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Abstract

Three problems are handled in this thesis, all of which are involved with the positive semi–

definite matrix as a convex constraint set. One problem is the Euclidean distance problem

and the other two problems are different forms of the educational testing problem. Projection

methods which solves least distance problems subject to the intersection of convex sets are used

to solve these problems. It is found that the methods are globally convergent, but the rate of

convergence is slow. However these methods do have the capability of determining the correct

rank of the solution matrix, and this can be done in relatively few iterations. On the other

hand there are conventional unconstrained and l1 Sequential Quadratic Programming (SQP)

methods which enable rapid convergence to be obtained. However, the correct rank is needed

by these methods. Hence is is the purpose of this thesis to study hybrid methods. These hybrid

methods have two different modes of operation. One is a projection method which provides

global convergence and enables the correct rank to be determined. The other is either a quasi–

Newton method or a nonlinear programming method, depending on the problem. An important

feature concerns the interfacing of these modes of operation. Thus it has to be decided which

method to use first, and when to switch between methods. Also it may not be straightforward,

as we shall see here, to use the output of one method to start the other method. Difficulties

such as these are addressed in the thesis. Many comparative numerical results are reported.

x



Chapter 0

Introduction

This thesis considers methods for solving certain optimization problems in which there are

constraints on the variables. Many advances have taken place in this subject over the last forty

years or so. There are now effective methods for situations in which the objective and constraint

functions are smooth functions. Under reasonable assumptions, these methods can be shown

to converge globally (that is from any starting point) to a point which satisfies optimality

conditions for the problems. Also the rate of convergence can often be shown to be superlinear.

Some progress has also been made for problems in which non–smooth functions occur. If these

functions are a composition of a convex polyhedral function and a smooth function, then again

globally and superlinear convergent methods have been suggested. This thesis addresses a rather

more difficult situation in which some matrix, defined in terms of the problem variables, has to

be positive semi–definite. One way to handle this problem is to impose a functional constraint

in which the least eigenvalue of the matrix is non–negative. However, if there are multiple

eigenvalues at the solution which is usually the case, such a constraint is usually non–smooth,

and this non–smoothness cannot be modelled by a convex polyhedral composite function. An

important factor is the determination of the multiplicity of the zero eigenvalues, or alternatively

the rank of the matrix at the solution. If this rank is known it is usually possible to solve the

problem by conventional techniques.

In this thesis the positive semi–definite matrix constraint is handled in a different way, by

regarding it as a convex set. There are certain methods, known as projection methods, which

can be used to solve least distance problems constrained by the intersection of convex sets.

In this thesis the application of such methods to certain problems with positive semi–definite

1
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matrix constraint is considered. It is found that the methods are globally convergent, but the

rate of convergence is linearly or slower. It is this latter feature that has probably contributed to

the relatively little interest that has been shown in such methods. However it is demonstrated

here that the methods do have the capability of determining the correct rank of the solution

matrix, and this can be done in relatively few iterations.

Thus we are led to study hybrid methods in this thesis. The hybrid method has two different

modes of operation. One is a projection method which provides global convergence and enables

the correct rank to be determined. The other is either a quasi–Newton method or a conventional

nonlinear programming method, depending on the problem, which enables rapid convergence

to be obtained. An important feature concerns the interfacing of these modes of operation.

Thus it has to be decided which method to use first, and when to switch between methods.

Also it may not be straightforward, as we shall see here, to use the output of one method to

start the other method. Difficulties such as these are addressed in the thesis. Hybrid methods

have often been used successfully in optimization, for example Powell [1970], Hald and Madsen

[1981] and Al–Baali and Fletcher [1985].

There are two main problems that are addressed in this thesis. Firstly, there is the Euclidean

distance matrix problem which arises in many experimental sciences. The problem is to find

the best Euclidean distance matrix which approximates a given non–Euclidean distance matrix.

For solving this problem two methods are given. One is a projection method which is globally

convergent. The other method for solving the Euclidean distance matrix problem is a quasi–

Newton method, in particular the BFGS method. This method is superlinearly convergent but

requires a knowledge of a certain characteristic rank. Hence new methods are established for

solving this problem using the advantage of both methods by switching from one method

to the other in a suitable way.

The second problem we going to study in this thesis is the educational testing problem which

arises in statistics. In this problem there is given a symmetric positive definite matrix and it is

required to determine how much can be subtracted from the diagonal of that matrix and still

retain a positive semi–definite matrix. In the standard form the l1–norm is used to measure the

amount subtacted from the diagonal. Unfortunately this problem is not in the correct format

for projection methods to be used directly. However there is an ingenious device due to Glunt

[1991] which transforms this problem to a related one in which a least distance measure is used.

We are therefore able to study the application of projection methods to the problem with the

least distance measure. Then Glunt’s transformation is used to enable the original educational
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testing problem to be solved.

These methods are again seen to be typified by being globally and slow convergent. When

the correct rank for the matrix is known we are also able to use the l1 Sequential Quadratic

Programming (SQP) method to solve both problems, and this converges at second order.

Subsequently hybrid methods are investigated to combine the advantageous features of both

methods.

0.1 Outline of the thesis

Chapter 1 provides a general background to the optimization problem. This chapter includes

a brief review of linear algebra and other various results. The concept of convex cones and nor-

mal cones with some important convex sets are also given. This chapter also introduces the

concept of feasibility along with various expressions for feasible directions and describes opti-

mality conditions relating to positive semi–definite matrix constraints. Finally, this chapter is

concluded by a description of the Newton, quasi–Newton and Sequential Quadratic Program-

ming (SQP) methods.

Chapter 2 provides a background about the projection methods for solving certain linear

and least distance convex programming problems in which the feasible region is the intersection

of a convex sets. Such optimization problems potentially arise in many practical situations,

for example in linear programming problems, although projection methods are not the best for

solving such problems. Here we are interested in the case where one of the convex cones is

related to a positive semi–definite matrix cone. This chapter includes a description of the von

Neumann [1950], Dykstra [1983] and Han [1988] projection methods for solving least distance

convex programming problems and Glunt [1991] method for solving linear convex programming

problems.

The aim of Chapter 3 is to find the best Euclidean distance matrix which approximates

a given non–Euclidean distance matrix. Some applications of the above problem are given

along with the definition of the Euclidean distance matrix and its characterization. Various

methods for solving this problem are considered including a projection algorithm described by

Glunt, Hayden, Hong and Wells [1990] and some new unconstrained methods based on using

quasi–Newton methods. Other projection methods are also given and at the end of this chapter
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numerical comparisons of these methods are described.

In Chapter 4 some new methods for solving the Euclidean distance matrix problem are

considered. These methods are developed from the methods of Chapter 3 using a hybrid

method. A feature of some interest is how to move between the two methods. Numerical

comparisons are also given in this chapter.

Chapter 5 considers a problem in which the objective function is a least distance function

subject to a positive semi–definite matrix constraint where the diagonal of the matrix is allowed

only to change. Two methods are developed for solving this problem. Firstly, a projection algo-

rithm is given for solving this problem which converges globally. Secondly an implementation

of the l1 Sequential Quadratic Programming (SQP) method is used which converges quadrat-

ically. A transformation due to Fletcher [1985] is used to enable this method to be used. This

chapter also includes a hybrid method between the projection method and the l1 SQP method

in a similar way to Chapter 4. Finally, numerical comparisons of these methods are carried out

in the end of the chapter.

