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PREFACE

These lectures were delivered at the College on Arakelov Geometry which was
organized by Professors Amir Assadi, Uwe Jannsen and Norbert Schappacher at the
International Centre for Theoretical Physics, Trieste, in September 1992. They cover

basic material on Levi convexity and Kahler manifolds.

In view of the varied background of the participan(s, the organizers had asked me
to give as simple proofs as I could of all the basic results. On the other hand, I wanted
to reach a certain depth in exposition and for this reason I brought plurisubharmonic
functions — though not in their most general form - fo the fore and put more emphasis
on them than is customary, as their introduction leads very quickly to interesting

results. I have added some additional material on group theory which fits well here.

I thank the organizers of the College for their invitation to deliver these lectures.

Hassan Azad

Dhahran

July 8, 1997
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Chapter 1

Basic Notions

§ 1. Some notations and definitions

We shall denote by R the set of real numbers, by C the set of complex numbers
and by R™ and C” their Cartesian products. Recall {GP] that a function defined on
an open subset of R™ is differentiable if its partial derivatives of all orders exist and
are continuous. If f = u + v is a holomorphic function of one variable then the

Cauchy-Riemann equations [N]

o _owou_ o
8r 0Oy’ 0y Oz

can be written as

ou ov

0 = (uz—vy)+i(uy+v) (uz=5:;,vy=b; etc.)
= —6—+z2 (u + v)
— \dz oy '
Now for z = z + 1y we set dz = dz + idy,
8 140 .0 8 1/0 .0
—_—=-=~i= ), ==z==+i).
dz 2\0zx Oy zZ 2\0zx Oy
So f = u+ tv is holomor hiciﬁg—o
= v i p 5 — O

For a differentiable function f defined on an open set U of C*, we set:

o L2

0z; 2\0z; Oy
of 1/0f .Of
— = - =—+1— =1,...,n),
bz, 2 (az,- R U )
: P . 0f :
and say that f is holomorphic il it satisfies the CR equations T 0, 4j=1,...,m
i
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We can now define what a complex manifold is.

(1.1) Definition. An n-dimensional complex manifold is a differentiable manifold,
which admits an open covering {U,} together with homeomorphisms ¢, : U, —
Vo C C" open such that for all a,8 with U, N Uz # & the transition functions

tpgogogl : ‘Pa(Ua N Uﬁ) — (pg(Uc, N Uﬁ) are holomorphic.

® ~ (p

a

p
Va:@‘;d' d'Q@:Vp

(1.2) Remark. The topology of M is completely determined by the maps @,. Instead
of giving to M first a topology we could simply demand that the maps ¢, should be
bijective and the sets @, (U N Up) should be open. Basic open sets of M are then the

inverse images under the ¢,’s of open sets in ¢,(Uy) = Va.

Examples of complex manifolds

1) C", or any open set of C".

2) If 1, ..., fr are holomorphic functions on C™ and the Jacobian matrix (%) N
i/ j=1n
has rank &£ on theset M : fy =--- = fr = 0, then M is a complex manifold of

dimension n — k. For example, the equation z2 + - 4 22 = 1 in C"*! defines an

n-dimensional complex manifold.

3) M : C*/A, A a discrete subgroup. Let m : C* — C™/A be the projection,
ie. m(z) = z+ A. We give to M the quotient topology. For p € C" choose a
ball B, of sufficiently small radius so that 7|B, is injective. We take these sets

as the open sets of our covering. The transition functions are the translations
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z2— z+v, v €A. Hence M is a complex manifold.

The next example is a fundamental example of a compact complex manifold.

P*(C): The complex n-dimensional projective space. As a set. P*(C) is the set, of
all lines in C™*! passing through 0, i.e. it is the set of all 1-dimensional complex
subspaces of C**! passing through 0. For v,w € C™*!, the line C» = Cw if and
only if v = Mw, X € C* = C\0. On C™'\0 we introduce the equivalence
relation v ~ w iff v = Aw for A € C*, and we denote the equivalence class of »
by [v]. So P*(C) = C**!1\0/ ~. Let 7 : C**1\0 — P*(C) be the map =(v) = [v].
If v = (20,...,2.) We also write v} = [20: 21 : --- : z,). To P*(C) we give the
quotient topology determined by the map 7 : C**'\0 — P*(C), namely the set
U c P*(C) is open if and only if 7=*(U) is open in C**1\0.

Let U; = {{zo : -+ : za}) : zz # 0}. The sets U; (i = 0,...,n) are open
and cover P*(C). We define ¢; : U; — C™ by wilzo : 21 : -+ 1 za] = (20/2,
ooy 2im1/ %y Zixr [ Ziy .o Zaf2) and 9 1 € — U by (21,00, 2,) = [z 1 -0
Ziey t 1tz : -+ 1 z). The map ¢; is the inverse of ¢; so ¢; : U; —
C™ = V, are homeomorphisms. Moreover, the transition functions ¢g.¢;" :
0a(Ua NUpy — ¢-(Ua N Upy are holomorphic because, assuming a < 3, we have
(Ppotpa M2ty -y 20) = (2128, ., 201/ 28, 1/ 28,202, - -, 25-1/ 28, 2841/ 28, - -,

2,/ 2gy. Hence P*(C) is a complex n-dimensional manifold. Since every line in
C™*! cuts the unit sphere S?"*1 we see that P"(C) is also a contimions image
of §+1 hence it is also compact. For n = 1, P'(C) = Uy U {[0 : 1]}, where
Uo = {[z0 : z1] € P(C) : z # 0} =2 C. So P}{C) is the 1-point compactification

of the complex plane C, i.e. it is diffeomorphic to the two spheres 52.



§ 2. Subharmonic functions; the maximum principle

Complex manifolds have many properties which are different from those of real
analytic manifolds. In confrast to such manifolds, which can always be embedded
in some snitable R™ real analytically [GP] a compact complex manifold cannot be
emubedded complex analytically in any C”. The basic reason for this is that the modulus
of a holomorphic function is subharmonic — we define this term presently — and the
maximum principle holds for such functions, namely, if a subharmonic function defined
on an open connected set U C R? achieves its maximum value on U, then it must be
constant. Subharmonic functions are of fundamental importance in complex variables

and complex geometry.

(2.1) Definition. A differentiable function ¢ defined on an open set U C R? is

o 82 P 62
subharmonic if y¢ = 322 + 8_3;2 > 0.

(2.2) Example. If f(z) is a holomorphic function then | f(z){? is subharmonic. To see

0 0
this, notice that in terms of the operators 3 595 the operator 7 = F + 2 —5 factorizes

0 0 o 0 a0 (0 o?
as = (a - 26_y> (c’)_x 1 0_y> = 4-6—z (%> = 462 - and therefore we have:

-
VR = g () CETE) = 45 T
= 4P FE = 4f (A 20

(2.3) Lemma. Let f(z,y) be a differentiable function defined on the disc A(a, R) (i.e.

1 [ A
the disc with center a and radius R). Let F(r) = 7 f(a+re®}ds, (0 <r < R).
0

Then F'(r) = / (v f)dzdy.

N(a,r)
Proof. We have

: L [ (of Of o iy
F(r) = 27]_ ( (¢ +ré )Tcosﬂ—!— 6y(a-i—re Jr sin 8)df
- f
= / / ( 37 + dzdy
Alayr)
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0Q OP

as Pdz + ady = / / (—— - —-> dzdy (by Green’s theorem). O
aA(a,r) ” By

In particular this gives the following important corollary.

