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Abstract

For a homogeneous spaceG/P , whereP is a parabolic subgroup of a complex semisim
groupG, an explicit Kähler–Einstein metric on it is constructed. The Einstein constant for the m
is 1. Therefore, the intersection number of the first Chern class of the holomorphic tangent bu
G/P coincides with the volume ofG/P with respect to this Kähler–Einstein metric, thus enabl
us to compute volume for this metric and for all Kählerian metrics onG/P invariant under the action
of a maximal compact subgroup ofG.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a complex reductive group,P a parabolic subgroup ofG andK a maximal
compact subgroup ofG. In [3] it is shown that the flag manifoldG/P admits aK-invariant
Kähler–Einstein metric whose Ricci-form coincides with the Kähler form for this me
(see Section 4 for definitions). This metric is thus an Einstein metric with Ein
constant 1 [4, p. 319]. We will refer to this metric as the canonical metric on the
manifoldG/P .

Let Q be another parabolic subgroup ofG containingP . Although, in general
a Kähler–Einstein metric does not have good restriction properties, in other word
restriction of a Kähler–Einstein to a complex submanifold need not be a Kähler–Ei
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metric on the submanifold, the restriction of the canonical metric to any fiber of the n
projection

G/P →G/Q

is again Kähler–Einstein: this is the main result of [3]. The arguments in [2,3
incomplete at certain places. Namely, the correspondence between the additive ch
of the parabolic groupP andK-invariant Kähler forms of arbitrary signature was n
proved there, and the classification of those characters ofP which give rise to positive
definite metrics was formulated incorrectly there. These are now formulated precis
Propositions 2.1, 2.2 and Theorem 3.1 in this paper.

In the final section we have computed the total volume ofG/P for the canonical metric
(see Theorem 6.1), using essentially a result of A. Borel and F. Hirzebruch in [5]
motivation here was to obtain a formula analogous to the volume ofCPn relative to the
Fubini–Study metric on it (see [9, p. 109, Theorem 1]).

Following a suggestion of the referee, a few words about the circle of ideas cons
in [3] and in this paper are in order. IfK is a compact Lie group andL a subgroup ofK
of maximal rank then, by a classical result of H.-C. Wang, the homogeneous spacK/L

admits a complex structure if and only ifL is the centralizer of a torus [12, Theorem C
One can then realizeK/L as a flag manifoldG/P . Working with the compact group, a
the non-degenerate Kähler forms are described in [13, §8]. On the other hand, the F
Study metric onCP

n has the potential functionddc log(1 + |z|2) (see [9, p. 109]). We
wanted to understand the appearance of the logarithm here from a group-theoreti
point and to obtain a similar expression forK-invariant metrics onG/P . It turns out that
the logarithm makes its appearance in the description of additive characters ofP and, in
the case ofCPn = SL(n + 1,C)/P , the function 1+ |z|2 arises as|g.v|2, whereg ∈ G

andv is a highest weight vector for the natural representation of SL(n+ 1,C). Moreover,
this analogy is exact in the sense that the Kähler metrics onG/P , of arbitrary signature
are generated, as described in Section 2, by highest weight vectors of certain irre
representations ofG. This means that the Kähler geometry ofG/P is tied very closely to
É. Cartan’s theory of highest weight vectors in a very natural manner. The reader
like to compare this with the treatment of the same problems in [4, Chapter 8].

We refer the reader to [10] and [11] for results on roots and representations used
paper.

This paper is organized as follows. In Section 2 we recall the concept of quasi-pote
and establish its basic properties: aK-invariant functionf on G is a quasi-potential i
the form ddcf can be pushed down toG/P . In Section 3 a characterization of tho
quasi-potentials is given which give non-degenerate forms onG/P and the cone of Kähle
metrics is described in terms of these functions. For the convenience of the read
have given, in Section 4, a treatment of Ricci forms from first principles. A Kähler f
ω defines an Einstein metric if the Ricci form of its volume form is a multiple ofω. In
Section 5, we show that there is exactly one quasi-potential which gives an Einstein m
We also give there a more transparent proof of the main result of [3]. In the final sectio
have computed the total volume ofG/P relative to anyK-invariant Kähler metric onG/P .
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2. Quasi-potentials

We may assume thatG is semisimple since a parabolic subgroup contains the ce
of G. The Lie algebra ofG will be denoted byg. Fix a maximal torusT of G and a Borel
subgroupB ⊃ T . Let S denote the set of simple roots defined by the pair(B,T ).