The problem to be considered in Chapter 6 is the educational testing problem. Previous

attempts to solve the problem are described. The definition of the educational testing problem

is given. This chapter also contains projection algorithm and l1 SQP methods. At the end of

this chapter numerical comparisons of these methods are given.

In Chapter 7 new methods for solving the educational testing problem are considered. The

methods described here are similar to those in Chapter 4 and depend upon the two methods

of Chapter 6 using a hybrid method. The projection method converges globally but often

converges at very slow order. The l1 SQP method converges quadratically but often requires

the correct rank. Combining these two methods together produces a method with a better

speed of convergence. Therefore this chapter describes two hybrid methods and also gives

numerical comparisons.

The achievements of the thesis are summarized in Chapter 8 and suggestions for further

research are discussed.
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0.2 Notation

If f(x) is continuously differentiable (C1) then for any point x the vector of first

partial derivatives, or gradient vector is referred to by g(x) = ∇f(x) and ∇ denotes the

gradient operator (∂/∂x1 , . . . , ∂/∂xn)T . If f(x) is twice continuously differentiable (C2)

then there exists a matrix of second partial derivatives, or Hessian matrix, written ∇2f(x)

which is square and symmetric.

Superscript ”k” generally denotes quantities related to the kth iterate. For instance

f (k) = f(x(k)), g(k) = g(x(k)), etc, and f∗ = f(x∗), g∗ = g(x∗), etc.

Throughout this thesis the lower case boldface letters such as x, y,v are used to denote

vectors. Matrices are denoted by capital letters such as A, B, C and sometimes A written as

A = [aij ].



Chapter 1

Optimization review

1.1 Introduction

The purpose of this chapter is to provide a general background to the optimization problem.

This chapter includes some important concepts of optimization theory along with a description

of the quasi–Newton method and the Sequential Quadratic Programming (SQP) method.

Section 1.2 contains a brief review of linear algebra and other various results. The concept of

convex cones is given in Section 1.3. Also in that section two important convex cones are given.

These are the cone of all n×n symmetric positive semi–definite matrices and the convex cone

which is a subset of the positive semi–definite matrix cone. Section 1.3 also includes expressions

for the normal cones of these convex cones. In Section 1.4 the concept of feasibility is described,

along with various expressions for feasible directions. Section 1.5 describes optimality conditions

relating to positive semi–definite matrix constraints. In Section 1.6 some details of how Newton

and quasi–Newton methods work are given together with a proof of second order convergence.

The SQP method is an efficient method for solving nonlinear programming problems when

first and second derivatives are available. This method is Newton’s method applied to find the

stationary point of a Lagrangian function. The SQP method converges locally at second order.

The global properties of the SQP method are improved by associating it with an exact penalty

function. This method is described in Section 1.7.

6
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1.2 Various results

The analysis of the optimization methods in this thesis requires results from linear algebra

along with some definitions of rates of convergence. These are reviewed below.

Definition 1.2.1 (Inner product)

If A, B ∈ <n×n then their inner product is defined by

〈 A , B 〉 =
n∑

i,j=1

aijbij = tr(ATB).

where tr(ATB) means the trace of the matrix ATB which is the sum of the elements

on the diagonal of ATB.

Here <n×n denotes the space of all real n × n matrices. Also we distinguish between

Diag A which denotes the diagonal matrix whose entries are the diagonal elements of A,

and diag a which is the diagonal matrix whose entries are the elements of vector a. The

null space of A is defined by N(A) = {x ∈ <n : Ax = 0}.

Definition 1.2.2 ( Frobenius norm)

A useful matrix norm in <n×n is the Frobenius norm defined by

‖A‖F = 〈 A , A 〉
1
2 = {

n∑
i,j=1

|aij |2 }
1
2

Definition 1.2.3 (Householder matrix)

A matrix Q ∈ <n×n is said to be orthogonal if QTQ = I. A particular Householder

matrix may be defined by

Q = I − 2
νT ν

ννT , ν = [1, . . . , 1, 1 +
√
n]T . (1.2.1)

This Householder matrix is a special case for which if e = [1, 1, . . . , 1]T then

Qe =

[
0

−‖e‖2

]
=

[
0

−
√
n

]
. (1.2.2)
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Definition 1.2.4 (Irreducibly embeddable)

If there exist n vectors p1, . . . , pn in <r (r ≤ n − 1) such that

aij = ‖ pi − pj ‖22 (1 ≤ i, j ≤ n). (1.2.3)

for set of vectors in <r but not in <r−1 then the points p1, . . . , pn and the matrix

A = [aij ] are said to be irreducibly embeddable in <r.

Definition 1.2.5 (Positive definite matrices)

An n× n symmetric matrix A is said to be positive definite if

xTAx > 0 ∀x ∈ <n x 6= 0 (1.2.4)

and is denoted by A > 0. If the inequality in (1.2.4) replaced by xTAx ≥ 0 then

A is said to be positive semi–definite and is denoted by A ≥ 0.

Positive definite matrices are an important class of matrices and arise naturally in many appli-

cations. The above definition cannot be checked numerically. Equivalent definitions which can

be checked are the following

i. All eigenvalues of A > 0.

ii. There exists a unique lower triangular L ∈ <n×n such that LLT = A with lii > 0

(Choleski factors).

iii. LDLT factors exist with lii = 1 and dii > 0.

If A is a positive definite matrix, then the largest entry in A is on the diagonal and the

diagonal elements are all positive.

Definition 1.2.6 (First and second order convergence)

Let x∗ be a local minimum point with error defined as

h(k) = x(k) − x∗.

If h(k) → 0 we have convergence. If the errors behave as

‖h(k+1)‖
‖h(k)‖p

→ a
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where a > 0 then the order of convergence is defined to be p order. The most important

cases are where p = 1 (first order or linear convergence) in which a < 1 must hold,

and p = 2 (second order or quadratic convergence). If ‖h(k+1)‖
‖h(k)‖ → 0 then this is

known as superlinear convergence. Often it is only possible to obtain bounds, for example

‖h(k+1)‖
‖h(k)‖

≤ a

or

h(k+1) = O(‖h(k)‖)

for first order convergence and

‖h(k+1)‖
‖h(k)‖2

≤ a

or,

h(k+1) = O(‖h(k)‖2).

for second order convergence.

1.3 Cones and normal cones

The concept of a convex cone and its properties are very useful when applying convex analysis,

for instance the normal cone is important in the development of optimality conditions. In this

section the notion of cones and normal cones is described.

Definition 1.3.1 (Convex set and convex function)

A subset C of <n is said to be a convex set if

xλ = (1− λ)x1 + λx2 ∈ C

for all x1,x2 ∈ C and 0 ≤ λ ≤ 1. A convex function f(x) on the domain C is

defined by the condition that for any x1,x2 ∈ C it follows that

f(xλ) ≤ (1− λ)f(x1) + λf(x2) ∀ λ ∈ [0, 1]

where xλ = (1− λ)x1 + λx2.
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Definition 1.3.2 (Convex cone)

A subset K of <n is called a convex cone if and only if x1,x2 ∈ K, α, β ≥ 0

implies that αx1 + βx2 ∈ K.

The set of all n× n symmetric positive semi–definite matrices

K< = {A : A ∈ <n×n, AT = A and zTAz ≥ 0 ∀ z ∈ <n} (1.3.1)

is a convex cone of dimension n(n + 1)/2. The dimension is the number of free parameters

in a symmetric matrix A. Let A, B ∈ K< then zT (αA + βB)z ≥ 0 ∀ z ∈ <n, and

α, β ≥ 0. This is because αzT Az ≥ 0, βzTBz ≥ 0 ∀ z ∈ <n, which implies that

αA + βB ∈ K<. This proves that K< is a convex cone. (The subscript < is used to

distinguish this case from the restricted cone in the next paragraph).

