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Abstract

For a homogeneous spacg/ P, where P is a parabolic subgroup of a complex semisimple
groupG, an explicit Kéhler—Einstein metric on it is constructed. The Einstein constant for the metric
is 1. Therefore, the intersection number of the first Chern class of the holomorphic tangent bundle of
G/ P coincides with the volume of;/ P with respect to this Kéhler—Einstein metric, thus enabling
us to compute volume for this metric and for all K&hlerian metric&g@® invariant under the action
of a maximal compact subgroup 6f.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a complex reductive group, a parabolic subgroup @ and K a maximal
compact subgroup af. In [3] it is shown that the flag manifold/ P admits aK -invariant
Kahler—Einstein metric whose Ricci-form coincides with the Kéhler form for this metric
(see Section 4 for definitions). This metric is thus an Einstein metric with Einstein
constant 1 [4, p. 319]. We will refer to this metric as the canonical metric on the flag
manifoldG/P.

Let Q be another parabolic subgroup of containing P. Although, in general,

a Kahler-Einstein metric does not have good restriction properties, in other words, the
restriction of a Kahler—Einstein to a complex submanifold need not be a Kahler-Einstein
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metric on the submanifold, the restriction of the canonical metric to any fiber of the natural
projection

G/P—G/Q

is again K&hler-Einstein: this is the main result of [3]. The arguments in [2,3] are
incomplete at certain places. Namely, the correspondence between the additive characters
of the parabolic groupP and K-invariant Kéhler forms of arbitrary signature was not
proved there, and the classification of those characte? which give rise to positive
definite metrics was formulated incorrectly there. These are now formulated precisely as
Propositions 2.1, 2.2 and Theorem 3.1 in this paper.

In the final section we have computed the total volumé&gP for the canonical metric
(see Theorem 6.1), using essentially a result of A. Borel and F. Hirzebruch in [5]. Our
motivation here was to obtain a formula analogous to the volum@rsf relative to the
Fubini—Study metric on it (see [9, p. 109, Theorem 1]).

Following a suggestion of the referee, a few words about the circle of ideas considered
in [3] and in this paper are in order. K is a compact Lie group and a subgroup ok
of maximal rank then, by a classical result of H.-C. Wang, the homogeneous kpdce
admits a complex structure if and onlylif is the centralizer of a torus [12, Theorem C].
One can then realiz& /L as a flag manifold5/ P. Working with the compact group, all
the non-degenerate Kahler forms are described in [13, 88]. On the other hand, the Fubini—
Study metric onCP" has the potential functioddlog(1 + |z|?) (see [9, p. 109]). We
wanted to understand the appearance of the logarithm here from a group-theoretic view-
point and to obtain a similar expression f&rinvariant metrics orG/P. It turns out that
the logarithm makes its appearance in the description of additive characterarmd, in
the case ofCP" = SL(n + 1, C)/ P, the function 1+ |z|2 arises adg.v|?, whereg € G
andv is a highest weight vector for the natural representation ¢ St1, C). Moreover,
this analogy is exact in the sense that the Kéhler metric§ pR, of arbitrary signature,
are generated, as described in Section 2, by highest weight vectors of certain irreducible
representations af. This means that the Kahler geometry®@f P is tied very closely to
E. Cartan’s theory of highest weight vectors in a very natural manner. The reader might
like to compare this with the treatment of the same problems in [4, Chapter 8].

We refer the reader to [10] and [11] for results on roots and representations used in this
paper.

This paper is organized as follows. In Section 2 we recall the concept of quasi-potentials
and establish its basic propertiesKainvariant functionf on G is a quasi-potential if
the formdd® f can be pushed down t6/P. In Section 3 a characterization of those
guasi-potentials is given which give non-degenerate forms 6h and the cone of Kahler
metrics is described in terms of these functions. For the convenience of the reader we
have given, in Section 4, a treatment of Ricci forms from first principles. A Kéhler form
o defines an Einstein metric if the Ricci form of its volume form is a multiplevofin
Section 5, we show that there is exactly one quasi-potential which gives an Einstein metric.
We also give there a more transparent proof of the main result of [3]. In the final section, we
have computed the total volume@f P relative to anykK -invariant K&hler metric oit7/ P.
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2. Quasi-potentials

We may assume that is semisimple since a parabolic subgroup contains the center
of G. The Lie algebra ofs will be denoted byy. Fix a maximal torug” of G and a Borel
subgroupB D T. Let S denote the set of simple roots defined by the pAiIrT).

