
Mostow Fibration

Definition 1 A connected subgroup G of GL(n,R) is reductive if its Lie algebra g has
a decomposition

g = k ⊕ p

where

(i) [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k

(ii) the Lie group K̃ of GL(n,C) whose Lie algebra is k̃ = k ⊕ ip is compact.

Example 2 (1) The group R
>0 = {(r) : r > 0} is reductive, but the isomorphic

group

(
1 ln r
0 1

)
r>0

is not reductive.

(2) The group SO(n,R) = k is reductive with p = 0.

(3) The group SL(n,R is reductive:
g = k⊕p, where k is the Lie algebra of skew symmetric, p the space of symmetric
matrices: here k⊕ ip is the Lie algebra of skew hermitian matrices of trace 0, so
it is the Lie algebra of the compact group SU(n).

(4) The group GL(n,C) is reductive:

We have Lie(GL(n,C)) = k ⊕ ik, where k is the Lie algebra of unitary matrices.

Embed M(n,C) in M(2n,R) by A + iB �→
(
A −B
B A

)
etc.

Proposition 3 (i) The group G is a closed subgroup of GL(n,R) and G = KP ,
where K is generated by exp(X) : X ∈ k and P = exp(p).

(ii) There is a K̃-invariant hermitian inner product on C
n which is real-valued on R

n

and on orthonormal basis of Rn remains an orthonormal basis of Cn. (see Indag.
Math. N.S. 10(4), 473–483).

The group K̃ is represented by unitary matrices, therefore k is represented by real
skew-symmetric matrices and p by real symmetric matrices.

The form B(X, Y ) = Tr(XY ) is non-degenerate; it is negative definite on k and
positive definite on p.

The main technical tool in Mostow [ ] is a generalization of the polar decompo-
sition. For this, he uses the geometry of the symmetric space GL(n,R)/O(n,R). Put
G = GL(n,R), K = O(n,R). By polar decomposition, G = KP . To G/K = P , we
give the G-invariant metric as follows: Put ξ0 = eK. We can identify the tangent space
at ξ0 with the vector space of all symmetric matrices: p. If v ∈ p, then etv · ξ is a curve
with d/dt|t=0(e

tv · ξ0) = v.
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The map from G→ P , g �→ gt factorizes through K. The G-invariant action on P
is therefore g · x = gxgt. The metric on Tξ0(G/K) = Te(P ) is ‖�v‖2 = Tr(�v · �v), which
is K-invariant.

Now if p ∈ P and �w ∈ Tp(P ), then as p = qqt = q2 for some q,

‖�w‖2 = Tr(q−1 �w(q−1)t)2

= Tr(q−1 �wq−1 · q−1 �wq−1)

= Tr(q−1 �wq−2 �wq−1)

= Tr(q−2 �wq−2 �w) = Tr(p−1 �w)2 = ‖p−1 �w‖2.

Therefore, if γ(t) is a curve in P , then(
ds

dt

)2

= Tr[γ(t)−1γ′(t)]2.

Now G/K = P is a symmetric space of curvature ≤ 0.
Such spaces have the following property.

Theorem 4 If M is a complete Riemannian manifold of non-positive curvature, then
for all p ∈M, v ∈ Tp(M) and w ∈ Tv(Tp(M)), one has the inequality

‖d expp(v)(w)‖ ≥ ‖w‖

�

�

�

(see Indag. Math. paper cited earlier)
(Mostow gives a proof from first principles).

In particular, for any curve {γ(t)} ⊆ Tp(M), we have

length(expp ◦(γ)) ≥ length(γ).

Let p = the space of all symmetric matrices. P = exp(p) is the space of all positive
definite matrices, with the Riemannian metric defined above. Since P is homeomorphic
to p, it is a complete space of curvature ≤ 0.

Proposition 5 For p ∈ P , exp(t log p), 0 ≤ t ≤ 1 is the unique geodesic in P joining
the identity e to p.
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Proof. Let H = log p. Now, if f(t) = etH , then f ′(t) = HetH , so ‖ḟ(t)‖2 =
Tr(e−tHHetH)2 = Tr(H2). So |ḟ(t)| = ‖H‖. Therefore∫ 1

0

‖ḟ(t)‖dt = ‖t‖ = dist(H, 0) = dist(log p, log e) (e = identity of G).