Another convex cone which will be used for the projection method given in Chapter 3 is the

set of all n× n symmetric positive semi–definite matrices with respect to M, where

M = { x ∈ <n : eT x = 0 } (1.3.2)

and e = [1, 1, . . . , 1]T ∈ <n. K< is subset of this set which may be denoted by

KM = {A : A ∈ <n×n, AT = A and xTAx ≥ 0 ∀ x ∈M} (1.3.3)

which is a convex cone. Let A, B ∈ KM then

zT (αA + βB)z ≥ 0 ∀ z ∈ M, α ≥ 0 and β ≥ 0. (1.3.4)

This is because αzT Az ≥ 0, βzTBz ≥ 0 ∀ z ∈ M , which implies that αA + βB ∈ KM .

Thus KM is convex cone.

It is also convenient to define two other convex sets for the purposes of Chapters 5 and 6.

If F ∈ <n×n is any given symmetric positive definite matrix then define

Koff = {A : A ∈ <n×n, A − Diag A = F̄}. (1.3.5)

where F̄ = F − Diag F. This is the set of matrices whose off–diagonal elements are

equal to those of F . Also, let diag v = Diag F then define

Kb = {A : A ∈ <n×n, A = Ā + diag x, xi ≤ vi i = 1, 2, ...n} (1.3.6)
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where Ā = A − Diag A. This is the set of matrices that is obtained by reducing the diagonal

of A. Koff and Kb are convex subspaces.

Next, the concept of the normal cone, denoted by ∂K, is introduced which is of importance

when deriving optimality conditions for problems which involve any convex set. If a is on the

boundary of K, then a vector x is said to be normal to a convex set K at a, if x does

not make an acute angle with any line segment in K emanating from a. Therefore any vector

x ∈ ∂K(a) must satisfy 〈y − a,x〉 ≤ 0 for every y ∈ K, (see Figure 1.3.1). The set of

all vectors x normal to K at a is called the normal cone to K at a, and denoted by

∂K(a) = {x : x ∈ <n, 〈y − a , x〉 ≤ 0 ∀ y ∈ K}. (1.3.7)

Equivalently the normal cone can be defined by

∂K(a) = {x : x ∈ <n, 〈 x, a〉 = sup
y∈K

〈x, y〉}. (1.3.8)

It is convenient to define ∂K(a) = {0} if a is interior to K, and ∂K(a) = ∅ (the

empty set) if a is exterior to K, this is consistent with (1.3.7) and (1.3.8).

Let K1 and K2 be convex sets in <n whose relative interiors have a point a in common.

Then

∂(K1 ∩K2)(a) = ∂K1(a) + ∂K2(a) (1.3.9)

(see [Rockafellar 1970]).

In this thesis we consider the case of the convex cone in which the elements are matrices

instead of vectors and we use the matrix inner product in Definition 1.2.1. It follows from

(1.3.7) that

∂K(A) = {B : B ∈ <n×n and 〈Z − A , B〉 ≤ 0 ∀ Z ∈ K} (1.3.10)

where K is a matrix cone.

It follows from (1.3.8) that the normal cone for (1.3.1) is

∂K<(A) = {B : B ∈ <n×n, 〈A,B〉 = sup
V ∈K<

〈V,B〉}.

However since unsymmetric matrices in ∂K< are not of interest here it is more convenient to

define ∂K< by restricting it to the symmetric normal cone
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Figure 1.3.1: The normal cone ∂K for a convex cone K at point a.

∂K<(A) = {B : B ∈ <n×n, B = BT , 〈A,B〉 = sup
V ∈K<

〈V,B〉}. (1.3.11)

The most interesting case concerns the elements of the boundary of K<, since ∂K<(A) = {0}

when A is interior to K< (A > 0).

In the following a theorem due to Fletcher [1985] is given to show how to find the normal

cone ∂K<(A) at A, such that A belongs to the boundary of K<

Theorem 1.3.3

If the columns of Z are an orthonormal basis for the null space of A, and Λ is any

symmetric positive semi–definite matrix, then an equivalent form to (1.3.11) where A

lies on the boundary of K< is the following

∂K<(A) = {B : B ∈ <n×n, B = BT , B = − ZΛZT ,

Λ = ΛT , Λ ≥ 0}. (1.3.12)



13

Proof

Consider supV ∈K<
〈V,B〉 for fixed B, let B = XΩXT be the spectral decomposition of

B with X being the orthogonal matrix of eigenvectors and Ω = diag [ω1, ω2, . . . , ωn] the

diagonal matrix of eigenvalues. Since A is positive semi–definite there exists C = XTV X

which is positive semi–definite. Using Definition 1.2.1 of the inner product it follows that

sup
V ∈K<

〈V,B〉 = sup
C∈K<

〈C,Ω〉

= sup
cii≥0

∑
ciiωi.

This follows because

〈V,B〉 = tr(V B)

= tr(V XXTBXXT )

= tr(XTV XXTBX)

= tr(CΩ).

Hence

sup
V ∈K<

〈V,B〉 = 0 iff ωi ≤ 0 ∀ i (1.3.13)

and this is equivalent to B ≤ 0 since ωi are the eigenvalues of B. Hence an equivalent

form to (1.3.11) is

∂K<(A) = {B : B ∈ <n×n, B = BT , 〈A,B〉 = 0, B ≤ 0}. (1.3.14)

Let A = Y ΛrY
T , with Λr being the diagonal matrix whose elements are the nonzero

eigenvalues of A and the columns of Y are the corresponding orthonormal set of eigenvectors,

so that [Y Z] is an orthogonal matrix. Express B as

B = [Y Z]

[
R S

ST T

]
[Y Z]T . (1.3.15)
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Since 〈A, B〉 = 0 then tr(ΛrY
TBY ) = 0. The diagonal elements of Y TBY are zero

because Λr is positive definite and diagonal. Also from (1.3.15) Y TBY = R so

it follows that R has zero diagonal elements. Hence from (1.3.14) B ≤ 0 implies

that R = 0, and thus T ≤ 0. Therefore from (1.3.15) B = ZTZT , and (1.3.12) follows

since Λ = − T 2.

Example 1.3.4

If n = 2 then the cone in (1.3.1) becomes

K< = {A : A =

[
x z

z y

]
x ≥ 0, y ≥ 0, xy ≥ z2 and x, y, z ∈ <}

and is illustrated in Figure 1.3.2. Clearly the matrices in the interior of the cone are

positive definite, whereas those on the boundary are singular. For example the matrix[
1 −1

−1 1

]

on the boundary is positive semi–definite. Then Z = [1 1]T and Λ = [α] ≥ 0, so the

normal cone (1.3.12) at this point is

∂K<(

[
1 −1

−1 1

]
) = {B : B = − α

[
1 1

1 1

]
, α ≥ 0}.

The normal cone for Koff ∩Kb is given in the following.

Theorem 1.3.5
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Figure 1.3.2: The positive semi–definite matrix cone K<.

Let F ∈ <n×n be a given symmetric positive definite matrix and define Koff and

Kb as in (1.3.5) and (1.3.6) respectively. Let A ∈ Koff ∩Kb. Then

∂(Koff ∩Kb) (A) = {B : B ∈ <n×n,{
bii ≥ 0 if xi = vi

bii = 0 if xi < vi

}
i = 1, ..., n}. (1.3.16)

where A = Ā+ diag x.

