Q1 When proving that $\lim _{x \rightarrow 9} \sqrt{x}=3$ what is the maximum value of δ when $\varepsilon=0.001 ?(15 \mathrm{pts})$
Using definition 2.3.3
$\sqrt{x} \in(3-\varepsilon, 3+\varepsilon) \quad$ or $\quad x \in\left(9-6 \varepsilon+\varepsilon^{2}, 3+6 \varepsilon+\varepsilon^{2}\right)=\left(9-\delta_{1}, 9+\delta_{2}\right)$
Hence $\delta=\min \left(\delta_{1}, \delta_{2}\right)=0.00599$ is the maximum value
Q2. Prove using $\delta-\varepsilon$ definition $\quad \lim _{x \rightarrow 3}\left(x^{2}-5\right)=4$?
(15pts)
Using difference between two squares gives $|x-3|<\varepsilon / 5$ since $\frac{1}{|x+3|}<1 / 5$. Thus the value of $\delta \leq \varepsilon / 5$
Q3.Evaluate the following limits if they exist. But if they do not exist, give reasons.
a. $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}=1 / 4$
b. $\lim _{x \rightarrow 0^{-}} \frac{x}{\sqrt{x^{2}}}=-1$
c. $\lim _{x \rightarrow 2} \frac{\cos (\pi / x)}{x-2}=\pi$
d. $\lim _{x \rightarrow 0} \frac{2 x+\sin 3 x}{x}=5$

Q4. If $0 \leq f(x) \leq a$ for some real number a, prove that $\lim _{x \rightarrow 0}|x| f(x)=0$ (10pts) Squeezing theorem
Q5. Using Intermediate value theorem show that the equation $x^{3}-4 x+1=0$ has a solution between 1 and 2 ?

Since $\mathrm{f}(1)=-$ while $\mathrm{f}(2)=+$
Q6. $f(x)\left\{\begin{array}{cc}2 x-3 & x<2 \\ c & x=2 \\ x^{2} & x>2\end{array}\right.$
a. Find $\lim _{x \rightarrow 2^{+}} f(x)=4$

Find $\lim _{x \rightarrow 2^{-}} f(x)=1$
b. Is there a value of c which makes $f(x)$ continuous?

No