The intersections of a fixed parabolic subgroup with any maximal compact subgro
isomorphic. We make a specific choice of a maximal compact subgroupK in the following
way.

For any rootα ∈ S, we can choose root-vectorsXα,X−α ∈ g so thatXα , X−α and
Hα := [Xα,X−α] together form a standard copy of sl(2,C). Let

φα : SL(2,C)→G (2.1)

be the corresponding homomorphism. We denote byLα the image of SL(2,C) by φα .
The subgroup ofG generated by allφα(SU(2)), α ∈ S, is a maximal compact subgrou
of G [11] (see the proof of [11, Lemma 45 and Corollary 1, p. 105]). We will denote
maximal compact subgroup byK.

Choose a root vectorXr , wherer runs over positive roots, such thatXr , X−r and
[Xr,X−r ] together form a copy of sl(2,C) and the structure constantsNβ,γ satisfy the
relationNβ,γ = −N−β,−γ . The Lie algebra ofK is the fixed point set of the semiline
involution ofg that extends the map that sends everyXr of the above type toX−r (see [11,
p. 102, Lemma 44] and [11, p. 103, Lemma 45]). We fix a choice of rootsXr as above.

Let ω be a closedK-invariant real form onG/P of Hodge type(1,1), whereP
is a parabolic subgroup. The projection ofG to G/P will be denoted byπ . We have
H 2(G,R)= 0 andH 1(G,OG)= 0, whereOG denotes the structure sheaf of holomorp
functions onG. Consequently, the form

ω̂ := π∗ω

onG is of the formddcϕ for some smooth real valued functionϕ onG. In other words,ϕ
is aquasi-potentialfor ω. Sinceω isK-invariant, the functionϕ can also be chosen to b
K-invariant. Sinceddcϕ = ω̂ and R∗

p(ω̂)= ω̂, wherep ∈ P and Rp is the right translation
of G, it follows immediately that

ϕ(gp)= ϕ(g)+ c(p) (2.2)

whereg ∈G, p ∈ P andc is a real valued additive character onP .

Proposition 2.1. Let ψ :G → R be aK-invariant function andc :P → R a real valued
additive character onP such thatψ(gp) = ψ(g) + c(p) for all g ∈ G. Then there is a
formω onG/P such that the pull back formπ∗ω onG coincides withddcψ .

Proof. LetU ⊂G/P be an open subset such that there is a sectionsU :U →G overU of
the projectionπ . Note that for a formω onG/P , the identityω = s∗U(π∗ω) is valid. Set

ω̂ := ddcψ
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and considers∗U ω̂. Let sV :V →G be a section ofπ over another open subsetV of G/P .
SinceG/P can be covered by open subsets that have a section ofπ over it, to prove the
proposition it suffices to show that the two differential formss∗U ω̂ ands∗V ω̂ coincide over
U ∩ V .

Take any pointξ ∈ U ∩ V . So we haveξ = sU (ξ)P = sV (ξ)P . HencesU (ξ) =
sV (ξ)f (ξ), wheref :U ∩ V → P is a smooth map. Now, the condition in the proposit
gives

ψ
(
sU (ξ)

)=ψ
(
sV (ξ)f (ξ)

)=ψ
(
sV (ξ)

)+ c
(
f (ξ)

)
,

and hences∗Uψ = s∗V ψ + f ∗c. So to prove thats∗U ω̂= s∗V ω̂ onU ∩V it is enough to show
thatddcc= 0.

