King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

 $\begin{array}{c} {\rm Math~102} \\ {\rm Exam~I} \\ {\rm Term~152} \\ {\rm Tuesday~23/02/2016} \\ {\rm Net~Time~Allowed:~120~minutes} \end{array}$

MASTER VERSION

- 1. Using three rectangles and midpoints, the estimate of the area under the graph of $f(x) = x + \cos^2(x)$ from x = 0 to $x = \pi$ is
 - (a) $\frac{\pi}{2}(\pi + 1)$
 - (b) $\frac{\pi}{2} (2\pi/3 + 1)$
 - (c) $\frac{\pi}{2} (4\pi/3 + 1)$
 - (d) $\frac{\pi}{2}(\pi + 1/3)$
 - (e) $\frac{\pi}{2}(\pi + 1/2)$

- 2. If the limit $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{2}{n} \left(1 + \frac{2i}{n}\right)^{10}$ is expressed as a definite integral of a function on the interval [1, 3], then its value is
 - (a) $\frac{1}{11}(3^{11}-1)$
 - (b) $\frac{2^{11}}{11}(2^{11}-1)$
 - (c) $\frac{1}{11}(2^{11}-1)$
 - (d) $\frac{3^{11}}{11}(3^{11}-1)$
 - (e) $\frac{1}{11}(3^{11}-2^{11})$

- 3. If $A = \int_{11}^{-20} f(x)dx$, $B = \int_{4}^{-20} f(x)dx$, and $C = \int_{11}^{-4} f(x) dx$, then A B C is equal to
 - (a) $\int_{-4}^{4} f(x) \, dx$
 - (b) $\int_{4}^{11} f(x) dx$
 - $(c) \quad \int_{-20}^{4} f(x) \, dx$
 - (d) $\int_{-20}^{-4} f(x) dx$
 - (e) $\int_{-4}^{11} f(x) dx$

- 4. $\int_0^1 5^x \frac{1}{\sqrt{1-x^2}} dx =$
 - (a) $\frac{4}{\ln 5} \frac{\pi}{2}$
 - (b) $\frac{4}{\ln 5}$
 - (c) $5 \ln 5 + \pi$
 - (d) $4 \ln 5 \pi$
 - (e) $\frac{5}{\ln 5} \frac{\pi}{2}$

- $5. \qquad \int (3\tan x 2\sin 2x) \sec x \, dx =$
 - (a) $3 \sec x + 4 \cos x + C$
 - (b) $3 \sec x 4 \cos x + C$
 - (c) $2\cos x 3\sec x + C$
 - (d) $3 \sec x + 2 \cos x + C$
 - (e) $-3 \sec x 4 \cos x + C$

- $6. \qquad \int_0^{\pi/2} \sin x \, \tan(\cos x) \, dx =$
 - (a) $\ln(\sec(1))$
 - (b) ln(cos(1))
 - (c) $\ln(\csc(1))$
 - (d) $\ln(\sin(1))$
 - (e) 0

$$7. \qquad \int x(2x-1)^5 \, dx =$$

(a)
$$\frac{1}{28}(2x-1)^7 + \frac{1}{24}(2x-1)^6 + C$$

(b)
$$\frac{1}{14}(2x-1)^7 + \frac{1}{12}(2x-1)^6 + C$$

(c)
$$\frac{1}{7}(2x-1)^7 + \frac{1}{6}(2x-1)^6 + C$$

(d)
$$\frac{1}{28}(2x-1)^7 + C$$

(e)
$$\frac{1}{12}(2x-1)^6 + C$$

8. If
$$\int_{-3}^{a} \frac{[\ln(x+4)]^2}{x+4} dx = \frac{1}{3}$$
, then a is equal to

- (a) e 4
- (b) 1
- (c) 4 e
- (d) e
- (e) 1/e

- 9. If f is an **EVEN** continuous function and $\int_0^4 f(x)dx = 5$, then $\int_{-2}^2 [xf(x^2) + f(2x)] dx$ is equal to
 - (a) 5
 - (b) 10
 - (c) 15
 - (d) 20
 - (e) 0