The intersections of a fixed parabolic subgroup with any maximal compact subgroup are
isomorphic. We make a specific choice of a maximal compact subdtanhe following
way.

For any roota € S, we can choose root-vectod§,, X, € g so thatX,, X_, and
Hy :=[X,, X_4] together form a standard copy of3|C). Let

$o:SL2,C) = G 2.1)

be the corresponding homomorphism. We denotd.pythe image of Si2, C) by ¢ .
The subgroup of; generated by akp, (SU(2)), @ € S, is a maximal compact subgroup
of G [11] (see the proof of [11, Lemma 45 and Corollary 1, p. 105]). We will denote this
maximal compact subgroup k.

Choose a root vectok,, wherer runs over positive roots, such that., X_, and
[X,, X_,] together form a copy of &, C) and the structure constan¥ ,, satisfy the
relation Ng,, = —N_g _,,. The Lie algebra of is the fixed point set of the semilinear
involution of g that extends the map that sends evEryof the above type t& _, (see [11,

p. 102, Lemma 44] and [11, p. 103, Lemma 45]). We fix a choice of r&ptas above.

Let w be a closedK-invariant real form onG/P of Hodge type(l, 1), where P
is a parabolic subgroup. The projection Gfto G/ P will be denoted byr. We have
H?(G,R) =0andH(G, Og) =0, whereOg denotes the structure sheaf of holomorphic
functions onG. Consequently, the form

o:=n"w

on G is of the formdd€ ¢ for some smooth real valued functigron G. In other wordsg

is aquasi-potentiafor w. Sincew is K -invariant, the functiorp can also be chosen to be
K-invariant. Sinceld“p = & and R} (o) = ®, wherep € P and R, is the right translation
of G, it follows immediately that

p(gp) = 9(g) +c(p) (2.2)
whereg € G, p € P andc is a real valued additive character &n
Proposition 2.1. Let ¥ : G — R be aK-invariant function and:: P — R a real valued
additive character onP such thaty(gp) = ¥ (g) + c(p) for all g € G. Then there is a

formw on G/ P such that the pull back form*w on G coincides withdd .

Proof. LetU C G/P be an open subset such that there is a seetjo/ — G overU of
the projectionr. Note that for a formw on G/ P, the identityw = s (7 *w) is valid. Set

& =ddy
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and consides;@. Letsy : V — G be a section ofr over another open subsgtof G/ P.
SinceG/ P can be covered by open subsets that have a sectionookr it, to prove the
proposition it suffices to show that the two differential forsjiso andsy, & coincide over
unv.

Take any pointt € U N V. So we havet = sy(§)P = sy (§)P. Hencesy (§) =
sy (&) f(&),wheref:U NV — Pisasmooth map. Now, the condition in the proposition
gives

Y (su@®) =¥ (sv@E fE) =¥ (sv(®) +c(f(©),

and hence;; ¢ = sy ¢ + f*c. So to prove that/;o = sy, onU NV itis enough to show
thatddc = 0.

Let P’ := [P, P] be the commutator oP andq: P — P/P’ the natural projection.
There is an additive charactgrof P/ P’ with x o g = c. The groupP/ P’ is the image by
a homomorphism of the additive groay’ , for someN . Sincedd® x’ = 0 for any character
x' of CV, we havedd‘c = q*(ddx) = 0.

Now consider the two-form oG/ P obtained by patching together locally defined
forms of the forms};@. This form isK-invariant sincey is K -invariant. This completes
the proof of the proposition. O

By adding a constant function, one can assume that the quasi-pogefdiab vanishes
on the commutatoP’ of P at well as onK. SinceG = K P, the functiong is completely
determined by its restriction t&. The Levi-complemenL , of P, which containsl’, is
given by a subsefp of the simple rootss. More precisely,

P=PT
whereT1 C T is as follows:
le{l_[&(za)|a€S\Sp andz, e(C} (2.3)

wherex is the one-parameter multiplicative subgroup defined by the homomorghism
of SL(2, C) to G constructed earlier.

