Mostow Fibration

Definition 1 A connected subgroup G of $G L(n, \mathbb{R})$ is reductive if its Lie algebra g has a decomposition

$$
\mathrm{g}=\mathrm{k} \oplus \mathrm{p}
$$

where
(i) $[k, k] \subset k,[k, p] \subset p,[p, p] \subset k$
(ii) the Lie group \widetilde{K} of $G L(n, \mathbb{C})$ whose Lie algebra is $\widetilde{\mathrm{k}}=\mathrm{k} \oplus i \mathrm{p}$ is compact.

Example 2 (1) The group $\mathbb{R}^{>0}=\{(r): r>0\}$ is reductive, but the isomorphic group $\left(\begin{array}{cc}1 & \ln r \\ 0 & 1\end{array}\right)_{r>0}$ is not reductive.
(2) The group $S O(n, \mathbb{R})=\mathrm{k}$ is reductive with $\mathrm{p}=0$.
(3) The group $S L(n, \mathbb{R}$ is reductive:
$\mathrm{g}=k \oplus p$, where k is the Lie algebra of skew symmetric, p the space of symmetric matrices: here $k \oplus i p$ is the Lie algebra of skew hermitian matrices of trace 0 , so it is the Lie algebra of the compact group $\operatorname{SU}(n)$.
(4) The group $G L(n, \mathbb{C})$ is reductive:

We have $\operatorname{Lie}(G L(n, \mathbb{C}))=\mathrm{k} \oplus i \mathrm{k}$, where k is the Lie algebra of unitary matrices. Embed $M(n, \mathbb{C})$ in $M(2 n, \mathbb{R})$ by $A+i B \mapsto\left(\begin{array}{rr}A & -B \\ B & A\end{array}\right)$ etc.

Proposition 3 (i) The group G is a closed subgroup of $G L(n, \mathbb{R})$ and $G=K P$, where K is generated by $\exp (X): X \in \mathrm{k}$ and $P=\exp (\mathrm{p})$.
(ii) There is a \widetilde{K}-invariant hermitian inner product on \mathbb{C}^{n} which is real-valued on \mathbb{R}^{n} and on orthonormal basis of \mathbb{R}^{n} remains an orthonormal basis of \mathbb{C}^{n}. (see Indag. Math. N.S. 10(4), 473-483).

The group \widetilde{K} is represented by unitary matrices, therefore k is represented by real skew-symmetric matrices and p by real symmetric matrices.

The form $B(X, Y)=\operatorname{Tr}(X Y)$ is non-degenerate; it is negative definite on k and positive definite on p .

The main technical tool in Mostow [] is a generalization of the polar decomposition. For this, he uses the geometry of the symmetric space $G L(n, R) / O(n, R)$. Put $G=G L(n, R), K=O(n, R)$. By polar decomposition, $G=K P$. To $G / K=P$, we give the G-invariant metric as follows: Put $\xi_{0}=e K$. We can identify the tangent space at ξ_{0} with the vector space of all symmetric matrices: p . If $v \in \mathrm{p}$, then $e^{t v} \cdot \xi$ is a curve with $d /\left.d t\right|_{t=0}\left(e^{t v} \cdot \xi_{0}\right)=v$.

The map from $G \rightarrow P, g \mapsto g^{t}$ factorizes through K. The G-invariant action on P is therefore $g \cdot x=g x g^{t}$. The metric on $T_{\xi_{0}}(G / K)=T_{e}(P)$ is $\|\vec{v}\|^{2}=\operatorname{Tr}(\vec{v} \cdot \vec{v})$, which is K-invariant.