Since ‖H‖ ≤ length of any path joining H to 0 ≤ length of any path in P joining
exp(H) with exp(0), we see that the path f(t) = etH , 0 ≤ t ≤ 1 is the unique geodesic
joining e with p (because it is a constant speed curve).

By homogeneity, this is true for any two points (this also follows at once from
Cartan-Hadamard).

Proposition 6 The Riemannian angle between any two paths f and g intersecting
at e (e = identity) is equal to the euclidean angle between the paths log f and log g
intersecting at 0.

Moreover, in any geodesic triangle

� �

�

�
�

�

we have
c2 ≥ a2 + b2 − 2ab cos Ĉ.

Proof. By Proposition 1, the usual exponential map from p to P is the Riemannian
exponential map of Te(P ) = p onto P . If f(t) = exp(ϕ(t)), then f ′(t) = d expϕ(t)(ϕ

′(t)),
so if f(0) = e, then ϕ(0) = 0 and f ′(0) = d exp0(ϕ

′(0)) = ϕ′(0). Therefore, the angle
between the curves f(t) = eϕ(t), g(t) = eψ(t) at t = 0 is the same as the angle between
etf

′(0) and etg
′(0).

Now, 〈f ′(0), g′(0)〉 = Tr(f ′(0) ·g′(0)) = Tr(ϕ′(0) ·ψ′(0)). So the angle of intersection
between f and g at e =

angle between log f(t)and log g(t) at t = 0.
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Take a geodesic triangle

� �

�

�
�

�

Since the G-action g · x = gxgt (x ∈ P ) is transitive, we may suppose that C = e
(identity of G). We compare this with the triangle

���� � ���� � ���� ��

����

�� � ���� � �

By Proposition 1, ã = a, b̃ = b and by what was shown in Proposition 6. Ĉ = ˆ̃C.
By the distance increasing property of the exponential map on spaces of curvature

≤ 0, we see that C2 ≥ (C̃)2. Therefore,

C2 ≥ (C̃)2 = (ã)2 + (̃b)2 − 2ãb̃ cos
̂̃
C

= a2 + b2 − 2ab cos Ĉ

So

C2 ≥ a2 + b2 − 2ab cos Ĉ .

Proposition 7 The sum of angles in a geodesic triangle is ≤ 2π.

Proof. By the cosine law

c2 ≥ a2 + b2 − 2ab cos Ĉ ≥ a2 + b2 − 2ab = (a− b)2.

If a ≥ b, then c ≥ a− b, so c + b ≥ a. If a ≤ b, then c + b ≥ a. In any case a ≤ b+ c.
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Construct an euclidean triangle with sides a, b, c:

� �

�

�
�

�
�

�
�

Compare it with

� �

�

�
�

�

So
c2 = a2 + b2 − 2ab cos Ĉ ′ ≥ a2 + b2 − 2ab cos Ĉ.

Hence cos Ĉ ′ ≤ cos Ĉ, so Ĉ ′ ≥ Ĉ.
Similarly, Â′ ≥ Â, B̂′ ≥ B̂. Hence Â′ + B̂′ + Ĉ ′ ≥ Â+ B̂+ Ĉ, i.e., 2π ≥ Â+ B̂+ Ĉ.

For notational convenience, from now on G̃ = Gl(n,R), K̃ = O(n,R). So G̃ = K̃P̃ .

G is a reductive subgroup of G̃.
By the proposition on p. 1, we have a compatible decomposition G = KP where K

is a closed subgroup of K̃ and P = exp(p) ⊂ P̃ and [p, p] ⊂ k, [k, p] ⊂ p.

Proposition 8 exp(p) is a totally geodesic subspace of exp(p̃), where p̃ is the space of
all symmetric matrices.

Proof. The geodesic joining e to exp(X) (X ∈ p) is {exp(tx)}0≤t≤1. For a fixed
a ∈ p = exp(p), the map f �→ afa maps P to P and it has an inverse f �→ a−1fa−1 so
the map f �→ afa is 1 : 1 and onto P .

Recalling thatG operates on P by g·x = gxgt and this action preserves the metric on
P , we see that the geodesic {exp(tX)}0≤t≤1 is mapped to the geodesic {a exp tXa}0≤t≤1

which joins a2 to aetXa. Since every element of exp(p) can be written as a2 for some
a ∈ exp(p), and f �→ afa is surjective, we see that exp(p) is a totally geodesic subspace
of exp(p̃).
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Proposition 9 Let F = p⊥. Then

exp(p̃) = {efe : e ∈ exp(p), f ∈ exp(p⊥)}.