The additive characters of the one-parameter subgiowpich are invariant undes*
are clearly of the forn (z) = ¢4 l0g|z|. Consequently, the functianis determined by the
restriction of the characterin (2.2) toT1. As we already noted, the restriction©ofo Ty
is of the form

c< I1 &(za))= > caloglzal

aeS\Sp aeS\Sp

wherec, are constants. We will show that such a charactefiofan be extended to a
quasi-potential ori;. This is a consequence of the following proposition.
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Proposition 2.2. Let p be an irreducible representation @f with highest weighi. Fix
a Hermitian inner product on the representation space whidkiigwvariant and letv be a
highest weight vector of north The functionp on G defined by

¢(g) :=1log|p(g)v|
is K-invariant and satisfies the identity {.2).

Proof. Since the Hermitian inner product ks-invariant,e is evidentlyK -invariant.

The stabilizer of the lin€v is a parabolic subgroup which will be denoted By. For
anyp € P, we havepv = x (p)v, wherey is a character oP,. Now, G = K P,, so for any
k € K andp1, p2 € P, we have

log| p (kp1p2v)| = log|x (p1p2)v| = log|x (p1)| + l0g| x (p2)|.

We use that logx (p)v] = log|x (p)|, which in turn follows from the given condition that
v is of norm 1. This completes the proof of the propositiom

Returning to the original setting, fare S, let p, be the irreducible representation@f
with highest weightv,, defined by

wa(B(2)) :=2°@P) (2.4)

forall g € S, wheres(a, 8) =0if ¢ # 8 andd (o, @) = 1.
Setp in Proposition 2.2 to be, . Let

0o :G—>R (2.5)

be the function defined by, (g) = log|p(g)v«|, Wherev, is the highest weight vector of
norm 1. In other words, if we setin Proposition 2.2 to be a highest weight vectgrof
norm 1, then the functiog in Proposition 2.2 coincides with, in (2.5). LetP, denote the
parabolic subgroup of that preserves the line defined by. The functiong, vanishes
on the commutator of, and therefore on the commutator of the Levi-complemerm,of
Moreover,

¢ (B(2)) = 8(a, B) log|z.

Recall that the Levi-complementy of a parabolic subgroup which containg’ is given
by a subsef p of the simple roots, andP = P’'T1, whereT; is defined in (2.3). Therefore,
the functionzaes\sp ca@q restricts to the desired additive characterf@nMoreover, the
function vanishes oL p)’' R, (P), whereR, (P) is the unipotent radical aP and(L p)’ is
the commutator oL p.

In summary, in the section we have shown thabiis a closed reak -invariant(1, 1)
form on G/ P, then its pull back taG has aK-invariant potential whose restriction ®
is an additive character d@f. This restriction is invariant under the action of the maximal
compact subgrouff N K of T and it vanishes on the commutator Bf Therefore, it is
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completely described by its values @hand the potential function is a linear combination

of functions of the form lo¢lo(g)v|, wherep is an irreducible representation 6f and

v is a highest weight vector of norm 1 in this representation space. Moreover, any linear
combination of such functions qualifies as a quasi-potential fkiriavariant closed real
(1,1) formonG/P.

3. Nondegenerateforms

The aim in this section is to determine which linear combinations of the quasi-potentials
¢q (constructed in (2.5)) define a Kéhler structure@np.

Let w be a real(1,1) form on a complex manifoldV. It defines a Hermitian
form h, on the holomorphic tangent bundiE®-9 which is given byh,(X,Y) =
—/—1w(X,Y). If w is also closed with local potentigl, theni,,(X,Y) = 33¢(X,Y).

The formw is nondegeneratéespectivelypositivg if the corresponding Hermitian form

is nondegenerate (respectively, positive). Using the notation of Section 2, a criterion for
a quasi-potentiap to define a nondegenerate (or positive) form@nP is given by the
following result.

Theorem 3.1. The quasi-potential

Q= Z CaPas

aeS\Sp

whereg, is defined in(2.5)and ¢, € R, defines a positive form, = » on G/P if and
only if all the constants, are positive.
It defines a nondegenerate form if and only if for all rogtss R,(P), we have

ZaeS\Sp CaWy (,é) #0.

