is replaced by a new one and the sequence of normal vectors are intended to converge

to a solution of a dual problem of (2.1.1). In the case when all Ki are subspaces then the

addition of the normal is unneccessary for the corresponding projection and Algorithm 2.2.2 is

recovered (Boyle et. al. [1986]). Dykstra’s and Han’s algorithm can be described as follows:

Algorithm 2.2.5 (Dykstra–Han algorithm)

Given a point f , convex sets K1, K2, ..., Km and the corresponding projections

P1, P2, ..., Pm. Set

y(0)
1 = y(0)

2 = ... = y(0)
m = 0

and

x(0)
m = f

Each subsequent iteration will compute 2m vectors

x(k)
1 , x(k)

2 , . . . , x(k)
m

y(k)
1 , y(k)

2 , . . . , y(k)
m

as follows:

set x(k)
0 = x(k−1)

m

For k = 1, 2, ...

For i = 1, 2, ..., m

z(k)
i = x(k)

i−1 + y(k−1)
i

x(k)
i = Pi(z

(k)
i )

y(k)
i = z(k)

i − x(k)
i

End

End. (2.2.4)



49

The following theorem by Dykstra [1983] gives the convergence result.

Theorem 2.2.6

The vectors x(k)
i converge to the solution x∗ of (2.1.1) as k → ∞ for i = 1, 2, . . . , m.

Proof (See Dykstra [1983])

The above algorithm is not easy to deal with and an algorithm which is easier to program

and cheaper to run is the following

Algorithm 2.2.7

Given a point f , convex sets K1, K2, ..., Km and the corresponding projections

P1, P2, ..., Pm.

Let f (0) = f

For k = 1, 2, . . .

f (k+1) = f (k) + Pm . . . P1(f (k)) − P1(f (k))

End

A proof of how Algorithm 2.2.7 derived from Algorithm 2.2.5 using mathematical induction

is now given.

First, we going to denote for f (0) = f and f (k−1) = z(k)
1 . Then for k = 1

z(1)
1 = f (0), x(1)

1 = P1(f (0)), y(1)
1 = f (0) − P1(f (0)),

for i > 1

z(1)
i = x(1)

i−1 + y(0)
i = Pi−1 . . . P1(f (0))

x(1)
i = Pi(z

(1)
i ) = Pi . . . P1(f (0))

y(1)
i = z(1)

i − x(1)
i = Pi−1 . . . P1(f (0)) − Pi . . . P1(f (0)).



50

Then for k = 2

f (1) = z(2)
1 = x(1)

m + y(1)
1 = Pm . . . P1(f (0)) + f (0) − P1(f (0)).

Assume it is true for some k > 2, where

f (k−1) := z(k)
1 = Pm . . . P1(f (k−2)) + f (k−2) − P1(f (k−2))

and

z(k)
i = x(k)

i−1 + y(k−1)
i

where

y(k−1)
i :=

k−2∑
l=0

{Pi−1 . . . P1(f (l)) − Pi . . . P1(f (l))}.

Then for k + 1, it is clear that

Pi(y
(k−1)
i ) = 0

then

x(k)
1 = P1(z

(k)
1 ) = P1(f (k−1))

x(k)
i = Pi(x

(k)
i−1 + y(k−1)

i ) = Pi(x
(k)
i−1)

= Pi . . . P1(f (k−1)). for i ≥ 2

Also

y(k)
i = z(k)

i − x(k)
i

= x(k)
i−1 + y(k−1)

i − x(k)
i

= Pi−1 . . . P1(f (k−1)) +
k−2∑
l=0

{Pi−1 . . . P1(f (l)) − Pi . . . P1(f (l))} −

Pi . . . P1(f (k−1))

=
k−1∑
l=0

{Pi−1 . . . P1(f (l)) − Pi . . . P1(f (l)).



51

Therefore

f (k) = z(k+1)
1 = x(k)

m + y(k)
1

= Pm . . . P1(f (k−1)) + z(k)
1 − x(k)

1

= Pm . . . P1(f (k−1)) + f (k−1) − P1(f (k−1)).

Which is Algorithm 2.2.7. 2

In Algorithm 2.2.7 the vectors yi for i > 1 are not used and saved from calculation which

makes it cheaper. Using Boyle and Dykstra [1986] convergence result, we have the following

theorem.