Proof
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From the normal cone definition (1.3.10) it is clear that

∂Koff (Ā+ diag x) = {B : B =


0 b21 . . . bn1

b21 0 . . . bn2

...
...

. . .
...

bn1 bn2 . . . 0

} (1.3.17)

because Z̄ = Ā = F̄ implies Z − A = 0 ∀ i 6= j, in (1.3.10) where Z̄ = Z − Diag Z.

Consider

sup
Z∈Koff∩Kb

〈B,Z〉

and assume for some i that bii < 0. Let zii = aii − β then Z ∈ Koff ∩Kb. By

making β sufficiently large we can make 〈B,Z〉 as large as we like. Thus, if bii < 0 for

any i, we have that

〈A,B〉 = sup
Z∈Koff∩Kb

〈B,Z〉 = ∞.

Now suppose bii ≥ 0 ∀ i. Then from the normal cone definition (1.3.8)

∂Koff ∩Kb(Ā+ diag x) = {B : B ∈ <n×n,

〈B, Ā + diag x〉 = sup
Z∈Koff∩Kb

〈B,Z〉}.

Now since Z̄ = Ā, bii ≥ 0 ∀ i and

〈B, diag z〉 =
n∑

i=1

biizii

≤
n∑

i=1

biivi

= 〈B, diag v〉

where diag z = Z − Z̄. Then

sup
Z∈Koff∩Kb

〈B,Z〉 ≤ 〈B, Ā + diag v〉

but since Ā + diag v ∈ Koff ∩Kb then
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sup
Z∈Koff∩Kb

〈B,Z〉 = 〈B, Ā + diag v〉.

Thus

〈B, Ā + diag x〉 = 〈B, Ā + diag v〉 = 〈A, B〉

Now

sup
Z∈Koff∩Kb

〈B,Z〉 =

{
∞ if bii < 0 for any i

〈A, B〉 otherwise

}
(1.3.18)

this implies from (1.3.8)

∂(Koff ∩Kb) (A) =

{B : B ∈ <n×n, 〈B, Ā + diag x〉 = 〈B, Ā + diag v〉} (1.3.19)

which implies that
n∑

i=1

bii(vi − xi) = 0. (1.3.20)

Therefore if xi < vi then bii = 0 since each term of (1.3.20) is nonnegative. 2

In addition to the normal cone ∂K< another set of interest is the normal cone ∂KM .

This set is important when deriving the optimality conditions for the projection method given

in Chapter 3. A theorem for the expression of the normal cone ∂KM is stated and proved.

Firstly though a theorem used in the proof is given. An example for the convex cone (1.3.3)

when n = 3 is given later on.

The following theorem is based on Hayden and Wells [1988].

Theorem 1.3.6

Let Q be the Householder matrix in (1.2.1). If A = AT ∈ <n×n and M is given in

(1.3.2), then

xTAx ≥ 0 ∀ x ∈ M (1.3.21)

if and only if

QAQ =

[
A1 a

aT α

]
, A1 ≥ 0. (1.3.22)
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Proof

For all x ∈ M denote y = Qx, and it follows that x = Qy since Q is orthogonal

and symmetric. The condition x ∈ M is equivalent to eT x = 0, or eTQy = 0, and

hence to eT
ny = 0 where eT

n = [0, 0, . . . , 0, 1]. Thus (1.3.21) can be written as

(Qy)TAQy ≥ 0 ∀ y ∈ <n such that yn = 0. (1.3.23)

Thus (1.3.22) follows. 2

In what follows we denote the rank of A1 by r, and hence the spectral decomposition of

A1 can be expressed as

A1 = UΛUT = U

[
Λr 0

0T 0

]
UT (1.3.24)

where U is an orthogonal matrix and Λr > 0 is an r × r diagonal matrix.

A theorem due to Glunt et. al. [1990] will be given to show how to find the normal cone

∂KM (A) at A ∈ KM .

Theorem 1.3.7

Given any A, then the normal cone ∂KM (A) is given by

∂KM (A) = {B : B = Q

[
UGUT 0

0T 0

]
Q, H ≤ 0} (1.3.25)

where

G =

[
0 0

0T H

]
,

U is an orthogonal matrix given by (1.3.24) and H is a symmetric matrix in

<(n−r−1)×(n−r−1) (The partitioning of G reflects that of A1).

Proof
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Let B ∈ ∂KM (A) and define B1, b and β by

B = Q

[
B1 b

bT β

]
Q.

Now let X1 ∈ <n−1×n−1 be any positive semi–definite matrix. Then for any x, ξ by

Theorem 1.3.6 the matrix

X = Q

[
X1 x

xT ξ

]
Q

is in KM . By (1.3.10)

〈X −A,B〉 ≤ 0

and since Q is orthogonal we have

〈QXQ,QBQ〉 ≤ 〈A,B〉

which implies that

〈X1, B1〉 + 2xT b + ξβ ≤ 〈A,B〉. (1.3.26)

Let either b 6= 0 or β 6= 0. Choose x = λb and ξ = λβ for sufficiently large λ > 0

then (1.3.26) is false (contradiction). This implies that b = 0 and β = 0.

Following a similar strategy as in the previous proof (Theorem 1.3.3), let V ΩV T be the

spectral decomposition of B1 with V being the orthogonal matrix of eigenvectors and

Ω = diag [ω1, ω2, . . . , ωn−1] the diagonal matix of eigenvalues. Since X1 is positive

semi–definite there exists a positive semi–definite matrix C = V TX1V , and using (1.3.26)

〈A,B〉 ≥ 〈X1, B1〉 = 〈V TX1V,Ω〉 = 〈C,Ω〉

=
n−1∑
j=1

cjjωj .

Hence

sup
A∈KM

〈A,B〉 ≥ 0 iff ωi ≤ 0 i = 1, . . . , n− 1 (1.3.27)
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and this is equivalent to B1 ≤ 0 since ωi are the eigenvalues of B1 and

c11, c22, . . . , cn−1 n−1 are nonnegative scalars since C is positive semi–definite matrix.

Therefore, if B ∈ ∂KM (A) it has the form

B = Q

[
B1 0

0 0

]
Q, B1 ≤ 0. (1.3.28)

From (1.3.28) we have 〈X,B〉 ≤ 0 ∀ X ∈ KM and since 〈X −A,B〉 ≤ 0, then

〈A,B〉 ≤ sup
X∈KM

〈X,B〉 ≤ 0 (1.3.29)

≤ 〈A,B〉. (1.3.30)

from (1.3.27). Thus from (1.3.29) and (1.3.30)

〈A,B〉 = 0. (1.3.31)

Then (1.3.28), (1.3.31) and (1.3.22) imply that

〈A1, B1〉 = 0.

Then from the spectral decomposition A1 in (1.3.24) we have

〈Λr, U
TB1U〉 = 〈Λr, G〉 =

r∑
j=1

λjgjj = 0 (1.3.32)

where G = UTB1U ≤ 0. Now G ∈ <(n−1×n−1) has the following structure

G =

[
N S

ST H

]

where H ∈ <(n−r−1)×(n−r−1) but since λj > 0 and gjj ≤ 0 for 1 ≤ j ≤ r then

from(1.3.32) gjj = 0 for 1 ≤ j ≤ r. Since G is negative semi–definite G has the form

G =

[
0 0

0 H

]
, H ≤ 0.

Therefore
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B1 = U

[
0 0

0 H

]
UT , H ≤ 0.

and B has the form of (1.3.25).