Let P ′ := [P,P ] be the commutator ofP andq :P → P/P ′ the natural projection
There is an additive characterχ of P/P ′ with χ ◦ q = c. The groupP/P ′ is the image by
a homomorphism of the additive groupCN , for someN . Sinceddcχ ′ = 0 for any characte
χ ′ of CN , we haveddcc= q∗(ddcχ)= 0.

Now consider the two-form onG/P obtained by patching together locally defin
forms of the forms∗U ω̂. This form isK-invariant sinceψ is K-invariant. This complete
the proof of the proposition. ✷

By adding a constant function, one can assume that the quasi-potentialϕ for ω vanishes
on the commutatorP ′ of P at well as onK. SinceG=KP , the functionϕ is completely
determined by its restriction toP . The Levi-complementLp of P , which containsT , is
given by a subsetSP of the simple rootsS. More precisely,

P = P ′T1

whereT1 ⊂ T is as follows:

T1 =
{∏

α̌(zα)
∣∣ α ∈ S \ SP andzα ∈ C

}
(2.3)

whereα̌ is the one-parameter multiplicative subgroup defined by the homomorphisφα
of SL(2,C) toG constructed earlier.

The additive characters of the one-parameter subgroupα̌ which are invariant underS1

are clearly of the form̌α(z)= cα log|z|. Consequently, the functionϕ is determined by the
restriction of the characterc in (2.2) toT1. As we already noted, the restriction ofc to T1
is of the form

c

( ∏
α∈S\SP

α̌(zα)

)
=

∑
α∈S\SP

cα log|zα|

wherecα are constants. We will show that such a character ofT1 can be extended to
quasi-potential onG. This is a consequence of the following proposition.
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Proposition 2.2. Let ρ be an irreducible representation ofG with highest weightλ. Fix
a Hermitian inner product on the representation space which isK-invariant and letv be a
highest weight vector of norm1. The functionϕ onG defined by

ϕ(g) := log
∣∣ρ(g)v∣∣

isK-invariant and satisfies the identity in(2.2).

Proof. Since the Hermitian inner product isK-invariant,ϕ is evidentlyK-invariant.
The stabilizer of the lineCv is a parabolic subgroup which will be denoted byPv . For

anyp ∈ Pv we havepv = χ(p)v, whereχ is a character ofPv . Now,G=KPv , so for any
k ∈K andp1,p2 ∈ Pv we have

log
∣∣ρ(kp1p2v)

∣∣= log
∣∣χ(p1p2)v

∣∣= log
∣∣χ(p1)

∣∣+ log
∣∣χ(p2)

∣∣.
We use that log|χ(p)v| = log|χ(p)|, which in turn follows from the given condition tha
v is of norm 1. This completes the proof of the proposition.✷

Returning to the original setting, forα ∈ S, letρα be the irreducible representation ofG
with highest weightωα defined by

ωα
(
β̌(z)

) := zδ(α,β) (2.4)

for all β ∈ S, whereδ(α,β)= 0 if α �= β andδ(α,α)= 1.
Setρ in Proposition 2.2 to beρα . Let

ϕα :G→ R (2.5)

be the function defined byϕα(g)= log|ρ(g)vα |, wherevα is the highest weight vector o
norm 1. In other words, if we setv in Proposition 2.2 to be a highest weight vectorvα of
norm 1, then the functionϕ in Proposition 2.2 coincides withϕα in (2.5). LetPα denote the
parabolic subgroup ofG that preserves the line defined byvα . The functionφα vanishes
on the commutator ofPα and therefore on the commutator of the Levi-complement ofPα .
Moreover,

ϕα
(
β̌(z)

)= δ(α,β) log|z|.
Recall that the Levi-complementLP of a parabolic subgroupP which containsT is given
by a subsetSP of the simple rootsS, andP = P ′T1, whereT1 is defined in (2.3). Therefore
the function

∑
α∈S\SP cαϕα restricts to the desired additive character onT1. Moreover, the

function vanishes on(LP )′Ru(P ), whereRu(P ) is the unipotent radical ofP and(LP )′ is
the commutator ofLP .