Theorem 2.2.8

Given f and the sequence {f (k)} generated by Algorithm 2.2.7 then

Pi . . . P1(f (k)) → d∗ the optimal solution of (2.1.1), for any i ≥ 1.

Proof (See Boyle and Dykstra [1986])

In Example 2.2.4 Figure 2.2.2 shows how Algorithm 2.2.7 works successfully. In Figure

2.2.2 f (k) is projected onto K1 then onto K2 and then subtracting P1(f (k)) from

f (k) + P1P2(f (k)) produces the new f (k+1). It is clear from Figure 2.2.2 that P1(f (k))

converges to the optimal solution 0 on the x–axis. Also P1P2(f (k)) converges to 0 on the

x = − y axis. Clearly f (k) converges to f∗ 6= 0.

Dykstra [1983], shows that if the Ki are convex cones, then the xi converge to the nearest

point to the initial point f in the intersection of the Ki. This result has been extended by

Boyle et. al. [1986] to the case where some of the Ki are convex sets. Han [1988] has shown

that the algorithm works for general convex sets Ki given that the intersection has nonempty

interior. Gaffke and Mathar [1989], show that the interior point condition may be omitted. The

result of Boyle et. al. [1986] is enough for our application of projection method in Chapters 3,

5 and 6.



52

Figure 2.2.2: Illustrates the success of Dykstra–Han algorithm to solve problem (2.1.1) for
general n.

2.3 A projection algorithm for linear convex program-

ming problems

This section describes a projection method due to Glunt [1991] for solving the linear convex

programming problem (2.1.4). He uses a particular choice of convex sets in an ingenious way.

One important linear convex programming problem is the educational testing problem which

will be solved by the method of this section in Chapter 6.

Glunt’s idea is to take account of the function eT x by defining the hyperplane



53

Lτ = {y ∈ <n| f(y) = τ} (2.3.1)

where f(y) = eT y. If τ is chosen such that

τ < min
x∈K

f(x) (2.3.2)

then the sets K and Lτ are disjoint. Given f ∈ <n Glunt then applies the von Neumann

Algorithm 2.2.1 to the problem

minimize
x

‖f − x‖2

subject to x ∈ K ∩ Lτ (2.3.3)

which has no feasible solution. It follows from the Theorem 2.2.3 of Cheney and Goldstein

[1959] that the iterates x(k)
1 and x(k)

2 will converge to points x∗1 ∈ Lτ and x∗2 ∈ K

such that ‖x1 − x2‖2 attains the minimum distance between K and Lτ . It can then be

deduced from the relationship of Lτ and eT x (2.3.1), that x∗2 solves problem (2.1.4).

The von Neumann algorithm involves computing alternately the projections onto Lτ and

K. That onto Lτ is straightforward. Glunt suggests that the projection on the K =
⋂m

i=1Ki

is computed by using an inner iteration based on the Dykstra algorithm. It follows from

Theorem 2.2.6 that the resulting method is globally convergent.

The following is a statement of the outer (von Neumann) algorithm.

Algorithm 2.3.1

Given an arbitrary g ∈ <n, convex sets K1, K2, ..., Km and the corresponding

projections P1, P2, ..., Pm .

Set x(0)
2 = g

For k = 1, 2, ...

Set x(k)
0 = x(k−1)

2

x(k)
1 = PLτ

(x(k)
0 )

x(k)
2 = PK(x(k)

1 ) (2.3.4)

End



54

where K =
⋂m

i=1Ki

In this algorithm in every outer iteration PK(x(k)
1 ) is calculated by solving the following

problem

minimize
x

‖PLτ
(x(k)

0 ) − x‖2 x ∈ <n

subject to x ∈ K =
m⋂

i=1

Ki. (2.3.5)

where f (in problem (2.1.1)) = PLτ
(x(k)

0 ) = x(k)
1 which is an initial point in every outer

iteration. Problem (2.3.5) is solved using Algorithm 2.2.7.

The following three figures show how Algorithm 2.3.1 works under different circumstances.