(2.4) Corollary If f is subharmonic on an open set U C C and A(a,r) C U then

f@< g [ flat ety

2r

Proof. By (2.3) if F(t) = = f(a+1te®)df then F(t) / v f 2 0. Hence F is
0

Afa,r)
2r

an increasing function of ¢ and so F(0) = f(a) < 2i fla+re®)ds. O
T Jo

(2.5) Corollary. If a subharmonic function f defined on an open connected set

U c C achieves its maximum value at a point a € U then f(z) = f(a).

27
Proof. Choose a disc A(a,R) C U. Now for all r < R we have f(a) < 51— f(a
m

re*?)df < f(a). Therefore ;;[f(a) — f(a+re?))df = 0 and so f(a) = f(a + re®) for
all 0 < 8 < 2r. Since this holds also for all » < R we see that f(z) = f(a) on A(a, R).

Therefore the set where f(z) = f(a) is open. It is also closed and as U is connected

we must have f(z) = f(a). D

From Cor. (2.4) we see that if f is a holomorphic function defined on an open
connected set U C C" and |f(2)] < [f(a)| for some a € U then |f(2)] = |f(a)|.
For, if a = (a1,...,a,) then in a suitable multidisc |z; — a1| < €1,...,|za — an| < €n
we have by (2.4) |f(a1,aq,...,8,)| = |f(z1,a2,...,as)| = |f(21,22,03,...,a,)| -+ =
|f(21, 22, ..., 2,)|. Hence |f(2)| = |f(a)| on U ie. f(2)f(z) = f(a)f(a). This means
that f(z) is also holomorphic and therefore f(z) mmst be constant. This in turn
implies that a compact complex manifold does not have any nonconstant holomorphic
functions. In particular, such a manifold cannot be embedded holomorphically into
any C", because the coordinate functions on C" restricted to the manifold in question

would be constant and the manifold would be just a point.
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Exercise. Show that the real projective plane P?(R) embeds in R* by using the map

f(ma y,Z) = ( 2 y25$y1xz)yz)-
8§3. The Levi-form of a function; plurisubharmonic functions

Another important geometric concept relating to complex manifolds is that of the

Levi-form of a real-valued function defined on such a manifold.

Let U C C" be an open set and f : U — R a differentiable function. Let

Za = o +1Ys (@ = 1,...,n) be the coordinates in C*. Denoting the operators

! 0 ;0 a—i—ia)b 0 i)weseetha.tmatri)c[( 't ) is
4 \ 0z, —Zaya Org  Oyp y 0z \OZg 02,0Z3

Hermitian matrix, called the Levi-matrix of f. The associated Hermitian form, de-

noted by L(f), is the Levi-form of f. So, for P € U, u,v € C* we have
02
Lfptuno) = | 5L

625 BEj
ance property.

(p)jl v, The Levi-form has the following important invari-

(3.1) Proposition. If f is a real-valued differentiable function defined on an open set
UeCr andV CcC™ isopenandh:V = U, h(zy,...,2m) = (hi(z1,-- -, Zm)y- -+,
ho(2yy - - - zm) 1s holomorphic then L(f o h)p(u,v) = L(f)n)(h«(p)(1t), hu(p)v); here

ah;
h.(p) is the complex Jacobian of h at p, namely h.(p) = [(az (p))] L

i=l.m

Proof. We have (f o h)(zy,.--,2m) = f(h1,...,hn) so, by the chain rule,
d(foh) of 6h;  Of Ohy

0zq - Oh; ?);; + Z'N_L, 02y (using summation convention)
- g’i ’gzﬁu (%’zl:' = ( because h; is holomorphic) .
Hence
2 ) _ )
O oy o O 0P b
975024 OTxOh; 0Zp 0za
il.e.

8% (foh) Oh; O Ohy
Dza0Z3 024 OhiOhy 0Zg

which is equivalent to the assertion in the proposition. O
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This proposition shows that given a compler manifold M and a real-valued differ-
entiable function f we can associate to f an intrinsic Hermitian form namely the Levi-

form L(f) of f, whose matrix in a system of local holomorphic coordinates zi, ..., z,

= |(53))

(3.2) Definition. If the Levi-form of f is positive definite, we say that f is strictly

plurisubharmonie (s.p.s.h); if the Levi-form of f is positive semi-definite then we say

that f is plurisubharmonic (p.s.h.).

(3.3) Remarks

1. If f is ps.h. on a complex manifold M and v : U —- M (U C C) is a holo-
2

morphic map then by (3.1) 636?( f(7(2)) = 0. In other words, the function f is

subharmonic along every complex curve. Hence the word “plurisubharmonic”.

2. Strictly plurisubharmonic functions are intimately related to Kdhlertan metrics,

as we shall see in §2.2, Chapter 2.

(3.4) Example. As [z|? is subharmonic we see that if f is a holomorphic function on
C" then |f|? is p.s.h. If fi,..., fn are holomorphic functions on an open set U C C"

then |fi[2+ -+ + |fml|> + €(|21]® + -+ |2n|?) is s.p.s.h.



Chapter 2

Kahler manifolds

§1. Geometric aspects

We assue familiarity with basic terminology related to Riemannian metrics and

differential forms, as explained in, e.g., [DC] and [GP).

Let M be a real manifold on which there exists an almost complex structure, say

J (ie. Vpe M J, € End(T,(M)) with J? = —Id and J maps smooth vector fields
to smooth vector fields). So dim M must be even, say dim M = 2n. We say that M

is an almost complex manifold.

A Riemannian metric g on M such that g(JX,JY) = ¢g(X,Y) for all smooth
vector fields X, Y is said to be a Hermitian metric. The tensor w defined by w(X,Y) =
g(JX,Y) is skew—symmetric and it is called the fundamental form of g¢. Since
w(X, JX) = g(X, X) we see that w, is nondegenerate for all p € M. By linear algebra
we can find a basis of T,(M), say ey, fi,...,€n, fa such that wy(e;, fi)=1, wy(e;, f;)=0
if i # j and wy(es, &) = wp(fi, f;) =0 Vi, 7; that is the matrix of w, in this basis is

/ 01
-1 0

01
\ -10/

If &,m, ... €, mn is the dual basis then wy, =& A +--- 4+ &, A 1, and therefore

wy = > Gy AMiy NG Ay N>+ NEi, A,
{ityenin}C{1,2,0in}

= Z Eqamiy A+ A&, A1i,  (the sum being over permutations {i1,...,%,}
of {1,...,n})

=nlit AmA - ANy Ay



So w™ # 0 and therefore M is orientable and w" is a volume form. In particular, if M

is compact (without boundary) then w™ is not an exact form.

If the exterior derivative dw of the fundamental 2-form of g is zcro we say that g is

a Kéahlerian metric. This has interesting implications for the homology of M.

(1.1) Proposition. If M is a compact 2n-dimensional Kdhler manifold then

H*(MR)#0, 0<k<n.

Proof. Let w be the fundamental form of a given Hermitian metric with dw = 0. As
w" is a volume form for M we have, by Stokes theorem [GP], that w" is not exact
(ie. w™ # dn for any (2n — 1) form 7). Now if w* = df for some k < n then
délAw) = dé Aw + (—1)* ¢ Adw = dé Aw = wkt!. Continmiing, we would have
w™ = dn for a suitable 1, a contradiction. As dw* = 0 we see that w* are closed forms

which are not exact. This is what had to be shown. O

(1.2) Proposition. If M is a complez Kdhler manifold then every complez subman-

ifold of M is also Kihlerian.

Proof. Let J be the complex structure tensor of M, g a J-invariant Riemannian metric
and w the associated fundamental form. If N is a complex submanifold of M and
p € N then J, maps T,(N) into Tp(M). Moreover if i : N — M is the inclusion map

then i*(dw) = d(i"w) = 0. Hence N is Kahlerian.