Conversely, if B is written in the form (1.3.25) then since B ≤ 0 and

X − A ≥ 0 ∀ X ∈ KM , (since A is the nearest positive semi–definite matrix)

then

〈X − A,B〉 ≤ 0 ∀ X ∈ KM

which implies that B ∈ ∂KM (A) 2

In the rest of this section an example of the convex cone (1.3.3) where n = 3 is given.

Example 1.3.8

For the example let n = 3, and

A =


0 x y

x 0 z

y z 0


It is convenient for what follows later to express the Householder matrix Q as

Q =


a− c b− d − c− d

b− d a− c − c− d

−c− d − c− d − c− d


where a = 0.911, b = 0.244, c = 0.122 and d = 0.455 accurate to 3 decimal places.

Then

QAQ =


bz − 1

3x− ay 1
3 (2x− y − z) dz − 1

3x− cy

1
3 (2x− y − z) by − 1

3x− az dy + cz − 1
3x

dz − 1
3x− cy dy + cz − 1

3x
2
3 (x+ y + z)



and the matrix A1 is given by

A1 =

[
bz − ay − 1

3x
1
3 (2x − y − z)

1
3 (2x − y − z) by − 1

3x − az

]
.
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Figure 1.3.3: The positive semi–definite matrix cone KM in M .

Using (1.3.23) the cone KM in (1.3.3) is defined by the inequalities

bz − ay − 1
3x ≥ 0

by − 1
3x − az ≥ 0

(bz − ay − 1
3x)(by − 1

3x − az) ≥ [ 13 (2x − y − z)]2 (1.3.33)

where inequality (1.3.33) implies that

z2 − 2z(x + y) + (x − y)2 ≤ 0.
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The matrix

A′ =


0 −1 −1

−1 0 0

−1 0 0



is on the boundary of the cone KM . Then

U =

[
−0.2588 0.966

0.966 0.2588

]
and G =

[
0 0

0 λ

]
,

so the normal cone (1.3.25) at this point is

∂KM (A′) = {λ


0.5 0 −0.5

0 0 0

−0.5 0 0.5

 , λ ≥ 0}.

The cone for this example is illustrated in Figure 1.3.3.

1.4 The set of feasible directions

In this section results are given which are used subsequently to derive optimality conditions.

A feasible point x is a point which satisfies all the constraints in an optimization problem

and the set of all such points is referred to as the feasible region. Here we consider problems

in which the the feasible region is a convex set K ⊂ <n. Let {x(k)} → x where

x(k) 6= x ∀ k is an infinite sequence of feasible points. It is possible to express

x(k) − x = δ(k)s(k) ∀ k (1.4.1)

where δ(k) > 0 is a scalar. The sequence x(k) is said to be a directional sequence if

{s(k)} → s. The limiting vector s(k) is referred to as a feasible direction. Then the set of

feasible directions can be expressed as

F(x) = {s : ∃ {x(k)} such that {x(k)} → x, {s(k)} → s, δ(k) → 0}. (1.4.2)

A related set of feasible directions which is easier to manipulate is the set
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F (x) = {s : s ∈ <n, sT g ≤ 0 ∀g ∈ ∂K(x)}. (1.4.3)

which is the set of feasible directions for the cone of all supporting hyperplanes at x. For

future reference it is important to prove that F(x) ⊆ F (x).

Let s ∈ F(x) then from (1.4.2) there exists a directional sequence x(k) → x

such that s(k) → s. Using (1.4.1) and dividing by δ(k) > 0 it follows that

s(k)T g =
(x(k) − x)T g

δ(k)
. ∀ g ∈ ∂K(x) (1.4.4)

Now any vector g ∈ ∂K(x) satisfies (z − x)T g ≤ 0 ∀ z ∈ K. Then since x(k) are

feasible points

(x(k) − x)T g ≤ 0.

Hence taking limits in (1.4.4) as k → ∞ and s(k) → s implies that

sT g ≤ 0

or s ∈ F (x). Therefore this proves that F(x) ⊆ F (x) for the general case.

For the positive semi–definite matrix cone (1.3.1) similar definitions to (1.4.2) and (1.4.3)

hold. If S is a symmetric matrix which is equivalent to a feasible direction in (1.4.3), Z is a

basis matrix for the null space of A and Λ is any symmetric positive semi–definite matrix,

then using Theorem 1.3.3, (1.4.3) and the inner product Definition 1.2.1, it follows that

F (A) = {S : S = ST , 〈B,S〉 ≤ 0 ∀ B ∈ ∂K<(A)}

= {S : S = ST , 〈−ZΛZT , S〉 ≤ 0 ∀ Λ ≥ 0}

= {S : S = ST , 〈Λ, ZTSZ〉 ≥ 0 ∀ Λ ≥ 0}

and hence

F (A) = {S : S = ST , ZTSZ ≥ 0}. (1.4.5)

The following theorem is due to Fletcher [1985].

Theorem 1.4.1

For A ∈ K<

F(A) ≡ F (A) (1.4.6)
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Proof

In general we proved that F(A) ⊆ F (A) above. Now the converse is considered.

Take a direction S ∈ F and let X = [Y Z] be the eigenvector matrix for A which

is described in Theorem 1.3.3 and Λr the diagonal matrix of nonzero eigenvalues.

There are two cases, first when ZTSZ ≥ 0 and singular, consider the trajectory

Aε = A + εS + βε2I (1.4.7)

which gives

XTAεX = [Y Z]TA + εS + βε2I[Y Z]

=

[
Y TAY + εY TSY + βε2Y TY Y TAZ + εY TSZ + βε2Y TZ

ZTAY + εZTSY + βε2ZTY ZTAZ + εZTSZ + βε2ZTZ

]
.

Then, since A = Y ΛrY
T and Z is the basis matrix for the null space of A, it follows that

XTAεX =

[
Λr + εY TSY + βε2 εY TSZ

εZTSY εZTSZ + βε2

]
. (1.4.8)

Now

Λr + εY TSY + βε2 > 0 (1.4.9)

and

εZTSZ + βε2 − ε2Y TSZ(Λr + εY TSY + βε2)−1ZTSY ≥ 0 (1.4.10)

are going to be proved. If β > ‖Λ−1
r ‖‖S‖2 is chosen and for ε sufficiently small, then

clearly (1.4.9) and (1.4.10) are true by strength of Λr > 0 for (1.4.9) and ZTSZ > 0 for

(1.4.10). Hence there exist Choleski factors for (1.4.9) and (1.4.10) which enable us to construct

a Choleski factor for (1.4.8). Therefore XTAεX is positive semi–definite or equivalently Aε

is feasible.

For the second case when ZTSZ > 0 consider the trajectory

Aε = A + εS. (1.4.11)
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Similar to the first case it gives

XTAεX =

[
Λr + εY TSY εY TSZ

εZTSY εZTSZ

]
, (1.4.12)

hence Aε is feasible since

Λr + εY TSY > 0 (1.4.13)

and

εZTSZ − ε2Y TSZ(Λr + εY TSY )−1ZTSY ≥ 0. (1.4.14)

Thus in both cases a direction S ∈ F(A) is constructed and if we take ε = εk for any

sequence εk → 0 then there exists a feasible directional sequence in F . Therefore F ⊂ F

proving that these sets are in fact equivalent. 2

From this theorem we can deal with F which is easier to operate than F . In this section

expression (1.4.5) provides a characterization of a feasible direction of search. The benefit of

this expression along with the normal cone expression (1.3.12) lies in their application to opti-

mization problems. The expression for the normal cone plays the part of the subdifferential in

the statement of optimality conditions. The expression for the feasible direction accommodates

a characterization of a feasible direction of search which is easily verified.