Proof. Step 1: Define
ϕ : E × F → exp(p̃)

(E = p) by
ϕ(e, f) = efe.

Suppose e1f1e1 = e2f2e2. Consider the triangle

�

��

� � ������ � ������

��
�
� � � � ��

�

By the isometry x �→ e−1
1 xe−1

1 , this is mapped onto

�
���

�
��
�
���

�

��

Denote by [x, y] the geodesic segment joining x and y. So, by Proposition 8, [e, e−1
1 e22e

−1
1 ]

is contained in exp(p) and [e, f ] is contained in exp(p⊥). Therefore, by Proposition 6,
the angle at vertex e = 90◦, so the angle at vertex B = 90◦. Similarly, the angle at
vertex C = 90◦. Hence, by the cosine law,

b2 ≥ a2 + c2, c2 ≥ b2 + a2.

So b2 = c2 and a2 = 0. Hence e21 = e22, so e1 = e2. Therefore f1 = f2. This means that
ϕ is 1 : 1.

Step 2: Im ϕ is closed. We estimate dist. (efe, I) = d(efe, I) in terms of d(e, I) and
d(f, I).

Consider the geodesic triangle
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�

��
���

which is isometric to

� �

���

Now Î = 90◦, so ê2 = 90◦. So by the cosine law

[d(efe, I)]2 ≥ [d(efe, e2)] + [d(e2, I)]2

= [d(f, I)]2 + [2d(e, I)]2.

So d(efe, I) ≥ max{d(f, I), d(e, I)}.
Suppose enfnen → x ∈ exp(p̃). So d(en, fnen, I) → d(x, I). So as d(en, I), d(fn, I) ≤

d(enfnen, I), we see that {en}, {fn} are bounded.
By extracting convergent subspaces, we see that enfnen converges to efe = x.

Hence Im ϕ is closed.

Step 3: ϕ is an open map. Since ϕ is continuous and 1 : 1 and E × F and P are
euclidean spaces of the same dimension, ϕ maps open sets to open sets. As im ϕ is
closed, we must have image ϕ = P . Hence ϕ : E × F → P is a homeomorphism.

Proposition 10 Any non-singular n × n-matrix can be expressed uniquely and con-
tinuously as k · f · e where k is orthogonal and e ∈ exp(p), f ∈ exp(p⊥).

Proof. Given a non-singular matrix x, xtx is positive and symmetric so it belongs to
exp(p̃). Hence we can find f ∈ exp(p⊥) so that

xtx = ef 2e.

Note that if x = kfe, then xt = efk−1, so xtx = ef 2e. So we set k = xe−1f−1. Then
kt = f−1e−1xt and

ktk = f−1e−1xtxe−1f−1 = f−1e−1(ef 2e)e−1f−1 = I.
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Now if x = k1f1e1 = k2f2e2, then xtx = e1f
2
1 e1 = e2f

2
2 e2, so e1 = e2, f1 = f2 and

k1 = k2. Hence the map θ : (k, f, e) �→ kfe is 1 : 1 and onto.
In the representation x = kfe, e and f depend continously on xtx, so on x and

therefore k also depends continously on x. Therefore θ−1 is also continuous.

The Mostow Fibration: We have

G̃ = K̃FE

and G = KE, where G is a reductive subgroup of G̃. We define a map

K̃ ×
K
F → G̃/G

by k̃ × f �→ k̃fG, which is surjective as G̃ = K̃FE. Now if k̃fG = k̃1f1G, then
k̃f = k̃1f1ke = k̃1k(k

−1f1k)e.
Since K maps p onto p (i.e. kzk−1 ∈ p if z ∈ p), we see that it also maps p⊥ to p⊥.

Therefore, by the uniqueness of the decomposition given in Proposition 10, we see that

k̃ = k̃1k, f = k−1f1k, e = I.

So,
k̃1 = k̃k−1, f1 = kfk−1.

Hence the map
K̃ ×

K
F → G̃/G

[k̃ × f ] �→ k̃fG

is a diffeomorphism.

Remark 11 The same proof works if G̃ ⊃ G is a reductive pair (for any G̃, G with
compatible decompositions).

In particular, this applies to KC/LC:

kC = k ⊕ ik, �C = �⊕ i�

So
K ×

L
exp(i�⊥) ∼= KC/LC

↓
K/L

In this sense, the affine quadratic is real-analytically a vector bundle over the real
sphere.
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