Proof. The groupK operates transitively o6/ P. Sincew,, is K -invariant, it suffices to
check the assertions in the theorem only at the piet ¢ P, wheree € G is the identity
element.

Let R,(P) be the unipotent radical of the opposite parabolic gréugNow the map
from R,(P) to G/ P defined byr — r&g is an isomorphism onto an open neighborhood,
sayU, of & in G/ P. So its inverse gives a local section, sapverU of the projectiont
of G, andwy = v/—199(s* ).

For a rootg € R,(P), let U_g be the corresponding root group of the opposite
parabolic groupP. By applying the Gram—Schmidt process to(3LC) and transposing
the calculation taP (cf. [1, Proposition 2.1]), we see that the restrictionwofo the line
U_gé&o coincides with

V=109 Y calog|pa(U—p(@)va| =v—183 %wa(ﬁ)log(l—i-lzlz),

aes\S, aeS\S,
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wherew, is defined in (2.4). Consider the tangent vect§g§=oU75(z)%‘o = X;§ with

B € R,(P). These vectors span the tangent s 1:8G/P. These are eigen vectors for the
action of T N K with different weights— . Therefore, the vector¥%, whereg € R, (P),
are orthogonal relative to arfyN K invariant Hermitian form.
Moreover, we have
ho (X5 X5) = Y —wu(B).

aeS\S,

Forg e S\ Sy, we havehw(X;, X;) = cg/2. Also, for g € R,(P), the integera)a(ﬁ)

is positive for somex € S\ S,. Consequently, the form is positive if and only if all
the constants,, wherea € S\ §,, are positive. It is nondegenerate if and only if for
every rootg € R, (P), we havezaes\sp Ca/2wq(B) # 0. This completes the proof of the
theorem. O

4, Ricci form of avolumeform

In this section, after recalling the basic definition of a Kéhler—Einstein form, we recall
from [3] a description of the first Chern class of line bundles avgp.

Let V be a volume form on a complex manifol of dimensionu. If 5 is a locally
defined nonvanishing holomorphicform on M, thenV = ¢n7 for some functiorp. The
Ricci formof V is defined to be

/—1 _
Ric(V) := ———ddlog|g|. (4.2)
27
On the other hand, if. is a holomorphic line bundle ové¢ equipped with a Hermitian
structureN ands a locally defined nonvanishing holomorphic sectioni.othen the first
Chern class ot is defined by

J=1

Cl(L) = —T

30 log| N (s)|.
Let M = | J,; U; be a covering of\f by open subsets on which there is a nonvanishing
holomorphic section, say;,, of L. OnU; NU;, setg;; = sy, /sy, - A Hermitian structure on
L is given by a family of real positive functioris defined on eacly; with x; /A; = |gi;|.
Therefore, a Ricci form as in (4.1) is the first Chern form of the anti-canonical line
bundle of M equipped with the Hermitian structure induced by the volume f&fm
In particular the Ricci form represents the first Chern clagg) (cf. [6]). Also, if
f:M1 — M is a holomorphic map which is locally an isomorphism, thghv is a
volume form onM1, whereV is a volume form onM. Since Ri¢f*V) = f*Ric(V),
a holomorphic map oM to itself that preserve® must also preserve the Ricci form.
A Kahler formw on M is calledKéhler—Einsteinif the Ricci form of»” is a constant
scalar multiple ofv. The constant is known &Snstein constant
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Now let M be the flag manifolds/P. For anyx € S \ Sp, consider the functiorf, on
G defined by

1
g > —109| py () Ve |,

4
wherep, is the irreducible representation 6f with highest weightv, andv, a highest
weight vector of norm 1 therein. Proposition 2.2 says that the fédiihf, descends to
G/P. In other words, there is a (uniqugl), 1)-form w, on G/ P such that the pull back of
wy 10 G coincides withdd¢ f,. From Theorem 3.1 it follows thab, is a positive form on
G/P.

Every holomorphic characte of P defines a holomorphic line bundle, on G/P.