(1.3) Examples

1) C with the flat metric g= (dz1)2H{dy1)*+- - -+(dzn)*+(dyn)?, Where 2, = T,+iya
are the coordinates of z € C", is a Kihler metric. If v={(ny,v],...,1,v]) € T,(C")

then J, = (—v},v1,...,—},¥,) so g is J-invariant. If w is the fundamental form

9



-

2)

5)

of g then as J(Ei_u) = 5 and J(i) = <2 we have

a 0 0
] — W — | =0= — b = dy, +---+
and w (6%’ 6:cb> 0=w (Bxa " By ) (b # a). Sow = dz Ady
dz, A dy, and dw = 0.

Any complex submanifold of C™ is Kihler.

On the negative side the spheres S?*(n # 1) are, by Prop. 4.1, not Kahler as
H:(S™) =0 if k 5 0,n.

The Complex Projective Space P*(C) is Kahler. In fact, up to a constant, it has a
unique U(n + 1)-invariant Hermitian metric which is automatically Kahler. This
is the Fubini-Study metric. To see this, notice that U(n+ 1) operates transitively
on P*(C) and the stabilizer of pp ={1:0:---: 0} is U(1) x U(n). For z € C*
the map z + [1:z] =[1:2 :- - 2,] maps C” into an open neighborhood of
po. Hence if h = (" x g) € H then the differential h, of A maps v € T,(C") =
T,o (P™) to g(v/e?) (*). Now a U(n + 1) invariant Hermitian metric is
completely determined by choosing an H-invariant Hermitian metric on T, (P")
and from (*) we see that such a metric is unique up to a positive constant. From
(*) we also see that 3g € H such that g.(v) = —v, Vv € T, (P"). Therefore if
w is the fundamental 2-form of a U(n + 1)-invariant Hermitian metric on P* then
7 = dw is a U(n + 1)-invariant 3-form. Choosing g € H such that g,v = —v for

v € Ty (P") we see that (941)p, = (1), implies that 7, = 0 and therefore n =0

everywhere. 4

In view of Proposition 1.2 and Example 5 we see that any complex submanifold
of P*(C) is a Kaller manifold.
10



We now come to some finer properties of complex manifolds.

(1.4) Wirtinger’s Theorem. Let (M, J) be an almost complex manifold, g a Her-
mitian meiric on M and w the assoctated fundamental form. Let N C M be a 2m-
dimensional oriented real submanifold and dV the canonical volume form of N. Then
w™/m\ vy < dV, with equality if and only if T,N is a J-invariant subspace of T,(N)

with its canonical orientation.

To prove this we need the following lemma from linear algebra

(1.5) Lemma. Ifw is a skew symmetric 2n.x2n matriz then there ezists A € O(2n,R)

0 A 0 X 0 A
-1 _ t__ 1 2 . i
such that AwA™! = AwA —( A 0 )L( ~X 0 )_L ( A 0 )

Proof. Let {,) be the standard inner product on R?". For u,» € R we have {w(u),v) =
—{u,w(v)) so if w leaves a subspace W invariant then it also leaves its orthogonal
complement. W+ invariant. Therefore R?" is a direct sum of w-invariant orthogonal
planes. Choosing orthonormal bases in these planes we see that the matrix of w in this
basis is of the form ( S j J_---J_( Sk ) . Therefore 34 € O(2n, R)
such that AwA~! = AwA* is of the desired form. Moreover, by interchanging a pair of

basis vectors we can also arrange that A € SO{2n,R). Hence an equivalent formulation

of this lemma is the following.

If w is a skew-symmetric bilinear form on an oriented 2n-dimensional real vector

space V then there is an oriented orthonormal basis of V in which the matriz of w is
0 A1 0 An

of the form ( A0 )J_---J_( A D )

Proof of the Theorem 1.4. There exists an oriented orthonormal basis m, ..., Vg, of

To(N) in which w is represented by a matrix of the form

( Y O1 j 1-eel ( A 0 ) , where A\, = LU('UQk—Ix'U%)'

11



Let wy,...,wam be the 1-forms dual to vy, ..., vsm. So
W= Mwy-1 Awe and W™ =mA; - Apwi A Awae = mIA - Andvg  (¥)
k=1
For unit vectors X,Y € T,(N) we have |w(X,Y)| = [g(JX,,Y)| < |[JX]| |Y]| <1 with
ceadity if and ouly if JX = 1Y & the subspace spanned by X,Y is J-invariant.

From (*) we therefore have |w™/m!| = |A\; - - - AmldVo < dVp as [\ = |w(var—1, var)| <
1, and |[w™/m!| = dV; if and only if T,(N) is a J-invariant subspace T,(M). Since
w(X,JX) > 0VX we see that we can find an orthonormal basis of T,(N) of the form
€1,T€Ly+ ) Emy TEm and w™/m! (ey,Tey,. .., €m, T€m) = 1. Hence w™/m! is the canoni-

cal volmme form of M. O

(1.6) Corollary. If M is an arbitrary oriented 2m-dimensional manifold embedded

in a Hermatian manifold M with fundamentol form w then

L-/- w™ < volym (M)
M

m)

and in case the volume is finite, equality holds < M is a complex submanifold of M

with canonical orientation.

This in turn follows from the theorem of Levi-civita:

(Levi-civita). If M is a submanifold of a complex manifold M then M is complez if
and only if T,(M) is a complex subspace of T,(M)¥p € M.

Proof. The idea of the proof is contained in the special case: M is a surface in C2 given

by z = f(w), where f is a smooth function. Suppose for all p (a, a) eEM, T,(M)is

a complex subspace of T,(C?). Now if v = a— 6 + oz3 + ﬁ ﬂ Tn(M), then

0z 0z

3f( 6f

)+ Bao(@). *)

Since T},(M) is complex we also have

ier = 8% (a) B s (o).

12



Therefore § = %(a’) =0.

Since f is arbitrary we see that g—%(a') = 0V(a,d) 3 a= f(a'). Hence —i— =0

and f is holomorphic.

It suffices to prove the general statement in a neighborhood of a fixed point, which
we may take to be zero. If Tp(M) is a complex subspace of C* then by a unitary
transformation it can be mapped onto the coordinate plane z' = (z1,...,2,), 2p =
dimg M. By the implicit function theorem, in some neighborhood U = U’ x U" of 0
the manifold M is given by the equation 2" = ¢(2'),z = (¢/,2"), where g : U’ — U”
is a smooth function. If a = (d/,a”) and Ta(M) is complex and (v',v") € T,(M),
then (iv',9v") is also in T,(M). So exactly the same argument as before shows that
%(a’) -2 =0 on T,(M). Since T,(M) projects onto CF, we see that —g—i(a') =0 Vd'.

zl
Hence -2—2' =0in U, Le. gis holomorphic in U’ and so MNU is a complex submanifold

z
in C™.

Proof of Corollary 4.4. We have ;nl_i / w™m < / dvg = volo,,, (M), and equality holds
“ M M
& for almost all p € M the planes T,(M) are complex. By continuity all T,(M) are

complex and so by Levi-Civita M is a complex manifold.

(1.7) Corollary. If M is a Kihler manifold and M C M a compact complex sub-

manifold then Vol(M) < Vol. of any other 2m-dimensional submanifold My which is

homologous to M in M.