Now if $p \in P$ and $\vec{w} \in T_{p}(P)$, then as $p=q q^{t}=q^{2}$ for some q,

$$
\begin{aligned}
\|\vec{w}\|^{2} & =\operatorname{Tr}\left(q^{-1} \vec{w}\left(q^{-1}\right)^{t}\right)^{2} \\
& =\operatorname{Tr}\left(q^{-1} \vec{w} q^{-1} \cdot q^{-1} \vec{w} q^{-1}\right) \\
& =\operatorname{Tr}\left(q^{-1} \vec{w} q^{-2} \vec{w} q^{-1}\right) \\
& =\operatorname{Tr}\left(q^{-2} \vec{w} q^{-2} \vec{w}\right)=\operatorname{Tr}\left(p^{-1} \vec{w}\right)^{2}=\left\|p^{-1} \vec{w}\right\|^{2}
\end{aligned}
$$

Therefore, if $\gamma(t)$ is a curve in P, then

$$
\left(\frac{d s}{d t}\right)^{2}=\operatorname{Tr}\left[\gamma(t)^{-1} \gamma^{\prime}(t)\right]^{2}
$$

Now $G / K=P$ is a symmetric space of curvature ≤ 0.
Such spaces have the following property.
Theorem 4 If M is a complete Riemannian manifold of non-positive curvature, then for all $p \in M, v \in T_{p}(M)$ and $w \in T_{v}\left(T_{p}(M)\right)$, one has the inequality

$$
\left\|d \exp _{p}(v)(w)\right\| \geq\|w\|
$$

(see Indag. Math. paper cited earlier)
(Mostow gives a proof from first principles).
In particular, for any curve $\{\gamma(t)\} \subseteq T_{p}(M)$, we have

$$
\text { length }\left(\exp _{p} \circ(\gamma)\right) \geq \text { length }(\gamma)
$$

Let $\mathbf{p}=$ the space of all symmetric matrices. $P=\exp (\mathbf{p})$ is the space of all positive definite matrices, with the Riemannian metric defined above. Since P is homeomorphic to p, it is a complete space of curvature ≤ 0.

Proposition 5 For $p \in P, \exp (t \log p), \quad 0 \leq t \leq 1$ is the unique geodesic in P joining the identity e to p.

Proof. Let $H=\log p$. Now, if $f(t)=e^{t H}$, then $f^{\prime}(t)=H e^{t H}$, so $\|\dot{f}(t)\|^{2}=$ $\operatorname{Tr}\left(e^{-t H} H e^{t H}\right)^{2}=\operatorname{Tr}\left(H^{2}\right)$. So $|\dot{f}(t)|=\|H\|$. Therefore

$$
\int_{0}^{1}\|\dot{f}(t)\| d t=\|t\|=\operatorname{dist}(H, 0)=\operatorname{dist}(\log p, \log e) \quad(e=\text { identity of } G)
$$

Since $\|H\| \leq$ length of any path joining H to $0 \leq$ length of any path in P joining $\exp (H)$ with $\exp (0)$, we see that the path $f(t)=e^{t \bar{H}}, 0 \leq t \leq 1$ is the unique geodesic joining e with p (because it is a constant speed curve).

By homogeneity, this is true for any two points (this also follows at once from Cartan-Hadamard).

Proposition 6 The Riemannian angle between any two paths f and g intersecting at $e(e=i d e n t i t y)$ is equal to the euclidean angle between the paths $\log f$ and $\log g$ intersecting at 0 .

Moreover, in any geodesic triangle

we have

$$
c^{2} \geq a^{2}+b^{2}-2 a b \cos \widehat{C} .
$$

Proof. By Proposition 1, the usual exponential map from p to P is the Riemannian exponential map of $T_{e}(P)=p$ onto P. If $f(t)=\exp (\varphi(t))$, then $f^{\prime}(t)=d \exp _{\varphi(t)}\left(\varphi^{\prime}(t)\right)$, so if $f(0)=e$, then $\varphi(0)=0$ and $f^{\prime}(0)=d \exp _{0}\left(\varphi^{\prime}(0)\right)=\varphi^{\prime}(0)$. Therefore, the angle between the curves $f(t)=e^{\varphi(t)}, g(t)=e^{\psi(t)}$ at $t=0$ is the same as the angle between $e^{t f^{\prime}(0)}$ and $e^{t g^{\prime}(0)}$.