In summary, in the section we have shown that ifω is a closed realK-invariant(1,1)
form onG/P , then its pull back toG has aK-invariant potential whose restriction toP
is an additive character ofP . This restriction is invariant under the action of the maxim
compact subgroupT ∩K of T and it vanishes on the commutator ofP . Therefore, it is
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completely described by its values onT and the potential function is a linear combinati
of functions of the form log|ρ(g)v|, whereρ is an irreducible representation ofG and
v is a highest weight vector of norm 1 in this representation space. Moreover, any
combination of such functions qualifies as a quasi-potential for aK-invariant closed rea
(1,1) form onG/P .

3. Nondegenerate forms

The aim in this section is to determine which linear combinations of the quasi-pote
ϕα (constructed in (2.5)) define a Kähler structure onG/P .

Let ω be a real(1,1) form on a complex manifoldM. It defines a Hermitian
form hω on the holomorphic tangent bundleT (1,0) which is given byhω(X,Y ) =
−√−1ω(X,Y). If ω is also closed with local potentialϕ, thenhω(X,Y ) = ∂∂φ(X,Y).
The formω is nondegenerate(respectively,positive) if the corresponding Hermitian form
is nondegenerate (respectively, positive). Using the notation of Section 2, a criteri
a quasi-potentialϕ to define a nondegenerate (or positive) form onG/P is given by the
following result.

Theorem 3.1. The quasi-potential

ϕ :=
∑

α∈S\SP
cαϕα,

whereϕα is defined in(2.5) and cα ∈ R, defines a positive formωϕ = ω onG/P if and
only if all the constantscα are positive.

It defines a nondegenerate form if and only if for all rootsβ ∈ Ru(P ), we have∑
α∈S\SP cαωα(β̌) �= 0.

Proof. The groupK operates transitively onG/P . Sinceωϕ is K-invariant, it suffices to
check the assertions in the theorem only at the pointξ0 = eP , wheree ∈G is the identity
element.

Let Ru(P ) be the unipotent radical of the opposite parabolic groupP . Now the map
from Ru(P ) to G/P defined byr �→ rξ0 is an isomorphism onto an open neighborho
sayU , of ξ0 in G/P . So its inverse gives a local section, says, overU of the projectionπ
of G, andωU = √−1∂∂(s∗ϕ).

For a rootβ ∈ Ru(P ), let U−β be the corresponding root group of the oppo
parabolic groupP . By applying the Gram–Schmidt process to SL(2,C) and transposing
the calculation toP (cf. [1, Proposition 2.1]), we see that the restriction ofω to the line
U−βξ0 coincides with

√−1∂∂
∑

α∈S\S
cα log

∣∣ρα(U−β(z)
)
vα
∣∣= √−1∂∂

∑
α∈S\S

cα

2
ωα
(
β̌
)
log
(
1+ |z|2),
p p
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whereωα is defined in (2.4). Consider the tangent vectors∂
∂z

|z=0U−β(z)ξ0 = X∗
β with

β ∈Ru(P ). These vectors span the tangent spaceT
1,0
ξ0

G/P . These are eigen vectors for t
action ofT ∩K with different weights−β . Therefore, the vectorsX∗

β , whereβ ∈ Ru(P ),
are orthogonal relative to anyT ∩K invariant Hermitian form.

Moreover, we have

hω
(
X∗
β,X

∗
β

)=
∑

α∈S\Sp

cα

2
ωα
(
β̌
)
.

For β ∈ S \ Sp , we havehω(X∗
β,X

∗
β) = cβ/2. Also, for β ∈ Ru(P ), the integerωα(β̌)

is positive for someα ∈ S \ Sp . Consequently, the formω is positive if and only if all
the constantscα , whereα ∈ S \ Sp , are positive. It is nondegenerate if and only if f
every rootβ ∈ Ru(P ), we have

∑
α∈S\Sp cα/2ωα(β̌) �= 0. This completes the proof of th

theorem. ✷

4. Ricci form of a volume form

In this section, after recalling the basic definition of a Kähler–Einstein form, we r
from [3] a description of the first Chern class of line bundles overG/P .