Proof. Let [M] — [M;] = [8Z] and let w be the fundamental form of the given

Kihlerian metric on M. As d(w*) = 0 we have/ w'"/m!—/ wm/ml = / w™[m! =
M M 82z

fd(w”)/m!=0 (by Stokes). Hence Vol(M)=/ w"‘/m!=/ w™/m!<Vol(M;). D
z Y M

1

13
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§2. Kihler metrics (analytic aspects)

So far we have not made any essential use of complex local coordinates. We shall
now show that on a complex manifold a K&hler metric is generated locally by a plurisub-
harmonic function and we shall also give a local canonical form for such a function.

Before doing this, it is best to get a little bit of linear algebra out of the way.

(2.1) Positive (1,1)-forms. Let V be a real vector space, J € End(V) with J? = —1.
Let ¢ be a symuncetric J-invariant, bilincar form on V. Extend ¢ to a complex bilinear
form on Vg = V®(C. The form h{(X,Y) = g(X,Y)(X,Y € V¢) is a Hermitian form.
Now on V¢, the en]ltiomorphism J splits and we set V' to be the i-eigenspace of V and

V! to be the (—i)-eigenspace of V. We have

Vv = (u~iJw:ueV)

Vol = (utiJw:ueV).

Foru € Vif weset £, = (u—iJu) thenu = % (ﬁu + E_u), the map u +— &, is bijective and
£rw = 1€y Now h (€, &) = 9(€s,E,) = g(u — iJu,v + 1Jv) = 2g(u,v) — 2ig(Ju,v). If
we set w(u,v) = g(Ju,v) then w is skew symmetric and h(€y,&,) = 2[g(u, v) —iw(u, v)].

Hence h|V'9 is positive definite < g is positive definite on V & w(u, J,) > 0 Vu # 0.

Notice that h(Euygu) = w(&n‘]_gv) = _iw(&nzu)' So h(guEu) >0« _W(E“Zu> >0
forall u # 0.

Summarizing, we see that a real J-invariant bilinear form g gives rise to a J-invariant
2-form w with w(X,Y) = g(JX,Y) and conversely a J-invariant 2-form w gives rise to
a J-invariant bilinear form g(X,Y) = w(X, JY') and we call w positive iff the associated

bilinear form g is positive definite. This is so if and only if ~iw(£,,£,) > OVu € V,u # 0.

(2.2) Definition. J-invariant 2-forms are said to be of type (1,1). If w is such a
14



skew-symmetric form and w(X,JX) > 0 VX 3 0, then we say that w is a positive

(1,1)-form.

The reason for this terminology is explained in (2.3) below.

(2.83) Decomposition into Types. Let (V,J) be as in (2.2). In V ® C we have a
conjugation o defined by o(v +iw) = v — iw, v,w € V. If 5 is a complex r-linear form
on Vg = V®(C then 7 (v1,...,v.) = (n(ovy,...,o1,))" is also complex multilinear.
On the othe;l'1 hand if £ is a real multilinear form on C then £ extends uniquely to a
complex multilinear form on V¢ — we denote this extension also by £ — and &7 = £.

Thus as (Vg), = V we see that 77 = 1 & 7 takes real values on V. So if 7 is a complex

multilinear form on Vg with 7 = 7, we call n a real form.

In particular, let us look at bilinear forms on (Vg) = V2@ V%, We have Ve®@ Ve =
(VP eV e (VP VM) e (VO @ V™) =4efn. VA @V @ V%2 and J operates
on V%% and V%2 as mmltiplication by —1 and on V! as the identity. Therefore a
bilinear form w on Vg is J-invariant if and only if w € Vb1, ie. w is of type (1,1).

Hence w is a real J-invariant form if and only if w” = w and w is of type (1, 1).

—iJ n—1J
In general, if ey, Jey, .. ., e,, Je, is a basis of V then az A 21 = =§1,---v_e 2z = =
€n.&y, ..., &, is a complex basis of Ve. If wr,...,ws,@1,...,W, is the dual basis of V¢

then a basis for /\N VE i8S wi 1 Av - cAwi, AWj A+ AW, where iy < -+ <y, J1 <+ < Js

and r + s = N.

Now if L is a complex linear transformation of V¢ then L7(v) = (L(7))™ is also
complex linear and L is induced from a real linear transformation of V if and only if
L% = L. Hence L? = L and L maps V19 into V10 if and only if L is induced from a
real linear transformation of V which commutes with J. Therefore the decomposition

into types is preserved under such transformations.

15



Finally elements of (A" (VM) A (A*(VY)) are called forms of type (r,s).

(2.4) p, ¢-forms on Manifolds. Now let. M be a complex manifold. Choose holomor-

phic local coordinates 2y = x;+1y1, . .., 2o = To+iYy,. We have dz, = dz,+idy,, 5?— =
Zq

1/ 8 .0 . 0 1/ 0 0 0 o 0

M\ . T Y5 )dhcn:da_don_:“ A — A_ V" Yy . Y an

2 (c'ixa 28&,) z To = 10Y 9z, 2 (6:1:,, +16ya) and 0z * 8z, 07z’

. % is a local basis of complex valued C*°-vector fields with dzy, ... ,dzy,,dZy,...,dZ,

the dual basis of complex valued C*°-1 forms. For i; < -+ <4y, j; < -+ < j, let us set
dz;, N+ Ndzy, NdZj AN+ ANdZj, = dzg Adzy where I = {iy,...,4,}, J={j1,...,Jq}-

The (p, q)-forms dz; A dZ; with |I| = p, |J| = ¢ form a local basis of (p,q) forms.

An n form w can locally then be written uniquely as w = Z ayjdzyNdzy, the ay 4
1i=p
[=¢

being C*°-functions. Let 7, ,(w) be the sum of components of w of type (p, g). Now for

a function f we have df = Z (%J—;Bxuda:a + _Bayi ya) = z (gzidza + %dfa)
« a=1 @ o

a=1
and so

- )
d(arsdzr NdZg) =) (aa,,sza Adz N dZ; + =2 dZ, Adzr A dz,) .

ot 0z, 0%y
We set, 8(&1’_](12,-) = Z 6;"" dzo Ndzr ANdzZy and é(aj,JdZI A dz_])
a=1 o
Z. 0
-3 O 3% . Adz; A dzy.
a=1 62]

Intrinsically, if 7 is a form of type (p, q) then dn = H dn + H dn and we set
ptig P+l

on = H dn,5n= H dn.

ptlg p.g+l
We extend the definition of 8 and 8 to an arbitrary n-form in the obvious way. So now
we have d = 3+ 0. As d? = 0 we have 5? +80+00+0 =0and as & maps a form of
type (p,q) to a form of type (p + 1,9) and d maps a form of type (p,q) to (p,q + 1),
coparing types we see that 6> = 0, 99 = —00. The operator d = § + 0 is a real
operator. Set d* = a—;{?— We then have the important identity dd® = i98.

16



(2.5) Examples (i) Let ¢ be a real-valued function defined on a complex manifold. Let

2

(21, .., 2z) be asystem of local holomorphic coordinates. Now 8By = Z a@ d‘P_ dz; \ dZ;,
— 02,025
i,j

s0 the real (1,1)-form 188y is positive if and only if 89p(¢,) > 0 Vé € TYO(M). As

= o 0 5? -
00p (5, 5 ) = 6;:-(;‘ we see that 100y is positive if and only ¢ is strictly plurisub-
i 0Z; 10Z;

harmonic, in the sense of § 3, Chapter 1. As i80¢p = dd¢ we see that dw = 0.