The first Chern class df, has the expression

ca(ly)=— Y (x &)wdl,

aeS\Sp

wherewy, as above, is the form o6/ P defined bydd® f,, (see [3]). Furthermore, the
cohomology class-(x, &)[we] is dual to the projective line i;/ P defined byL,&o in
G/ P, whereL,, as in Section 2, is the image of &, C) by the mapyp,, defined in (2.1)
[3]. Moreover, the first Chern class of the anti-canonical line bundle is

ca(G/P)= ) (p,&)lws] (4.2)

aeS\Sp

wherep is the sum of all positive roots not supporteddyy; the integersp, &) are positive.
For a complex manifold/, by c1(M) we mearnc1(T M).

5. Kéhler—Einstein metricson G/ P

In this section we consider a natural Kéhler form@npP, show that it defines a Kéhler—
Einstein structure o/ P, and prove that the restriction of it to any fiber of the projection
G/P — G/Q, whereQ D P is a parabolic subgroup af, is also a Kéhler—Einstein
metric.

Using the notation of Section 4, let be the form}_, ¢\, (0. &)wo ON G/P. Since
(p,a) are positive integers, we see from Theorem 3.1 thas a positive form. Since
w is K-invariant, the corresponding volume form and therefore its Ricci form are also
K -invariant. Note that from (4.2) it follows that the tw@, 1)-forms w and Ridw) are
cohomologous.

Thereforew and Ridw) are K -invariant cohomologous forms ai/ P = K &g. Firstly,
sincew — Ric(w) is a reald-exact form of type(l, 1), the dd“-lemma (see [4, p. 85,
Corollary 2.110]) says that — Ric(w) = dd° f. Secondly, since any harmonic function on
G/ P is a constant function and — Ric(w) is K -invariant, it follows that the functiorf
is K -invariant. Finally, sinceX acts transitively oG/ P, we conclude thab = Ric(w). In
other wordsw is a Kéhler—Einstein metric with Einstein constant 1.
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We will call ® thecanonicalmetric onG/ P.

Theorem 5.1. Let Q be a parabolic subgroup aff containingP. Then the restriction of
the canonical metrie» to any fiber of the projectios/P — G/Q is a Kahler—Einstein
metric.

Proof. Let Sp and Sy be the roots of the Levi-complements andLg, of P and Q
respectively, which contaifi. The fibers of the projectio6/P — G/Q are K -translates
of the fiber 9/ P, which itself is a flag space of the reductive grolip. Therefore,
c1(Q/ P) is given by the restriction

c1(Q/P)=c1(Lo/(LoNP)) =) (0, &)wallg/p (5.1)

oER

whereR = Sp \ Sp ando is the sum of all positive roots with support outsifle but
which are supported b§g.
Consider the form

w= Z (,o, o?)wa

aeS\Sp

defining the canonical metric oi/ P, which is a Kéhler—Einstein metric with Einstein
constant 1. So the restriction efto 0/ P has the expression

wlo/p=)_(p.d)wulosr + Y (0 &oulo/p (5.2)

a€ER aeR

whereR is the complement af in the setS of all simple roots.

Now, the second sum in the right-hand side of (5.2) vanishes identically. Indget,
is a homogeneous space for the simple groé@p 0]. Now, from the summary at the
end of Section 2 it follows that the forms,, wherea € R, vanish onQ/ P because the
corresponding quasi-potential is zero on the commufdigr, Lo ]. Since the second sum
in the right-hand side of (5.2) is zero, we have

wlo/p= Z(ﬁﬁ)walg/f’.

oER

Now, p = o + 7, wherer is the sum of all positive roots with support outsigle, but which
are supported by, andz is the sum of all positive roots whose support lies outside
Consequently, it € Sg, the reflection along fixesz. Therefore, we havép, &) = (o, &).
Hence

wlg/p = Z(O’,&)CHQIQ/P. (5.3)

a€R
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Combining (5.1) and (5.3) we see thafp,p represents1(Q/P) and as it is invariant
underk N Q, we use the/d“-lemma as before to conclude thalp, p is a Kahler—Einstein
metric with Einstein constant 1. This completes the proof of the theorem.

6. Application to volume computation

Our aim in this final section is to compute the volume®fP with respect to the
canonical metric. We start with some special cases.