Now, $\left\langle f^{\prime}(0), g^{\prime}(0)\right\rangle=\operatorname{Tr}\left(f^{\prime}(0) \cdot g^{\prime}(0)\right)=\operatorname{Tr}\left(\varphi^{\prime}(0) \cdot \psi^{\prime}(0)\right)$. So the angle of intersection between f and g at $e=$
angle between $\log f(t)$ and $\log g(t)$ at $t=0$.

Take a geodesic triangle

Since the G-action $g \cdot x=g x g^{t} \quad(x \in P)$ is transitive, we may suppose that $C=e$ (identity of G). We compare this with the triangle

By Proposition 1, $\widetilde{a}=a, \widetilde{b}=b$ and by what was shown in Proposition 6. $\hat{C}=\hat{\tilde{C}}$.
By the distance increasing property of the exponential map on spaces of curvature ≤ 0, we see that $C^{2} \geq(\widetilde{C})^{2}$. Therefore,

$$
\begin{aligned}
C^{2} \geq(\widetilde{C})^{2} & =(\widetilde{a})^{2}+(\widetilde{b})^{2}-2 \widetilde{a} \tilde{b} \cos \widehat{\widetilde{C}} \\
& =a^{2}+b^{2}-2 a b \cos \widehat{C}
\end{aligned}
$$

So

$$
C^{2} \geq a^{2}+b^{2}-2 a b \cos \widehat{C} \text {. }
$$

Proposition 7 The sum of angles in a geodesic triangle is $\leq 2 \pi$.
Proof. By the cosine law

$$
c^{2} \geq a^{2}+b^{2}-2 a b \cos \widehat{C} \geq a^{2}+b^{2}-2 a b=(a-b)^{2} .
$$

If $a \geq b$, then $c \geq a-b$, so $c+b \geq a$. If $a \leq b$, then $c+b \geq a$. In any case $a \leq b+c$.

Construct an euclidean triangle with sides a, b, c :

Compare it with

So

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \widehat{C}^{\prime} \geq a^{2}+b^{2}-2 a b \cos \widehat{C} .
$$

Hence $\cos \widehat{C}^{\prime} \leq \cos \widehat{C}$, so $\widehat{C}^{\prime} \geq \widehat{C}$.
Similarly, $\widehat{A}^{\prime} \geq \widehat{A}, \widehat{B}^{\prime} \geq \widehat{\widehat{B}}$. Hence $\widehat{A}^{\prime}+\widehat{B}^{\prime}+\widehat{C}^{\prime} \geq \widehat{A}+\widehat{B}+\widehat{C}$, i.e., $2 \pi \geq \widehat{A}+\widehat{B}+\widehat{C}$.
For notational convenience, from now on $\widetilde{G}=G l(n, R), \widetilde{K}=O(n, R)$. So $\widetilde{G}=\widetilde{K} \widetilde{P}$. G is a reductive subgroup of \widetilde{G}.

By the proposition on p.1, we have a compatible decomposition $G=K P$ where K is a closed subgroup of \widetilde{K} and $P=\exp (\mathrm{p}) \subset \widetilde{P}$ and $[\mathrm{p}, \mathrm{p}] \subset \mathrm{k}, \quad[\mathrm{k}, \mathrm{p}] \subset \mathrm{p}$.

Proposition $8 \exp (\mathbf{p})$ is a totally geodesic subspace of $\exp (\widetilde{\mathbf{p}})$, where $\widetilde{\mathfrak{p}}$ is the space of all symmetric matrices.

Proof. The geodesic joining e to $\exp (X)(X \in \mathfrak{p})$ is $\{\exp (t x)\}_{0 \leq t \leq 1}$. For a fixed $a \in p=\exp (\mathrm{p})$, the map $f \mapsto a f a$ maps P to P and it has an inverse $f \mapsto a^{-1} f a^{-1}$ so the map $f \mapsto a f a$ is $1: 1$ and onto P.