(ii) Let M = C™ and [ a radially symmetric function, say f(z) = g(r),r? = |z|%
When is the form i80f positive? Answer: Exactly when §(r) + §/r > 0, ¢(r)/r >0
r # 0) and §(0) > 0. To see this, recall that the form h{(€,n) = 80p(€,7), &, 7 € THO
is the Levi form of . As f is U{n)-invariant the signature of the Levi-form L(f) [see
§3, Ch. 1] is determined by its signature on a set of representatives of U(n)-orbits,
say on the half line (,0,...,0) (r > 0). At such points we find that, [( &7 )} is

62{623'
diagonal with entries ¢”(r) + ¢'(r)/r and ¢'(r)/r, the latter with multiplicity 1. Since

g(r) = g(—r) these entries at 0 become g”(0).

(iii) Let us determine now those U(n + 1)-invariant functions f on C"*'\0 such
that the form 00§ is the pull-back of a U(n + 1)-invariant positive form on P™. Recall
that the Fubini metric on P" is Kahlerian and if w is its fandamental 2-form then we
are asking if 7*w = 109f for a U(n + 1)-invariant function, = : C**!\ — P being the
map 7(zg,...,2n) = [20,...: 24]. Since dn is surjective with 1-dimensional kernel, the
Levi-form of f must be positive semi-definite and it must have zero as an eigenvalne.
By (ii) we must have f’(r) + f'(r)/r = 0 or f'(r)/r = 0; since f'(r)/r occurs with
multiplicity n, the only possibility is that f”(r) + f'(r)/r = 0. So as f’(r) > 0 we have
f"(r)/f'(r) = —1/r whose solution is f(r) = Alnr+ B, A>0ie. f(r)=Alnr®+B.
Since Ker dmg, = C - &, & =[1:0:---: 0] = [1: 0] we see that i00f is positive on
(Ker mg, )t

Let us check that the form w = 98 log ||z||? descends to P". But this is obvious as

under the homothetics z — Az (A € C*), then form w is invariant. We call log |z|* a

17



quasi-potential for the Fubinici metric. Of course as P" is compact we cannot find any

nonconstant plurisubharmonic function on P,

Let us now show that locally a Kahlerian metric is of the form i90y. For this we

need two basic results, the Poincare Lemma and the Dolbeaut Lemma.

(2.6) Poincare Lemma. Let [ C R™ be an open rectangular box. If w is an r-form

on I with dw =0 then w = dn for an (r — 1)-form 7.

The idea of the proof is completely contained in the following example.

(2.7) Example (a) Let w be a 3-form on RS, w = fdzdydz. If we set 7 =

(/ f(t,y, z)dt) dydz then dn = w as dy - dy = 0 = dzdxz.
0

(b) Let w be a closed 2-form on R® which involves only dzdy, say w = fdzdy. As

dw = 0 we see that 8f/0z =0so f = f(z,y) and we are in a case analogous to (a).

(¢) Let w be an arbitrary closed 2-form on R3, say

w = fdrdy+ gdrdz+ hdydz

= fdzdy+ (gdz + hdy)dz.

If we set a = (/ g(z,y,t)dt) dz + (/ h(z,y, t)dt) dy then da = g(z,y, z)dzdz +
0 0

h{x,y, z)dzdy+terms involving only dz and dy. Hence w = §—da, where 3 is a 2-form
which only involves dzdy. As d®> = 0 and dw = 0, we have d3 = 0. By (b) we have
B = d§1 § = E(x,y) and so w = d(£ - a)'

Proof of the Poincare Lemma. The idea of the proof is to show that a closed r-form on
I is cohomologous to a closed r-form which is supported by dz!,...,dz""! and obtain

the result by iteration.

18



Fori; < i, <-+- < iz setdz! =dz™ -..dz". Letw be an r-form with w = a+Adz",
‘where « is supported by dz’,...,dz""! and 8 = f,dz’, where I C {1,...,n—1} and
#I =r—1 (using the summation convention). Let y= (/znﬁ, (', ...,z t) dt) dz’.
So dy = Brdz"dz’ + 6, where & is supported by (c(i):nl,...,da:"‘l). Sow = a+
(=)™ (dy — 6) = @+ (—~1)""'dy, where & is supported by dz',...,dz" ! and & is an
r-form. As dw = 0, we have d&d = 0. Now & = &,dr’ where J C {1,2,...,n — 1},
#J = r. Hence d& = 0 implies 8a;/dz, = 0, so &5 = &;(z*,...,z™ ). Continuing

this process we see that w = fdzr'...dx” 4 df where f = f(z',...,z"). Finally

z!
d (( ft,z2,. .. ,:nr)dt) dg?. .. d:c") = fdz'-.-dz", which shows that w = dn for
0

a suitable (r — 1)-form n. O

Dolbeaut Lemma. Let P, = {z € C": |z <r} i=1,...,n be the polydioc of

radius v in C*. Ifw is a (p,q)-form on Pry. (¢ > 0) with Ow = 0 then there erists a
(p,q — 1) form on P, with 8y = w.

The proof is formally the same as that of the Poincare lemma once the following

result has been proved.

(2.7) Lemma For a C™-function f defined in an open neighborhood U of a compact
subset K C C! there exists a C*® function g defined in an open neighborhood V C U
of K such that 3g/0Z=f on V.

Proof. For any open neighborhood U of K there exists a C*-function ¢ on C such
that ¢ =1 in an open neighborhood V' C U of K and ¢ = 0 in open neighborhood of
C—U [see N. p. 101],i.e. 3V Cc V|, Cc U with K C V, V; compact with ¢ = 1 on
V, ¢ = 0 on C\V;. The function 9 = ¢f on U, 1 = 0 on C\V; is C*> with compact
support and 1 = f on V. Replacing f by ¢ we may assume that f = 0 on C\V;.
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Fix z € C. By the generalized Cauchy integral formula we have

awmif(z) = fmm fiwjd;v // 8f(w) dw A dw

Az, R)
/ of w) du)/\d‘
- z)

(for sufficiently large R)
A(z,R)

_ / 0 (w) dw A dw

w (w-2z)
So, if we set g(z = 9m //

oz = %//f—(g;—z)dmdz

27r 0
= / fﬂ.."'_z)d do.
27rz

So g is C*. Moreover we have

% - Zm.// (
] () 258 R

This completes the proof of the lemma. O

d A dw then

) de nd

Now to complete the proof of Dolbeaut lemma we simply replace, in the proof of

the Poincare lemma, daz’ by dz;.

Some Immediate Consequences

(1) If w is a real closed J-invariant form on a complez manifold M, then locally w

has a potential ¢ in the sense that w = iB0¢p.

Proof. As dw = 0 we have, by Poincare, that w = da (locally) for a real form

a. Let o = o0 4 ot (ao'l = E‘!_O) be the decomposition of & as a sum of (1,0)

and (0,1) forms. Now d = 8 + 9 and so w = do = da*® + 9a™® 4+ 8ad! + Fadl.
20



Since w is a (1,1) form we have 8o = 0 = 9a®'. By Dolbeaut. we have, locally,

a®! = Jip for a suitable complex valned function 1. Hence w = 881 + 569 =

i88((1p — ) /1) = i0Byp (locally),  being a real-valued function.

(2) If 80 = 0 then locally ¢ is a sum of a holomorphic function and an antiholo-
morphic function.

Proof. Let o = dp. Now da = (8 + 8){dy) = 0, so by Poincaré we have
By = d¢ = 0¢ + O¢. Hence d(ip — £) = 0 = B¢, s0 ¢ — £ is holomorphic and £ is

antiholomorphic.