Let V be a volume form on a complex manifoldM of dimensionn. If η is a locally
defined nonvanishing holomorphicn form onM, thenV = ϕηη for some functionϕ. The
Ricci formof V is defined to be

Ric(V ) := −
√−1

2π
∂∂ log|ϕ|. (4.1)

On the other hand, ifL is a holomorphic line bundle overM equipped with a Hermitian
structureN ands a locally defined nonvanishing holomorphic section ofL, then the first
Chern class ofL is defined by

c1(L) := −
√−1

π
∂∂ log

∣∣N(s)∣∣.
Let M = ⋃

i Ui be a covering ofM by open subsets on which there is a nonvanish
holomorphic section, saysUi , ofL. OnUi∩Uj , setgij = sUi /sUj . A Hermitian structure on
L is given by a family of real positive functionsλi defined on eachUi with λi/λj = |gij |.

Therefore, a Ricci form as in (4.1) is the first Chern form of the anti-canonical
bundle ofM equipped with the Hermitian structure induced by the volume formV .
In particular the Ricci form represents the first Chern classc1(M) (cf. [6]). Also, if
f :M1 → M is a holomorphic map which is locally an isomorphism, thenf ∗V is a
volume form onM1, whereV is a volume form onM. Since Ric(f ∗V ) = f ∗ Ric(V ),
a holomorphic map ofM to itself that preservesV must also preserve the Ricci form.

A Kähler formω onM is calledKähler–Einsteinif the Ricci form ofωn is a constan
scalar multiple ofω. The constant is known asEinstein constant.
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Now letM be the flag manifoldG/P . For anyα ∈ S \ SP , consider the functionfα on
G defined by

g �→ 1

π
log
∣∣ρα(g)vα∣∣,

whereρα is the irreducible representation ofG with highest weightωα andvα a highest
weight vector of norm 1 therein. Proposition 2.2 says that the formddcfα descends to
G/P . In other words, there is a (unique)(1,1)-formωα onG/P such that the pull back o
ωα toG coincides withddcfα . From Theorem 3.1 it follows thatωα is a positive form on
G/P .

Every holomorphic characterχ of P defines a holomorphic line bundleLχ onG/P .
The first Chern class ofLχ has the expression

c1(Lχ ) := −
∑

α∈S\SP

〈
χ, α̌

〉[ωα],
whereωα , as above, is the form onG/P defined byddcfα (see [3]). Furthermore, th
cohomology class−〈χ, α̌〉[ωα] is dual to the projective line inG/P defined byLαξ0 in
G/P , whereLα , as in Section 2, is the image of SL(2,C) by the mapφα defined in (2.1)
[3]. Moreover, the first Chern class of the anti-canonical line bundle is

c1(G/P)=
∑

α∈S\SP

〈
ρ, α̌

〉[ωα] (4.2)

whereρ is the sum of all positive roots not supported bySP ; the integers〈ρ, α̌〉 are positive.
For a complex manifoldM, by c1(M) we meanc1(TM).

5. Kähler–Einstein metrics on G/P

In this section we consider a natural Kähler form onG/P , show that it defines a Kähler
Einstein structure onG/P , and prove that the restriction of it to any fiber of the project
G/P → G/Q, whereQ ⊃ P is a parabolic subgroup ofG, is also a Kähler–Einstei
metric.

Using the notation of Section 4, letω be the form
∑

α∈S\SP 〈ρ, α̌〉ωα onG/P . Since
〈ρ, α̌〉 are positive integers, we see from Theorem 3.1 thatω is a positive form. Since
ω is K-invariant, the corresponding volume form and therefore its Ricci form are
K-invariant. Note that from (4.2) it follows that the two(1,1)-formsω and Ric(ω) are
cohomologous.