Recalling that G operates on P by $g \cdot x=g x g^{t}$ and this action preserves the metric on P, we see that the geodesic $\{\exp (t X)\}_{0 \leq t \leq 1}$ is mapped to the geodesic $\{a \exp t X a\}_{0 \leq t \leq 1}$ which joins a^{2} to $a e^{t X} a$. Since every element of $\exp (\mathrm{p})$ can be written as a^{2} for some $a \in \exp (\mathrm{p})$, and $f \mapsto a f a$ is surjective, we see that $\exp (\mathrm{p})$ is a totally geodesic subspace of $\exp (\widetilde{p})$.

Proposition 9 Let $F=\mathrm{p}^{\perp}$. Then

$$
\exp (\widetilde{\mathfrak{p}})=\left\{e f e: e \in \exp (\mathfrak{p}), f \in \exp \left(\mathbf{p}^{\perp}\right)\right\}
$$

Proof. Step 1: Define

$$
\varphi: E \times F \rightarrow \exp (\widetilde{\mathrm{p}})
$$

($E=\mathrm{p}$) by

$$
\varphi(e, f)=e f e
$$

Suppose $e_{1} f_{1} e_{1}=e_{2} f_{2} e_{2}$. Consider the triangle

By the isometry $x \mapsto e_{1}^{-1} x e_{1}^{-1}$, this is mapped onto

Denote by $\overline{[x, y]}$ the geodesic segment joining x and y. So, by Proposition $8, \overline{\left[e, e_{1}^{-1} e_{2}^{2} e_{1}^{-1}\right]}$ is contained in $\exp (\mathrm{p})$ and $\overline{[e, f]}$ is contained in $\exp \left(\mathrm{p}^{\perp}\right)$. Therefore, by Proposition 6, the angle at vertex $e=90^{\circ}$, so the angle at vertex $B=90^{\circ}$. Similarly, the angle at vertex $C=90^{\circ}$. Hence, by the cosine law,

$$
b^{2} \geq a^{2}+c^{2}, \quad c^{2} \geq b^{2}+a^{2}
$$

So $b^{2}=c^{2}$ and $a^{2}=0$. Hence $e_{1}^{2}=e_{2}^{2}$, so $e_{1}=e_{2}$. Therefore $f_{1}=f_{2}$. This means that φ is $1: 1$.
 $\overline{d(f, I)}$.

Consider the geodesic triangle

which is isometric to

Now $\widehat{I}=90^{\circ}$, so $\hat{e}^{2}=90^{\circ}$. So by the cosine law

$$
\begin{aligned}
{[d(e f e, I)]^{2} } & \geq\left[d\left(e f e, e^{2}\right)\right]+\left[d\left(e^{2}, I\right)\right]^{2} \\
& =[d(f, I)]^{2}+[2 d(e, I)]^{2} .
\end{aligned}
$$

So $d(e f e, I) \geq \max \{d(f, I), d(e, I)\}$.
Suppose $e_{n} f_{n} e_{n} \rightarrow x \in \exp (\widetilde{\mathfrak{p}})$. So $d\left(e_{n}, f_{n} e_{n}, I\right) \rightarrow d(x, I)$. So as $d\left(e_{n}, I\right), d\left(f_{n}, I\right) \leq$ $d\left(e_{n} f_{n} e_{n}, I\right)$, we see that $\left\{e_{n}\right\},\left\{f_{n}\right\}$ are bounded.

By extracting convergent subspaces, we see that $e_{n} f_{n} e_{n}$ converges to efe $=x$. Hence $\operatorname{Im} \varphi$ is closed.