(3) Eristence of complex geodesic coordinates. If g is a Hermitian metric on a complex
manifold M and (2;)1<j<n 15 & system of local holomorphic coordinates, we set
0 0
93 = g (—,,——). We say that (z;)i1<j<n I8 a system of complex geodesic
BZ" 62,-
coordinates at p € M if g;(p) = &; and dg;;(p) =

Now let (M, g) be Kihlerian and ¢ a local potential for ¢ (defined near p) and

2
(z;)1<j<n & system of local holomorphic coordinates with z(p) =0. We have [ aa 7, (0)]
Zipz;

= [a;;] = A is a positive definite hermitian matrix, so by a unitary transformation we

2
may assume that A is the identity matrix, i.e. ———(0) = 6’

o“yp
02;0%;
Now we make a holomorphic change of coordinates of the form 2 =w; + ¢ Wi W
611), azaa_ zZg aw,

?.Zﬁ, We have i (0) = &; and 9 ( Oy )() M.,.C;q_}_c‘?k

such that c;-k = c}'cj. If Y(un,...,w,) =(z,...,2), then ———

ow; Ow;0w; Ouwy, \ Ow, 0w 02;,02;0%Z
M +2d,. So —2d, = —63—(—)— are the required coefficients with ¢, = ¢f.. O
BZkaZia_ ik 62);62,6_ ik ki
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Chapter 3

Line bundles and analytic significance of
signature of Levi form

§ 1. Line bundles

A complex line bundle over a manifold M is a manifold £ together with a map

m: L — M such that
(a) = is surjective.

(b) M can be covered by open sets U, such that V, = *(U,) diffeo U, x C by a

map ¢, and on V, we have 7 = pr o ¢,, pri being the projection of U, x C on
U,.

(¢) Ve, 8 with U, N Up nonempty we have pgop;! : Uy NUz X C — U, NUz x C i

of the form (p, z) — (p, gsa(p)(2)).

The function gg, : UsNUz — C* are called the transition functions of the line bundle
L and satisty gaagas = 1 on UaNUp, 9apgprgva = L on U, NUsNU,. Conversely, given
an open covering {Ux} of M and functions gep : Us N Us — C* such that gasgss = 1

on U, NUp and gogggyGya = 1 on U, NUg N Uy, there is a line bundle which has the

functions {g.s} as transition functions.

If p € U, and £,,& € 71 (p) we define

Ei+é = 9 N (pal&r) + walta))
M o= g (Ma(b)) (AeC):
here each fiber p x C is identified with C.
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The conditions (a), (b) and (c) ensure that addition and multiplication in the fiber

7~ '(p) is independent of the open set U, in which the point p lies.

A section of £ is a map s : M — L such that 7 o s = idy,

L

L

<

If s is a section then on U, we have @,(s5(p)) = (p, s«(p)) for a suitable function s,

and therefore on U, N Uy we have (p, sp(p)) = (P, 9pa(P)sa(p)). Hence a section s

corresponds to a family of functions s, : U, — C such that on U, N Up we have

9pa(P)5a(p) = 53(p).

(1.1) Examples

1) Take functions f, on U, such that on U, NUp fs/fa = gpa is nonvanishing.
Then the {gs,} are transition functions for a line bundle and the family {f,} is

a section of this line bundle.

2) On P*(C) consider the hyperplane defined by the equation 2, = 0. On the open
set. U; = {[z] € P, : z; 5 0} it is defined by the function f; = z5/2z. On U; N Uj;

we have fi/fj = zj/z,- = Gij-

The line bundle on P,, with transition functions g;; = 2;/z; is called the hyperplane

bundle,

From now on we assume that M is a complex manifold and the transition functions

{gap} are holomorphic.
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(1.2) Exercise. Show that the line bundle on P" with transition functions g;;([z]) =

z; [ z; has no sections.

The existence of sections is related to the (Levi) curvature of the bundle.

(1.3) Definition A norm on a line bundle £ is a function N : £ — R2° such that

forallpe M and v € n7!(p) N(v) =0 v=0and N(zv) =|z|*N(v) (ze C).

If we have a local trivialization ¢y : 771 (U) — U x C (of L over U) and we set
Ny(€,z) = N(py'(€, z), then in any other local trivialization ¢y : 7~1(V) - V x C

the functions Ny and Ny are related as follows:

For £ € UNV we have

Ny(¢,z2) = N(py'(2)
= N(pg'euey'(6,2) = N(py' (€, guv (€)(2))
= N(guv(©)ey'(,2))
= |guv ()P N(py' (€, 2))

= lguv(&)Nu(é, 2).
So 1Z|2NV(E’ 1) = IgUV(g)IQIzIZNU(E’ 1)! i‘e“» NV(&! 1) = igUV(g)PNU(E) 1)‘

Conversely, given a covering {U,} of M and transition functions {g.s} and functions

@o : Up — R > 0such that |gas(£)?|¢al£) = ws(€) we can define a norm on each U, x C
by Na(£,2) = |z|%p.{€). These functions give a well-defined norm on the line bundle

defined Ly the transition functions {gas}.

The existence of norms on line bundles is entirely analogous to that for proving the
existence of Riemannian metrics [DC|, using partitions of unity [N]. In the following
example we give an explicit norm on line bundles over P!. It is instructive here to use
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gronp theory and we assume familiarity with the concept. of homogeneous line bundles,

as explained in e.g. [WW].

(1.4) Example. Let G = SL(2,C), B the group of upper triangular matrices and

X~ the character of B defined by x, ( é tfl ) =t"  (n € Z). The homogeneous

line bundles G x C give up to isomorphism all the line bundles over G/B = P!. Take
( : ZtJ ) € SL(2,C). By the Gram-Schmidt process applied to the column vectors

and then applying a dilation the columns become orthonormal, i.e. the matrix is in

)

(=] X
with k € SU(2). Writing x = x, we have G x, C 2 K x|S' C, K = SU(2).

SU(2). Therefore,

(Z ¥> B k((lx|2+<1|2|2)1/2 (|z|2+?z12)"‘”)(t1)

where 7 = (F +2)/(|af* +|2*)/?

— 3

On K x5 C we set ||k x z|| = zZ and define N(g x, 2} = ||8(g %, 2)||. Explicitly,
N (( (cl 2 ) Xy z) = (|af* + [c*)" 2z. A computation shows that the Levi-form of
N on a level set is of the same parity as n. If n > 0 then the level sets N = ¢ (¢ > 0)

therefore have positive Levi-curvature. This implies (see Prop. 3.3) that L, has no

non-zero section if n > 0. O

§2 The Chern class of a line bundle

Let £ be a line bundle over a complex manifold M and N a norm on L£. Given
p € M and a local nonvanishing section s, the form #01og N(s) is a well-defined form:
for if t is another nonvanishing section defined near p then s = ht for a nonvanishing
holomorphic function h and log N(s) = log |h|? +log N(t). Since 83 log |h|? = 0 we see
that 86 log N(s) = 88 log N(t).
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The Chern form of £ is, by definition,
_ s 2 _ 1 2
Ci(L) = 271_('36log(N(s)) = 27rddC log(N(s))

(reca.ll that d = m, d€ = 9 — 6)
2 21

The reason for this choice of signs is explained by a theorem (Theorem 2.3) which

we shall prove presently.
(2.1) Remarks

1. If N; is another norm on £ then for any local nonvanishing section s the func-
tion w(p) = N(s(p))/Ni(s(p)) is a well-defined function (independent of the
choice of s) and therefore 99log N(s) — 80log Ny(s) = 89y, i.e. dd€log N(s) =
dd® log Ny(s) + ddyp, ¢ a globally defined function. Therefore [C1(£)] is a well-

defined cohomology class of M.

2. If M is compact and N, N, are norms with the same Chern forms then Ny =rN

for some r > 0.