1.5 First and second order conditions

The content of this section is useful in deriving the methods in Sections 5.3 and 6.4.

This section includes a useful theorem of first order conditions. Also at the end of this

section second order conditions are stated. It is also shown how to compute a basis matrix Z

for the null space of A in connection with the partial LDLT factorization of A.

Consider the following problem

minimize f(A)

subject to A ∈ K<, ci(A) ≤ 0. i = 1, . . . ,m (1.5.1)
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The problem of minimizing a convex function f(A) on a general convex set K is said to be a

convex programming problem. A special case of (1.5.1) occurs when K = K< ∪ Kc where

Kc = {A : A ∈ <n×n ci(A) ≤ 0. i = 1, . . . ,m}.

is a convex set (this is assured if the functions ci(A) are convex).

A local solution is a point at which, in a neighbourhood about that point, has no feasible

point that gives a smaller value of the objective function.

Theorem 1.5.1

Every local solution x∗ to a convex programming problem is a global solution.

Proof

Let A∗ be a local but not global solution. Then ∃ A ∈ K such that f(A) < f(A∗).

By convexity of K

Aλ = (1 − λ)A∗ + λA.

By convexity of f

f(Aλ) ≤ (1 − λ)f(A∗) + λf(A)

= f(A∗) + λ(f(A) − f(A∗))

< f(A∗). (1.5.2)

Taking λ → 0 in the limit there exists f(Aλ) in the neighbourhood of f(A∗) which

contradictes the local solution property. Thus local solutions are global. 2

In a convex programming problem every local solution is a global solution which has

been proved above. If f(A) and ci(A) i = 1, . . . ,m are convex and nonsmooth then

the first order necessary conditions can be given in the following theorem

Theorem 1.5.2 (First order conditions)
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If A∗ solves (1.5.1) and if the condition in Theorem 1.4.1 holds then A∗ is feasible and

there exist Lagrange multipliers Λ∗ ≥ 0 and π∗ ≥ 0 satisfying the following

m∑
i=1

π∗i c
∗
i = 0

and

∇A L(A∗,Λ∗,π∗) = G∗ + B∗ +
m∑

i=1

π∗iC
∗
i = 0 (1.5.3)

where G∗ ∈ ∇f∗, B∗ ∈ ∂K∗
< and C∗i = ∇c∗i i = 1, . . . ,m. (Note that the

operator ∇ maps a scalar into a matrix).

Proof (see for example Rockafellar [1981] Chapter 5)

This theorem is related to the usual Kuhn–Tucker (KT) conditions (e.g. see Fletcher [1987])

and the π∗i are KT multipliers. However an additional term derived from ∂K∗
< also occurs.

The conditions in Theorem 1.5.2 are certainly sufficient when all feasible directions are strict

ascent directions. However consider situation in which there exist feasible directions along which

f(A) has a zero directional derivative. Now higher order terms become significant. Second

order information is required in order to provide algorithms that converge rapidly. Also, it

is difficult to deal with the matrix cone constraint in (1.5.1), since it is not in the form of a

functional constraint. An equivalent problem to (1.5.1) with equality and inequality constraints

which are easier to manipulate is considered here. This formulation will enable us to derive

algorithms with a second order rate of convergence.

Assume that r, the rank of A∗, (1 < r < n) is known. Permuting rows and columns

if necessary, then for A sufficiently close to A∗ (which ensure that D1 > 0) the partial

factors

A = LDLT (1.5.4)

can be calculated, where

L =

[
L11

L21 I

]
, D =

[
D1

D2

]
(1.5.5)
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L11 ∈ <r×r is unit lower triangular, D1 ∈ <r×r is diagonal and positive definite and

D2 ∈ <n−r×n−r. D2 = 0 at the solution, in general we can calculate D2 as follows,

partitioning

A =

[
A11 AT

21

A21 A22

]
(1.5.6)

where A11 ∈ <r×r, from (1.5.5)

LDLT =

[
L11D1L

T
11 L11D1L

T
21

L21D1L
T
11 L21D1L

T
21 + D2

]
(1.5.7)

then

A22 = L21D1L
T
21 + D2 (1.5.8)

and since

L21D1L
T
21 = (L21D1L

T
11)(L

−T
11 D

−1
1 L−1

11 )(L11D1L
T
21)

= A21A
−1
11 A

T
21,

therefore

D2(A) = A22 − A21A
−1
11 A

T
21. (1.5.9)

Thus A is positive semi–definite if and only if D2 = 0, thus the constraint A ∈ K< can

be expressed as

D2(A) = 0 (1.5.10)

This gives a ready expression which can be used to compute both first and second derivatives

of the constraints with respect to the elements of A.

The orthonormal basis matrix Z for the null space of A∗ can be calculated using (1.5.5).

Define

V = L−T =

[
L−T

11 −L−T
11 L

T
21

0 I

]



30

then using (1.5.7)

V =

[
L−T

11 −A−1
11 A

T
21

0 I

]

=

[
V11 V21

0 I

]
. (1.5.11)

Then

Z =

[
V21

I

]
.

From (1.5.9)

D2(A) = A22 − A21A
−1
11 A

T
21

= [−A−1
11 A

T
21 I ]

[
A11 AT

21

A21 A22

] [
−A−1

11 A
T
21

I

]

= ZTAZ = 0. (1.5.12)

Then problem (1.5.1) can be expressed in the equivalent form

minimize f(A)

subject to ZTAZ = 0 ci(A) ≤ 0. i = 1, . . . ,m. (1.5.13)

It is convenient to introduce the Lagrangian function

L(A,Λ,π) = f(A) − 〈Λ, ZTAZ〉 +
m∑

i=1

πici(A) (1.5.14)



31

in which Λ and π are Lagrange multipliers for the constraints (1.5.12) and c(A) ≤ 0

respectively. (Fletcher [1987] (Theorem 9.1.1)). Since 〈Λ, ZTAZ〉 = 〈A,ZT ΛZ〉, then A∗,Λ∗

and π∗ satisfy

∇A L(A∗,Λ∗,π∗) = ∇Af
∗ − ZT Λ∗Z +

m∑
i=1

π∗i∇Ac
∗
i = 0 (1.5.15)

This equation corresponds to (1.5.3). (Note that Λ and π not necessarily the same as the

Λ and π in Theorem 1.5.2).

The matrix Λ that appears in the normal cone expression (1.3.12) can be defined as the

Lagrange multiplier matrix for the constraints D2(A) = 0 relative to the basis Z.

This treatment of second order conditions was given by Fletcher [1985].

1.6 Quasi–Newton methods

In this section the problem of finding a local solution to the problem

minimize
x

f(x), x ∈ <n (1.6.1)

is considered. The function f is smooth and not necessary convex. In the previous section

we dealt with optimization problems which have various types of constraint. However in this

section the optimum value is sought of an objective function of many variables without any

constraint. This type of problem will arise in Chapter 3.

The present section will be devoted to the study of quasi–Newton methods. First, the

Newton method will be discussed in order to show how the quasi–Newton method is derived

from it.