Therefore,ω and Ric(ω) areK-invariant cohomologous forms onG/P =Kξ0. Firstly,
sinceω − Ric(ω) is a reald-exact form of type(1,1), the ddc-lemma (see [4, p. 85
Corollary 2.110]) says thatω−Ric(ω)= ddcf . Secondly, since any harmonic function
G/P is a constant function andω − Ric(ω) is K-invariant, it follows that the functionf
isK-invariant. Finally, sinceK acts transitively onG/P , we conclude thatω= Ric(ω). In
other words,ω is a Kähler–Einstein metric with Einstein constant 1.
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We will call ω thecanonicalmetric onG/P .

Theorem 5.1. LetQ be a parabolic subgroup ofG containingP . Then the restriction o
the canonical metricω to any fiber of the projectionG/P → G/Q is a Kähler–Einstein
metric.

Proof. Let SP andSQ be the roots of the Levi-complementsLP andLQ, of P andQ
respectively, which containT . The fibers of the projectionG/P →G/Q areK-translates
of the fiberQ/P , which itself is a flag space of the reductive groupLQ. Therefore,
c1(Q/P) is given by the restriction

c1(Q/P)= c1
(
LQ/(LQ ∩P)

)=
∑
α∈R

〈
σ, α̌

〉[ωα]|Q/P (5.1)

whereR = SQ \ SP andσ is the sum of all positive roots with support outsideSP but
which are supported bySQ.

Consider the form

ω=
∑

α∈S\SP

〈
ρ, α̌

〉
ωα

defining the canonical metric onG/P , which is a Kähler–Einstein metric with Einste
constant 1. So the restriction ofω toQ/P has the expression

ω|Q/P =
∑
α∈R

〈
ρ, α̌

〉
ωα|Q/P +

∑
α∈R̃

〈
ρ, α̌

〉
ωα|Q/P (5.2)

whereR̃ is the complement ofSQ in the setS of all simple roots.
Now, the second sum in the right-hand side of (5.2) vanishes identically. Indeed,Q/P

is a homogeneous space for the simple group[Q,Q]. Now, from the summary at th
end of Section 2 it follows that the formsωα , whereα ∈ R̃, vanish onQ/P because the
corresponding quasi-potential is zero on the commutator[LQ,LQ]. Since the second su
in the right-hand side of (5.2) is zero, we have

ω|Q/P =
∑
α∈R

〈
ρ, α̌

〉
ωα|Q/P .

Now,ρ = σ +τ , whereτ is the sum of all positive roots with support outsideSP , but which
are supported bySQ, andτ is the sum of all positive roots whose support lies outsideSQ.
Consequently, ifα ∈ SQ, the reflection alongα fixesτ . Therefore, we have〈ρ, α̌〉 = 〈σ, α̌〉.
Hence

ω|Q/P =
∑〈

σ, α̌
〉
ωα|Q/P . (5.3)
α∈R
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Combining (5.1) and (5.3) we see thatω|Q/P representsc1(Q/P) and as it is invarian
underK ∩Q, we use theddc-lemma as before to conclude thatω|Q/P is a Kähler–Einstein
metric with Einstein constant 1. This completes the proof of the theorem.✷

6. Application to volume computation

Our aim in this final section is to compute the volume ofG/P with respect to the
canonical metric. We start with some special cases.

Let Gr denote the Grassmann variety parametrizing the space of alld + 1 dimensiona
linear subspaces ofCn+1, with 0< d + 1 � n. SetN = (d + 1)(n − d) which is the
dimension of Gr.

Let S denote the tautological vector bundle over Gr whose fiber over the
representing a subspaceV of Cn+1 is V itself. Setτ = −c1(S) which is a Kähler class
on Gr. Note thatH 2(Gr,Z)= Z andτ is the positive generator.