By (1), we know that if o(p) = N{s(p))/N1(s(p)) (s a local nonvanishing section)
then by assumption 09log ¢ =0, i.e., log ¢ is pluriharmonic on the compact manifold

M and therefore constant. Hence Ni(s(p)) = rN(s(p)) Vp € M.

(2.2) The Chern Class of a Divisor. Let D be a hypersurface in a compact complex
manifold M given locally by holomorphic functions f, =0 on U, with gog = fo/fs # 0
on U, NUp. AS gupfs = fa, the functions {f,} represent a section of the line bundle
L defined by the transition functions {g,g}. Call this section ¢; so t vanishes exactly
on D. Let Z be a closed complex one-dimensional submanifold which intersects D in

only a finite mmmber of points.
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(2.3) Theorem. / C(L) = number of points of intersection of D with Z counted
z

with multiplicity.

Proof. Without loss of generality we may assnme that 2 intersects D in just one point,
which in a suitable system of coordinates we may take to be z = 0. Let s be a local

nonvanishing section defined near z = 0. Take a small disc A(¢,0) C Z. We have

o [ cc 2 (L cr
W./Z ( ) " <~/Z\A(e,0) ( ) * A(E,D) ( )>
- / dd% log |[t]| 2 + / ddlog ||s]| 2
Z\A(€,0) A(e,0)

(because t vanishes on z only at 0)

= [ gl [ dEloglel? *)
8(2\A(e,0) BA(e,0)

(denoting by || || the given norm so that ||zt]| = |z|? ||t]|,z € C)

In a neighborhood of A(e,0) in Z (e snfficiently small) we have t/s = 2*1) in this
neighborhood, 7 holomorphic and nonvanishing, k being the multiplicity of intersection

at 0 of D with Z.
Now on 9A(e,0) we have

log fjt}| 2 = log ||s|| =% — klog {z|* + log || 2

SO

/ dlog{|s|™* = / dClog||t||‘2+k/dC]og|z|2—/ d® log || 2
BA(e,0) BA(e,0) DA (0)
- / Clog ]2 + & i log |z|2_/ ddog [1]2
8A(,0) AN (e,0) A(e,0)

= dClog ||t||™2 + 27k — 0 (**)
B8A(e,0)

(because dd®log ||~ = 0 on A(e, 0)).
27
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So from (*), we have:

271'/ oLy = / d®log ||t =% + / d®log ||t)| =2 + 27k
z B8Z\A(,0) AA(5,0)
= 2k

as the boundaries of Z\A(e, 0) and A(e,0) are oppositely oriented. Hence

Z

1
Notice that lim —

/ dd®log ||| 2 = Z.D and in this sense we write
=0 270 [ \UA(ep) peznD

L / ddClog ||¢| "% = Z.D. o
27T z

Also if wy = i1801logl|o|~? is positive and w; = wy + 130y, @ a real function, then
changing || || to ||~|| = e®l| ||, i88log||lo~||"2 = i08(—2a) + i88||c||?, so change in

representative is given by metric scaling.

8 3. Analytic significance of signature of Levi-form of a function

Let. ¢ be a real-valued function defined on a complex manifold M and let p € M
with (de)(p) # 0. Choose local coordinates (z;)1<j<n 80 that z(p) = 0 and g—Z(p) # 0.
Now ¢(2) = a+ ) a2 + 3 WZi + ) asjziz; + 3 0iZ:i%; + 3 az2Z; + 0(]|2|?). I
we set u; = Za;z; + Za,vjzizj, Uy = Zgy...,Un = 2z, then (du; A --- A duy,)(0) =
ai(dz) A - A dz,)(0), so we can solve for uy,...,u, in terms of z, ..., 2,, say z = 6(u)
and @(0(w;)) = a+uy + 8 + Y bzui; + 0(||u[?). So in the coordinates u the function
pis: plu) =a+u +7; + Zbi;u,-ﬂj + 0(||u)i*) and ©(0) = a.

Now if v = ajgj
Oy Op

+ ajg is a tangent vector to the level set ¢ = c, then
J

0 . . .
aja_zj + ?L-jgj = (. We have Jv = i{Lja—zj - zﬁjg__;; if Ju is also ta.ngent to the level
%}
set p = ¢ then iaja—z — iaj% = (); therefore g; 8: = 0.
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0 o
L. 0 then as ¢ = P, a,m_£ = 0 and so v and Jv are both
62{ 62,‘

tangent to the level set v = c¢. So the maximal complex subspace of ¢ = C is given

Conversely if a;

by dp(v) =0, v = arga“ (recall that cvery vector £ =1 +7, n € T'"). So the
24
holomorphic tangent space to ¢ = a at z = 0 is given by z; = 0. If ¢ is defined on a
neighborhood U of 0 then ¢|U NTy%(¢ = a) is given by:
0(0,22,...,2a) = a+ ¥ bzuz; +0(||lf).

1,722

By a unitary transformation L of z,,. .., 2, we have (p o L)(0, 23,...,2,) =

a+ (Uz)'(Buz+0(||2]*) = a+ 22U BUz+ 0(||z|*) (B =(b5)) =a+ do|zaf*+ -+
Aplzpl® — (Aperlzpe1]? ++ + Aprgl2prgl®) + 0([|z][*) where p — 1, g are the number of
positive and negative eigenvalues of £(¢poL){0) restricted to the complex tangent space
to the hypersurface (poL) = a. So (9 0 L)|;=0m=-mz=0 — @ I8 =Api1]2p41]® —
.o+ 0(]|2||*) and % < - /\% +0(||2|»)/||1z|*> on this subspace, where
A =min{Apt1,.. s Apyq}, 000 H 1 2y = -+ = 2, = 0 and for ||2|| snfficiently small,
we see that {(p o L)(2) < aif z # 0 and (¢ o L)(0) = a. In other words the ¢-disc
2y = =2,=0, |2p41] < € ..., |Zp1q| < € meets the level set ¢ = a at just the point
p, and the punctured disc lies in the region ¢ < a. Similarly if 2 = min{)s, ..., A}

then

(poL)(z)—a = X+ + Aizl* + 0((l2l*)

> Mzl +- -+ |72 + 0(l2])

I _
So (22 > 3 (e} 1P Hence it 51 = 0, 2y = -+ = zp3q = 0 and
z
||z2||2 <é€..., nz],,“2 < ¢, then this disc tonches the level set ¢ = a only at z = 0 and

the punctured disc lies in the region ¢ > a.
An immediate consequence is the following result:
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(3.1) Proposition. Let M be a compler manifold, v : M — R a differentiable
function such that for some regular value c the sublevel set ¢ < ¢ is compact with
nonempty interior. If the Levi-form of ¢ restricted to the level set ¢ = c has one

negative eigenvalue at every point, then M has no nonconstant holomorphic functions.

Proof. Let S be the sublevel set ¢ < ¢. Assume that M has a nonconstant holomorphic
function, say f. Then |f] restricted to S asswmes its maximum value at some point of
the boundary ¢ = ¢, say at p. Now there is a one-dimensional disc A(p, €) which meets
the set. ¢ = ¢ at just the point p and A(p,e)\{} C {z € M : ¢(z) < c}. But as |f|
restricted to A(p, ¢) achieves its maximum value at p we see by the maximum principle
that | f| is constant on A(p,€). So |f| achieves its maximum value at an interior point

of S. Hence f is constant on S and therefore on M. This is what we had to prove. O

(3.2) Definition. A line bundle £ on M is called positive if its Chern class is positive.
Choosing a norm N on L this is equivalent to Levi form of N being negative definite

on the nonzero level sets of N. One defines negative line bundles analogously.