In Figure 2.3.1 the convex set K is nonsmooth at the solution and it is seen that Algorithm

2.3.1 terminates in 2 iterations with the point x∗2 as solution. In Figures 2.3.2 and 2.3.3 K is

smooth at the solution and it seen that the solution point x∗2 is the limit point of the sequence

{x(k)
2 }. It can also be observed that if we make τ smaller (as in Figure 2.3.3 (τ = − 3))

then a more rapid rate of convergence is obtained. However a study of the numerical results

indicates that the order of convergence is linear or slower. Similar features are observed when

Glunt’s method is applied to the educational testing problem as described in Chapter 6.

The following theorem, due to Glunt [1991], gives the convergence result for the linear convex

programming problems.

Theorem 2.3.2

For any g ∈ <n, the sequences {x(k)
1 } and {x(k

2 } generated by Algorithm 2.3.1

converge to x1 and x2 respectively. Also the sequence {x(k)
2 } converges to the

solution of the problem

minimize f(x) = eT x x ∈ <n

subject to x ∈ K. (2.3.6)

The function values f(x(k)
2 ) decrease strictly monotonically to the minimal value.



55

Figure 2.3.1: Algorithm 2.3.1 terminates for a nonsmooth convex set.



56

Figure 2.3.2: Algorithm 2.3.1 converges for a smooth convex set.



57

Figure 2.3.3: Making τ smaller gives faster convergence.

Proof (Glunt [1991])

The convergence of the two sequences {x(k)
1 } and {x(k

2 } follows from Theorem 2.2.3.

Set

x∗1 = lim
k→∞

x(k)
1

x∗2 = lim
k→∞

x(k)
2 .

Let x2 = PK(x1) then from the characterization of the projection map (2.1.2)



58

〈x2 − x1, x2 − z〉 ≤ 0. ∀ z ∈ K (2.3.7)

Now x1 = PLτ
(x2), and Lτ is a hyperplane with the unit vector e, so PLτ

(.) is easy

to compute

PLτ (x2) = x2 +
τ − eT x2

‖e‖2
e. (2.3.8)

So from (2.3.7)

〈x2 − (x2 +
τ − eT x2

‖e‖2
e, x2 − z〉 ≤ 0 ∀ z ∈ K

⇒ 〈(eT x2 − τ)e, x2 − z〉 ≤ 0 ∀ z ∈ K

⇒ (eT x2 − τ) 〈(e, x2 − z〉 ≤ 0 ∀ z ∈ K

But

τ < min
z∈K

eT z

hence eT x2 − τ ≥ 0. Therefore

〈e, x2 − z〉 ≤ 0. ∀ z ∈ K

or

eT x2 ≤ eT z. ∀ z ∈ K

Thus x2 solves (2.3.6).

To demonstrate that f(x(k)
2 ) for k = 1, 2, . . . is monotonically decreasing, consider

x(k)
2 and write

x(k)
1 = PLτ

(x(k−1)
2 )

x(k)
2 = PK(x(k)

1 ).

Thus x(k)
2 is the nearest point in K to x(k)

1 . Therefore unless x∗2 = x(k−1)
2 = x(k)

2 ,

‖x(k)
2 − x(k)

1 ‖ < ‖x(k−1)
2 − x(k)

1 ‖. (2.3.9)



59

Similarly, x(k)
1 is the nearest point in Lr to x(k−1)

2 , so unless x∗1 = x(k−1)
1 = x(k)

1 ,

‖x(k)
2 − x(k+1)

1 ‖ < ‖x(k)
2 − x(k)

1 ‖. (2.3.10)

Thus from (2.3.9) and (2.3.10)

‖x(k)
2 − x(k+1)

1 ‖ < ‖x(k−1)
2 − x(k)

1 ‖. (2.3.11)

But

x(k)
2 − x(k+1)

1 = x(k)
2 − PLτ

(x(k)
2 )

= x(k)
2 − (x(k)

2 +
τ − eT x(k)

2

‖e‖2
e)

=
eT x(k)

2 − τ

‖e‖2
e.

Similarly

x(k−1)
2 − x(k)

1 =
eT x(k−1)

2 − τ

‖e‖2
e.

Hence from (2.3.11)

eT x(k)
2 − τ

‖e‖2
e <

eT x(k−1)
2 − τ

‖e‖2
e.

or

eT x(k)
2 < eT x(k−1)

2

proving that f(x) is monotonically decreasing. 2