Recall the Euler sequence

0 → End(S)→ Hom
(
S,Cn+1)→ T Gr → 0

over Gr, whereCn+1 is the trivial vector bundle with fiberCn+1. The Euler sequenc
implies

c1(Gr)= (n+ 1)τ. (6.1)

The evaluation of the cohomology classτN on the top (oriented) homology class Gr

A := 1!2! · · ·N !
(n− d)!(n− d + 1)! · · ·n! (6.2)

[7, p. 274, Eq. iii]. This combining with (6.1) give

c1(T Gr)N ∩ [Gr] =A(n+ 1)N (6.3)

where∩ denotes thecapproduct.
The canonical metric (defined in Section 5) is Kähler–Einstein with Einstein const

In particular, the second cohomology class represented by the canonical metricω on Gr
coincides withc1(T Gr). The total volume of Gr with respect toω is the integral ofωN over
Gr. Consequently, (6.3) implies that the total volume of Gr with respect toω isA(n+ 1)N ,
whereA is the constant defined in (6.2).

We will now compute the volume of GL(n,C)/B, whereB is a Borel subgroup. Th
dimension of GL(n,C)/B is (n−1)n .
2
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From [8, p. 282, Theorem 5] we know that the first Chern class of the holomo
tangent bundle isc1(T (GL(n,C)/B)) = 2

∑n−2
i=0 Ai (using the notation of [8]). On th

other hand, [8, p. 260, Theorem 1] implies that

(
n−2∑
i=0

Ai

) (n−1)n
2

=
(
(n− 1)n

2

)
!

(see also [8, p. 277, (11.2)] and the lines following it). Combining these two, it follows

c1
(
T
(
GL(n,C)/B

)) (n−1)n
2 = 2

(n−1)n
2

(
(n− 1)n

2

)
!.

Since the Einstein constant of the canonical metric is 1, the total volume of GL(n,C)/B

with respect to the canonical metric is 2
(n−1)n

2 (
(n−1)n

2 )!.
The volume of generalG/P can be computed using [5, p. 340, Theorem 24.10].

weightd (in the notation of [5, Theorem 24.10]) for the holomorphic tangent bundleTG/P

is given in (4.2). If we setd in [5, Theorem 24.10] to be the weight for the holomorp
tangent bundleTG/P , then [5, Theorem 24.10] gives the degreec1(G/P)

dimG/P ∈ Z of
the tangent bundle.

We note a general fact that ifVM be a volume form on a projective manifoldM of
complex dimensionm such that the element inH 2m(M,R) represented byVM coincides
with c1(M)m and, furthermore, if the line bundle

∧m
TM is very ample, then the degree

the embedding ofM in PH 0(M,
∧m TM)∗ coincides with the volume ofM with respect

to VM . It is easy to see that all the conditions on the pair(M,VM) are satisfied by the
canonical metric onG/P . Indeed, this is an immediate consequence of the fact tha
canonical metric is Kähler–Einstein with Einstein constant 1.

Therefore, from [5, Theorem 24.10] the total volume ofG/P with respect to the
canonical metric is

n!
∏
α∈S

(d,α)(a,α)

wheren= dimG/P anda is the sum of all positive roots.
By Theorem 3.1, ifV is the volume form onG/P corresponding to the form∑

α∈S\SP
cαωα

andV0 is the canonical volume form onG/P , thenV/V0 is given by

V

V0
=

∏
β∈Ru(P )

∑
α∈S\SP cαωα(β̌)∏

β∈Ru(P )
∑

α∈S\SP 〈ρ, α̌〉ωα(β̌)
.

Therefore, from the above computation of the total volume forV0 we get the total volume
of V as well.
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. One
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–311.
metric
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7.
9) 315–

matics,

Math.
edition

MA,

y, New

2.
om. 2
We put down the result of the above computations in the form of the following theo

Theorem 6.1. The volume ofG/P with respect to the canonical metric is

V0 := n!
∏
α∈S

(d,α)(a,α)

wheren= dimG/P , d =∑
α∈S\SP 〈ρ, α̌〉[ωα], anda is the sum of all positive roots. Mor

generally, the volume ofG/P with respect to the form
∑

α∈S\SP cαωα is

V0
∏

β∈Ru(P )
∑

α∈S\SP cαωα(β̌)∏
β∈Ru(P )

∑
α∈S\SP 〈ρ, α̌〉ωα(β̌)

.
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