(3.3) Proposition Let L be a line bundle on a compact complex manifold M and
N a norm on L. If the Levi-form of N has one positive eigenvalue at any nonzero
level set, then L has no nonzero sections. In particular, a negative line bundle has no

nonzero sections.

Proof. Suppose £ has a nonzero holomorphic section. So the function (Nos) has a
maximum value ¢ > 0 at some point pg € M. Now for every holomorphic curve y

through py with (0) = pp the function N((v(z)) has a maximum value at 0. Hence

(a) dNy@pg)(se(p0)(7'(0)) =0

and
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() LN}y (5. (20) (¥ (O))) = =2

(Nosoy)(0) < 0.

T 9267
%P (0 82
(s T <0, 720 < 0t y(a,3) s  masimmum at 0)

The assertion (a) implies that s.(py) maps Tp(M) into T,°(N = C) (g0 = s(po));
as s is a section, s,(pg) is in fact surjective. Now (b) implies that the Levi form of N

at s(po) is negative definite on T,;°(N = ¢). This contradiction proves that £ has no

nonzero sections.

Remark: (a) For a line bundle N(¢, z) = ¢(£)|2|? so if N(£, z) = ¢ > 0 then log p(£) +
log |z|? = log ¢ = k. Now the T tangent. space to the level set N = ¢ at (&, 20) is given
by Za;—;g—‘i(é’o) + agZo/20Zo = 0. So T'®(N = c) projects onto T;(;O(go = ¢/lzo|?).
Now 88log N = 8dlog ¢ = %6590 - é&p ABip. So if B(£o)(u1) = 0, Bp(Es)(uz) = 0
then (881og N)y.z0) (4, v) = %(65g0(§0))(u,v). So signature of 38log N (at N = ¢) =

sign. of 88logy (at ¢ = k) = sign. of 90y (at ¢ = k) = —sign of C1(L).

We conclude this chapter by proving the important (d,d®) lemma.

(3.4) The (d,d%)-Lemma. M is a compact Kahler manifold, w = do a real (1,1, )-
form. Then w = i00¢p.

Recall definitions: For a given metric ¢ on M and v, the canonical volume form

we set, for differential forms £,7n of same degree (£,7) = / 9(&,m)vy. Then d* is the
M

adjoint of d. Extend (, ) to a complex bilinear form on T,. It is nondegenerate and 9* is

the adjoint of 8 and 8" is the adjoint of 8. A = dd*+d*d = 2(88*+6*3) = 2(60 +38 0).

Proof of the d,d® Lemma . Let w = da be a (1,1)-form. Let o = 8% 4+ %! be the
decomposition into types. We have w = do = 98%! + 940 and 88° = 580 = 0. Let
B0 = 39 4- A~y be the Hodge decomposition of 4. Now

0=08"=08p8"+08Ay

I

ANy (as 88° = 0)

= Aoy
31
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Therefore 9y is harmonic and so §*(8y) = 0. Hence Ay = (38" + 8*8) (v) = 8(6*y)

and as v is a (1,0)-form, &%+ is a function.
Now
w = do = B0 1 (3EH9)"
and
08" = 36° + BAy =B Ay = 00(0").

Therefore

w = 08(8") + 00 5%y = 85(D°r — O'r) = idBY. &
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Chapter 4

Cohomology of flag manifolds

In this very brief chapter, we explain the relevance of the ideas of the preceding
chapters to certain aspects of group theory. More precisely, we give an explicit basis
for the 2nd deRham cohomology of flag manifolds, in the framework of the preceding
chapters. These results are due originally due to Borel-Hirzebruch [Bo-Hi]. We assume
familiarity with the theory of weights and roots of semisimple groups, as set forth in

e.g [St.2].

Let G be a complex Lie group and V' a linear representation of G. The function
g~ |lg-vf (9 € G, v anon-zero vector in V) is plurisubharmonic and the form
i00log ||g - v|| is a positive semidifinite two form. The reason for the appearance of log
is more or less the same as that for its appearance in the Fubini metric on P*(C): sce
the examples in (2.5), Ch. 2. These degenerate forms are nseful in several contexts,
e.g. in computations of moments and cohomology of flag manifolds. The 2nd deRham

cohomology of flag manifolds is generated by forms which are very close to the above

forms. The details are as follows:

Let G be a complex reductive group, B a Borel subgroup of G, T' a maximal torus
of G contained in B, R the roots of T in G, Rt the positive system of roots defined
by the pair (B,T) and S the corresponding simple system of roots. One knows that

for each a € R* there exists X,, X, € Lie(G) such that the map

(g (l))HXa, (? 8)+—>X_a
is an isomorphism of s{(2, C) onto the Lie algebra generated by X,, X_,. Hence there

exists a homomorphism ¢, from SL(2,C) onto a subgroup L, of G whose Lie algebra

33



is generated by X,, X_o. We set, for a € R¥,

w@=be (g 7 ) ue=ta( 1) s@=aa( 5 N ).

By a variant of Bruhat’s Lemma [St 1, p. 99], the group

K = (¢a(SU(2)); a is simple ).

Let # C S and P = P, the corresponding parabolic subgroup. Let £; = eP. For
a € S\ we have: L, - £ = P'(C) where L, = (U,,U_,): we denote this line by P,.
For a € S let p, be the irreducible representation with highest weight o, v a highest
weight. vector therein and w, = dd®log ||pa(g) - v||%. For @ € S\m the form w, is the
pull-back of a IK-invariant forin @, on G/P. Namely, if s is a local section of G — G/P

then wy(¢) = ddC log ||pa(s(€) - |2

(4.1) Proposition. The {w, : a € S\r} from a basis of H*(G/P,R) and % / Wo =
Py

Bu g

Proof. We may assume that G is simply connected so that m(G) = 0 = m(G). From

the homotopy exact sequence of the fibration P - G — G/P we have m(G/P) =0
and my(G/P) = m(P). Since

P LR,(p) ={ H afz;) % eC‘} -L' R,(P)

a€S\w
= T,-L'-R,(P)

we have m(P) = m (T1). Using m(G/P) = 0 and the Hurewicz theorem we see that

7o(G/P) & Hy(G/P, Z) and rank(m(G/P)) = card(S\x).

1
Let us now show that o | Wa = 55. A local section of G — G/P defined in
Pa

a neighborhood of & is 7 - & — r, 7 € R,(P)~. We have Py = U_g - & U wp - &,
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0 1
wp = g ( 1 0 ) , SO / Wo = / We. By the Gram-Schmidt process applied
Pg U_p-bo

to columns of SL(2,C) we have:

( i ? )”( (HSZ)M (1+zoz)—1/2 )( é mfﬁ ) ke SU(2)

5o that
Ug(z) = pp(R)A((L + 22)"?) - Up(z/1 + 22).

Hence

1U-p(2)-vall = NIB(L+ 22)"/2 - vl

So / wa = 0if @ # A and / Wo = / dd®log(1 + zZ) = 27. So {Wa/27}aes\» are
Ps Po C

independent generators of H?(G/P) and their duals are the lines {P,}aes\r. O

(4.2) Concluding remarks. Plurisubharmonic functions and potentials have many
interesting applications in group theory: see, e.g. (Az-Lo], [Lo] and [Ne]. In fact, K.H.
Neeb in [Ne] has just obtained very interesting results on plurisubharmonic functions
which are invariant under a noncompact real form. An important direction of research
could be the investigation of homogeneous complex manifolds G/H which admit an
exhaustion function of mixed signature, and which is invariant under a noncompact

real form of G. Almost nothing is known about this situation.
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