Q1 When proving that $\lim_{x\to 9} \sqrt{x} = 3$ what is the maximum value of δ when $\varepsilon = 0.001$?(15pts) Using definition 2.3.3 $\sqrt{x} \in (3 - \varepsilon, 3 + \varepsilon)$ or $x \in (9 - 6\varepsilon + \varepsilon^2, 3 + 6\varepsilon + \varepsilon^2) = (9 - \delta_1, 9 + \delta_2)$ Hence $\delta = \min(\delta_1, \delta_2) = 0.00599$ is the maximum value Q2. Prove using $\delta - \varepsilon$ definition $\lim_{x\to 3} (x^2 - 5) = 4$? (15pts) Using difference between two squares gives $|x-3| < \varepsilon/5$ since $\frac{1}{|x+3|} < 1/5$. Thus the value of $\delta \le \varepsilon/5$ Q3.Evaluate the following limits if they exist. But if they do not exist, give reasons. a. $\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x} = 1/4$

b.
$$\lim_{x \to 0^{-}} \frac{x}{\sqrt{x^{2}}} = -1$$

c. $\lim_{x \to 2} \frac{\cos(\pi / x)}{x - 2} = \pi$
d. $\lim_{x \to 0} \frac{2x + \sin 3x}{x} = 5$

Q4. If $0 \le f(x) \le a$ for some real number a , prove that $\lim_{x \to 0} |x| f(x) = 0$ (10pts)

Squeezing theorem

Q5. Using Intermediate value theorem show that the equation $x^3 - 4x + 1 = 0$ has a solution between 1 and 2?

Since
$$f(1) = -$$
 while $f(2) = +$
Q6. $f(x) \begin{cases} 2x-3 & x < 2 \\ c & x = 2 \\ x^2 & x > 2 \end{cases}$
a. Find $\lim_{x \to 2^+} f(x) = 4$
Find $\lim_{x \to 2^-} f(x) = 1$
b. Is there a value of c which makes $f(x)$ continuous ?
No