The idea behind Newton’s method is to replace the function f(x) in the equation to be

minimized (f(x) = 0) by a quadratic model that approximates the function. The quadratic

model is obtained from the first three terms of a Taylor series expansion of f(x) about x(k) as

follows
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f(x(k) + δ) ≈ f (k) + g(k)T δ + 1
2 δTG(k)δ = q(k)(δ) (1.6.2)

where δ = x − x(k), and q(k)(δ) is the resulting quadratic approximation for iteration

k. With the requirement that the first and the second derivatives of f(x) are known at

any point, then the coefficients f (k), g(k) and G(k) are also known. The kth iteration

of Newton’s method can be stated as follows:

Algorithm 1.6.1 (Newton method)

Let G(k) be an n× n positive definite matrix then the following algorithm computes the

local minimum x∗ for f(x)

i. Select initial point x(0) ∈ <n.

ii. Solve G(k)δ = − g(k) for δ = δ(k)

iii. Set x(k+1) = x(k) + δ(k).

iv. If g(k) ≈ 0

stop

else

go to (ii).

The following theorem by Fletcher [1987] gives the rate of convergence for Newton method.

Theorem 1.6.2

If f is twice continuously differentiable, x(k) is sufficiently close to x∗ for some k,

G∗ is nonsingular and G(x) satisfies a Lipschitz condition ‖G(x)−G(y)‖ ≤ ‖x − y‖

in a neighbourhood of a local minimizer x∗, then limk→∞ x(k) = x∗ and Newton’s

algorithm converges at second order.

Proof

Since f is differentiable, a Taylor series for g (x(k) + h ) about x(k) exists and can

be written as
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g(x(k) + h) = g(k) + G(k)h + O(‖h‖2). (1.6.3)

Denote h(k) = x(k) − x∗. Letting h = − h(k) gives

0 = g∗ = g(x(k) − h(k)) = g(k) − G(k)h(k) + O(‖h(k)‖2). (1.6.4)

Multiplying equation (1.6.4) by G(k)−1 gives

0 = − δ(k) − h(k) + O(‖h(k)‖2) = − h(k+1) + O(‖h(k)‖2) (1.6.5)

Hence, by definition of O(h) (see Definition 1.2.6), there exists a constant c > 0 such that

‖h(k+1)‖ ≤ c ‖h(k)‖2. (1.6.6)

Let x(k) be in a neighbourhood of x∗ with ‖h‖ ≤ α/c, where 0 < α < 1, then

this implies that ‖h(k+1)‖ ≤ α‖h(k)‖. Thus x(k) → x∗ since ‖h(k)‖ → 0 and relation

(1.6.6) shows that Newton’s algorithm converges at second order. 2

The basic Newton method as it stands is not suitable for general purposes because G(k) may

not be positive definite when x(k) is far away from the solution x∗. Sometimes even if G(k) is

positive definite Newton’s method may not converge, and {f (k)} may not even decrease.

Now, the concept of the line search is introduced. The line search algorithms have the

following structure:

given an initial estimate x(0) the basic structure of the kth iteration is

i. determine a direction of search s(k)

ii. find α(k) to minimize f(x(k) + α(k)s(k)) with respect to α(k)

iii. set x(k+1) = x(k) + α(k)s(k).

There are different methods which correspond to different ways of choosing s(k). The line

search subproblem in step (ii) is carried out by repeatedly sampling f(x) and possibly its
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derivatives for different points x = x(k) + αs(k) along the line. In practice step (ii) is solved

approximately and the aim of the line search is to find a step α(k) which gives a significant

reduction in f on each iteration. (see Fletcher [1987] Sections 2.5 and 2.6 for more about

the line search).

However the main difficulty in Newton’s method arises from supplying the second derivative

matrix G. Methods similar to Newton’s method, and not requiring the second derivative, can be

derived. Quasi–Newton methods are descent methods which approximate G−1 by a symmetric

positive definite matrix H(k). The popularity of the most successful of these methods stems

from the fact that they exhibit a fast rate of convergence while avoiding the second derivative

calculations associated with Newton’s method.

The quasi–Newton algorithm takes the following form.

Algorithm 1.6.3 (quasi–Newton method)

i. Select initial point x(0) ∈ <n.

ii. Set s(k) = −H(k)g(k)

iii. Line search along s(k) giving x(k+1) = x(k) + α(k)s(k)

iv. Update H(k) giving H(k+1) .

v. If g(k) ≈ 0

stop

else

go to (ii).

The initial matrix H(0) is an arbitrary positive definite matrix, H(0) = I is the first choice

if there is no better estimate. There are various possible formulas for updating the positive

definite matrix H. An important formula was suggested independently by Broyden [1970],

Fletcher [1970], Goldfarb [1970] and Shanno [1970], and is known as the BFGS formula

H
(k+1)
BFGS = H(k) + {1 +

γ(k)TH(k)γ(k)

δ(k)T γ(k)
} δ(k)δ(k)T

δ(k)T γ(k)

− δ(k)γ(k)TH(k) + H(k)γ(k)δ(k)T

δ(k)T γ(k)
. (1.6.7)
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where

γ(k) = g(k+1) − g(k).

and

δ(k) = α(k)s(k) = x(k+1) − x(k).

There is growing evidence that the BFGS formula is the best general purpose quasi–Newton

method currently available and it is an efficient technique for unconstrained optimization.

Therefore, this formula will be used in this thesis. For more discussion about Newton and

quasi–Newton methods with references see Fletcher [1987].

1.7 The l1 SQP method

This section is devoted to constrained optimization in which additional constraints arise while

in the previous section we had only objective functions. The methods in this section deal with

constraints which are easier to handle than the constraints in previous sections. The constraints

here are expressed in terms of equations and inequalities instead of sets and cones. Methods

arising in this section are useful in deriving related methods in Sections 5.3 and 6.4.

This section will be devoted to the study of l1 SQP method. First it will be shown how

the l1 SQP method is derived from the SQP method. The SQP method is also called the

Lagrange–Newton method.

Consider the following equality constraint problem

minimize
x

f(x)

subject to c(x) = 0. (1.7.1)

The idea behind the SQP method is to iterate on the basis of certain approximations to the

problem function f(x) and c(x) using a linear approximation to the constraint function

c(x). This method is Newton’s method applied to find the stationary point of the Lagrangian

function
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L(x,λ) = f(x) −
∑

i

λici(x) (1.7.2)

The variables in the Lagrangian function are x and λ. The method generates a sequence of

approximations x(k) and λ(k) to the solution vector x∗ and the Lagrange multipliers λ∗.

A Taylor series for ∇x,λ L about x(k), λ(k) gives

∇x,λ L(x(k) + δx, λ(k) + δλ) = ∇x,λ L(x(k), λ(k))

+ [∇2
x,λ L(x(k), λ(k))]

[
δx

δλ

]
+ . . .

where δλ = λ∗ − λ(k), δx = x∗ − x(k). Neglecting higher order terms

∇2
x,λ L(x(k), λ(k))

[
δx

δλ

]
= −∇x,λ L(x(k), λ(k)). (1.7.3)

Since ∇x,λ L(x∗, λ∗) = ∇x,λ L(x(k) + δx, λ(k) + δλ) = 0. Using (1.7.2) to find

∇x,λ L and ∇2
x,λ L, gives the system

[
W (k) −A(k)

−A(k)T 0

] [
δx

δλ

]
=

[
−g(k) + A(k)λ(k)

c(k)

]
(1.7.4)

where g = ∇x f, A is the Jacobian matrix of constraint c(x(k)), and

W (k) = ∇2
xf(x(k)) −

∑
i

λ
(k)
i ∇2

xci(x
(k)) (1.7.5)

is the Hessian matrix ∇2
x L(x(k),λ(k)). The system (1.7.4) is solved to give corrections δx

and δλ.