Let Gr denote the Grassmann variety parametrizing the spacedfall dimensional
linear subspaces df"t1, with 0 < d + 1 < n. SetN = (d + 1)(n — d) which is the
dimension of Gr.

Let S denote the tautological vector bundle over Gr whose fiber over the point
representing a subspadeof C**1 is V itself. Setr = —c1(S) which is a K&hler class
on Gr. Note that2(Gr, Z) = Z andr is the positive generator.

Recall the Euler sequence

0— End$) — Hom(S,C"™) — T Gr— 0

over Gr, whereC"*1 is the trivial vector bundle with fibe€”+1. The Euler sequence
implies

c1(Gn=m+1r. (6.1)

The evaluation of the cohomology clas¥ on the top (oriented) homology class Gr is

121... N
Am 121N 6.2)
n—d)!(n—d+1)!---n!
[7, p. 274, Eq. iii]. This combining with (6.1) give
(TGN NG =Am+ DV (6.3)

wheren denotes theapproduct.

The canonical metric (defined in Section 5) is Kéhler—Einstein with Einstein constant 1.
In particular, the second cohomology class represented by the canonical ametmic&r
coincides withe (7 Gr). The total volume of Gr with respect iis the integral ofo™ over
Gr. Consequently, (6.3) implies that the total volume of Gr with respestisod (n 4+ 1),
whereA is the constant defined in (6.2).

We will now compute the volume of Gk, C)/B, whereB is a Borel subgroup. The
dimension of Glgz, C)/B is “=",
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From [8, p. 282, Theorem 5] we know that the first Chern class of the holomorphic
tangent bundle ig1(T (GL(n, C)/B)) = 22;:3 A; (using the notation of [8]). On the
other hand, [8, p. 260, Theorem 1] implies that

n—2 @
(ZAi) :<(n—1)n)!
i=0 2

(see also [8, p. 277, (11.2)] and the lines following it). Combining these two, it follows that

e1(T(GL(, C)/B) 7 =27 ((” _21)">1.

Since the Einstein constant of the canonical metric is 1, the total volume 6f,Gl/B
with respect to the canonical metric i§ 2" (e,

The volume of general; /P can be computed using [5, p. 340, Theorem 24.10]. The
weightd (in the notation of [5, Theorem 24.10]) for the holomorphic tangent bufidi¢ P
is given in (4.2). If we set/ in [5, Theorem 24.10] to be the weight for the holomorphic
tangent bundl@ G/ P, then [5, Theorem 24.10] gives the degteéG/P)4MC/P ¢ 7, of
the tangent bundle.

We note a general fact that Ify; be a volume form on a projective manifold of
complex dimensiom: such that the element iH2" (M, R) represented by, coincides
with c1(M)™ and, furthermore, if the line bundj®™ T M is very ample, then the degree of
the embedding oM in PHO(M, /A" T M)* coincides with the volume a¥f with respect
to V. It is easy to see that all the conditions on the gai, Vy,) are satisfied by the
canonical metric orG/P. Indeed, this is an immediate consequence of the fact that the
canonical metric is Kéhler—Einstein with Einstein constant 1.

Therefore, from [5, Theorem 24.10] the total volume @f P with respect to the
canonical metric is

n! l_[(d, a)(a, o)
aes

wheren = dim G/ P anda is the sum of all positive roots.
By Theorem 3.1, iV is the volume form orG/ P corresponding to the form

D Cat
aeS\Sp

andVj is the canonical volume form ofi/ P, thenV / Vg is given by

v _ HﬂERu(P) ZO(ES\SP cawy (B)

VO HﬂERu(P) ZO(ES\Sp(p’&>wO((ﬁ)

Therefore, from the above computation of the total voluméfpwe get the total volume
of V as well.
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We put down the result of the above computations in the form of the following theorem.

Theorem 6.1. The volume o/ P with respect to the canonical metric is

v0:=n!]_[(d,a)(a,a)

a€eSs
wheren =dim G/P,d =}, c5 s, (P, &)[wa], anda is the sum of all positive roots. More
generally, the volume af /P with respect to the form_, .5, 5, ca@a is

Vo ]_[/SGR”(P) Z:ozES\SP cqwo (B)
HﬁERu(P) ZaES\Sp (p,d)wy (B)
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