Step 3: φ is an open map. Since φ is continuous and $1: 1$ and $E \times F$ and P are euclidean spaces of the same dimension, φ maps open sets to open sets. As im φ is closed, we must have image $\varphi=P$. Hence $\varphi: E \times F \rightarrow P$ is a homeomorphism.

Proposition 10 Any non-singular $n \times n$-matrix can be expressed uniquely and continuously as $k \cdot f \cdot e$ where k is orthogonal and $e \in \exp (\mathbf{p}), f \in \exp \left(\mathbf{p}^{\perp}\right)$.

Proof. Given a non-singular matrix $x, x^{t} x$ is positive and symmetric so it belongs to $\exp (\widetilde{p})$. Hence we can find $f \in \exp \left(p^{\perp}\right)$ so that

$$
x^{t} x=e f^{2} e
$$

Note that if $x=k f e$, then $x^{t}=e f k^{-1}$, so $x^{t} x=e f^{2} e$. So we set $k=x e^{-1} f^{-1}$. Then $k^{t}=f^{-1} e^{-1} x^{t}$ and

$$
k^{t} k=f^{-1} e^{-1} x^{t} x e^{-1} f^{-1}=f^{-1} e^{-1}\left(e f^{2} e\right) e^{-1} f^{-1}=I .
$$

Now if $x=k_{1} f_{1} e_{1}=k_{2} f_{2} e_{2}$, then $x^{t} x=e_{1} f_{1}^{2} e_{1}=e_{2} f_{2}^{2} e_{2}$, so $e_{1}=e_{2}, f_{1}=f_{2}$ and $k_{1}=k_{2}$. Hence the map $\theta:(k, f, e) \mapsto k f e$ is $1: 1$ and onto.

In the representation $x=k f e, e$ and f depend continously on $x^{t} x$, so on x and therefore k also depends continously on x. Therefore θ^{-1} is also continuous.

The Mostow Fibration: We have

$$
\widetilde{G}=\widetilde{K} F E
$$

and $G=K E$, where G is a reductive subgroup of \widetilde{G}. We define a map

$$
\underset{K}{\underset{K}{\times}} F \rightarrow \widetilde{G} / G
$$

by $\widetilde{k} \times \underset{\sim}{\sim} f \mapsto \widetilde{k} f\left(\underset{\sim}{f} G\right.$, which is surjective as $\widetilde{G}=\widetilde{K} F E$. Now if $\widetilde{k} f G=\widetilde{k}_{1} f_{1} G$, then $\widetilde{k} f=\widetilde{k}_{1} f_{1} k e=\widetilde{k}_{1} k\left(k^{-1} f_{1} k\right) e$.

Since K maps p onto p (i.e. $k z k^{-1} \in \mathrm{p}$ if $z \in \mathrm{p}$), we see that it also maps p^{\perp} to p^{\perp}. Therefore, by the uniqueness of the decomposition given in Proposition 10, we see that

$$
\widetilde{k}=\widetilde{k}_{1} k, f=k^{-1} f_{1} k, e=I
$$

So,

$$
\widetilde{k}_{1}=\widetilde{k} k^{-1}, f_{1}=k f k^{-1}
$$

Hence the map

$$
\begin{aligned}
& \widetilde{K} \times F \rightarrow \widetilde{G} / G \\
& {[\widetilde{k} \times f] \mapsto \widetilde{k} f G}
\end{aligned}
$$

is a diffeomorphism.
Remark 11 The same proof works if $\widetilde{G} \supset G$ is a reductive pair (for any \widetilde{G}, G with compatible decompositions).

In particular, this applies to $K^{\mathbb{C}} / L^{\mathbb{C}}$:

$$
k^{\mathbb{C}}=k \oplus i k, \quad \ell^{\mathbb{C}}=\ell \oplus i \ell
$$

So

$$
\begin{gathered}
K \times \exp \left(i \ell^{\perp}\right) \\
\vdots \\
K / L
\end{gathered}
$$

In this sense, the affine quadratic is real-analytically a vector bundle over the real sphere.