An equivalent system to (1.7.4) is

[
W (k) −A(k)

−A(k)T 0

] [
δ(k)

λ(k+1)

]
=

[
−g(k)

c(k)

]
(1.7.6)
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where λ(k+1) = λ(k) + δλ and δ(k) = δx. System (1.7.6)is used to determine δ(k) and

λ(k+1), then x(k+1) is given by

x(k+1) = x(k) + δ(k). (1.7.7)

This method requires initial approximations x(0) and λ(0), and uses (1.7.6) and (1.7.7) to

generate the iterative sequence {x(k), λ(k)}.

Similar to Newton’s method in the previous section it is possible to restate this method

in terms of one in which the subproblem involves the minimization of a quadratic function.

Consider the subproblem

minimize
δ

q(k)(δ) = 1
2 δTW (k)δ + g(k)T δ + f (k)

subject to l(k)(δ) = A(k)T δ + c(k) = 0 (1.7.8)

This problem is the quadratic programming subproblem (QPS). Equations (1.7.6) gives the

first order conditions for problem (1.7.8). If the reduced matrix Z(k)TW (k)Z(k) is positive

definite then δ(k) minimizes (1.7.8), where Z(k) is the null matrix for A(k). Hence the

following algorithm is suggested.

Algorithm 1.7.1

Given initial estimate x(0),λ(0)

For k = 1, 2, . . .

i. Solve (1.7.8) to determine δ(k) and λ(k+1) the vector of Lagrange multipliers of

the linear constraints.

ii. Set x(k+1) = x(k) + δ(k).

This algorithm is known as the SQP algorithm.

Algorithm 1.7.1 suggests a generalization for solving the nonlinear inequality constraint

problem

minimize
x

f(x)



38

subject to c(x) ≥ 0. (1.7.9)

Replacing c(x) by l(k)(δ) and f(x) by q(k)(δ) leads to the subproblem

minimize
δ

q(k)(δ) = 1
2 δTW (k)δ + g(k)T δ + f (k)

subject to l(k)(δ) = A(k)T δ + c(k) ≥ 0. (1.7.10)

This QPS can be used in an iterative scheme like Algorithm 1.7.1 in a similar way using (1.7.10)

instead of (1.7.8) in step i.

The second order convergence of iteration (1.7.6) and (1.7.7) follows by using the technique

of Theorem 1.6.2 applied to the system of n + m equations ∇x,λ L(x, λ) = 0. The

convergence of this method at a rapid rate can be proved when x(0) and λ(0) are sufficiently

close to x∗ and λ∗ for some k. In fact a stronger result is given by Fletcher [1987] in the

following theorem.

Theorem 1.7.2

If x(0) is sufficiently close to x∗, the Lagrangian matrix

[
W (k) −A(k)

−A(k)T 0

]

is non–singular, and if second order sufficient conditions hold at x∗,λ∗ with A∗ having

full rank, then the QPS iteration (1.7.6) and (1.7.7) converges at second order. If λ(k)

is sufficiently close to λ∗, λ(0) is suitably chosen and if (1.7.8) is solved uniquely by

δ(0) then the SQP method converges at second order.

Proof (see Fletcher [1987] Chapter 12)

Globally the SQP method may not converge, especially when x(0) is remote from x∗.

However the SQP method is usually modified by the l1 exact penalty function. The l1 exact

penalty function associated with (1.7.9) is



39

φ(x) = µf(x) +
∑
i∈E

|ci(x)| +
∑
i∈I

max(−ci(x), 0) (1.7.11)

where E is the set of equality constraints and I the set of inequality constraints. For

sufficiently small µ local solutions of the nonlinear programming problem (1.7.9) are equivalent

to local solutions of (1.7.11) under wide asssumptions.

Various algorithms based on the use of (1.7.11) have been tried. The function (1.7.11) is

not differentiable so it cannot be minimized by conventional methods. The most simple is Han’s

[1977] method which uses the solution of SQP subproblem (1.7.10) as a search direction, and

the next point is accepted only if it significantly reduces the value of φ(x). An algorithm with

better convergence properties is suggested by Fletcher [1981a] in which a different subproblem

to (1.7.10) is solved, which takes into account the structure of (1.7.11), but uses the same

approximating functions as in (1.7.10). The l1 SQP method is a direct and efficient approach to

nonlinear programming. Fletcher [1981a] shows how to use a step restriction (or trust region)

so that the difficulties mentioned above are removed. The method can be explained easily

as follows: instead of substituting the Taylor series approximations (1.7.10) into the nonlinear

programming problems they are substituted directly into the l1 exact penalty function (1.7.11),

giving a piecewise quadratic approximating function ψ(k)(δ) and hence a QP subproblem

minimize
δ

ψ(k)(δ)

subject to ‖δ‖ ≤ ρ(k) (1.7.12)

where

ψ(k)(δ) = q(k)(δ) +
∑
i∈E

|l(k)
i (δ)| +

∑
i∈I

max(−l(k)
i (δ), 0). (1.7.13)

The subproblem (1.7.12) is solved on each iteration which is of a similar to the QP subproblem

(1.7.10). Subproblem (1.7.12) differs from (1.7.10) in that there are no explicit constraints

derived from the linear approximations l(k)(δ). Thus there are no difficulties with an infeasible

subproblem. The use of a trust region guarantees boundedness of the subproblem. The norm

in (1.7.12) is arbitrary but either the ‖ · ‖∞ or the ‖ · ‖2 is most likely choice since the

subproblem (1.7.12) can then be solved by QP methods.

The radius ρ(k) is the step restriction which is adjusted adaptively in a customary way to

be as large as possible subject to reasonable agreement between φ(x(k) +δ) and ψ(k)(δ), thus

ensuring a significant decrease in the function φ(x). The ratio measures the extent to which

φ and ψ(k) agree in neighbourhood of x(k) is defined by
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r(k) =
∇φ(x(k))

∇ψ(k)(δ(k))
(1.7.14)

where

∇φ(x(k)) = φ(x(k)) − φ(x(k) + δ(k)) (1.7.15)

is the actual reduction and

∇ψ(k) = φ(x(k)) − ψ(k)(δ(k)). (1.7.16)

is the predicted reduction.

These features can be observed in the following algorithm from problem (1.7.9) given by

Fletcher [1981a].

Algorithm 1.7.3

This algorithm solves problem (1.7.9)

i. Given x(k),λ(k) and ρ(k), calculate f (k), g(k), c(k), A(k) and W (k) which

determine φ(x(k)) and ψ(k)(δ(k)).

ii. Find a global solution δ(k) to (1.7.12).

iii. Evaluate φ(x(k) + δ(k)) and calculate ∇φ(x(k)),∇ψ(k) and r(k).

iv.

If r(k) < 0.25 set ρ(k+1) = ‖δ(k)‖/4

if r(k) > 0.75 and ‖δ(k)‖ = ρ(k) set ρ(k+1) = 2ρ(k)

otherwise set ρ(k+1) = ρ(k).

v.

If r(k) ≤ 0 set x(k+1) = x(k), λ(k+1) = λ(k)

else x(k+1) = x(k) + δ(k)

λ(k+1) = multipliers from (1.7.12).
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The iteration based on (1.7.12) is guaranteed to converge to a Kuhn–Tucker point of (1.7.11)

(Fletcher [1987]). Therefore, this algorithm will be used in this thesis (Chapters 5 and 6). For

more about SQP and l1 SQP methods see Fletcher [1987] Sections 12.4 and 14.5.