- 10. $\int_{1}^{16} \frac{2\sqrt{y} y}{y^2} \, dy =$
 - (a) $3 4 \ln 2$
 - (b) $-6 4 \ln 2$
 - (c) $-4 + 4 \ln 2$
 - (d) $\frac{63}{16}$
 - (e) $\frac{79}{16}$

11.
$$\int_0^4 |x^2 - 9| \, dx =$$

- (a) $\frac{64}{3}$
- (b) $\frac{280}{3}$
- (c) $-\frac{44}{3}$
- (d) $\frac{32}{3}$
- (e) $\frac{140}{3}$

12. If
$$f(x) = \begin{cases} \sqrt{4 - x^2}, & -2 \le x \le 0 \\ e^{2x} + 1, & 0 \le x \le 2 \end{cases}$$
, then $\int_{-2}^2 f(x) \, dx = \int_{-2}^2 f(x)$

- (a) $\frac{1}{2}(2\pi + e^4 + 3)$
- (b) $\frac{1}{2}(2\pi + e^4 + 2)$
- (c) $\frac{1}{2}(2\pi + e^4 + 1)$
- (d) $\frac{1}{2}(\pi + e^4 + 3)$
- (e) $\frac{1}{2}(\pi + e^4 + 1)$

- 13. If $f(x) = \int_{\sin(x)}^{1} \sqrt{2+t^2} dt$, then $\frac{df}{dx}|_{x=\pi/3}$ is equal to
 - (a) $-\frac{\sqrt{11}}{4}$
 - (b) $\frac{\sqrt{7}}{4}$
 - (c) $\frac{3\sqrt{11}}{2}$
 - $(d) \quad \frac{3\sqrt{3}}{4}$
 - (e) $-\frac{\sqrt{3}}{4}$

- 14. Let f and g be continuous functions on the interval [a, b] and $c \in [a, b]$. If $0 \le m \le g(x) < f(x) \le M$, for $a \le x \le b$, then which one of the following statements is **FALSE**.
 - (a) $(M-m)(b-a) < \int_a^b [f(x) g(x)] dx$
 - (b) $\int_{a}^{b} [f(x) + m] dx \le \int_{a}^{b} [g(x) + M] dx$
 - (c) $\int_{a}^{b} [M f(x)] dx < \int_{a}^{b} [M g(x)] dx$
 - (d) $\int_{a}^{c} [f(x) g(x)] dx \le \int_{a}^{b} [f(x) g(x)] dx$
 - (e) $\int_{a}^{b} [g(x) f(x)] dx \le \int_{a}^{c} [g(x) f(x)] dx$

- 15. $\int_0^{\ln\sqrt{3}} \frac{1}{e^x + e^{-x}} \, dx =$
 - (a) $\pi/12$
 - (b) $-\pi/12$
 - (c) $\pi/3$
 - (d) $\pi/6$
 - (e) $-\pi/3$

- 16. The area of the region enclosed by the curves $y = (1+x)^2$ and $y = \sqrt{1-x}$, and the x-axis is
 - (a) 1
 - (b) 2
 - (c) 1/3
 - (d) 2/3
 - (e) 7/3

- 17. The area of the region enclosed by the curves $y = \sin x$, $y = 1 \sin x$, x = 0, and $x = \frac{\pi}{2}$ is
 - (a) $2\sqrt{3} 2 \pi/6$
 - (b) $2\sqrt{3} \pi/6$
 - (c) $\pi/2 1$
 - (d) $2 + \pi/6$
 - (e) $2\sqrt{3} + 2 + \pi/6$

- 18. The volume of the solid whose base is a circular disk with radius 3 and whose parallel cross-sections perpendicular to the base are squares is
 - (a) 144
 - (b) 18
 - (c) 36
 - (d) 288
 - (e) 100

- 19. The volume of the solid obtained by rotating the region bounded by $y = e^x$, y = e and x = 0 about the x-axis is equal to
 - (a) $\pi \int_0^1 (e^2 e^{2x}) dx$
 - (b) $\pi \int_0^1 (e e^x)^2 dx$
 - (c) $\pi \int_0^e (e^2 e^{2x}) dx$
 - (d) $\pi \int_1^e (\ln x)^2 dx$
 - (e) $\pi \int_0^e (e e^x)^2 dx$

- 20. The volume of the solid obtained by rotating the region bounded by $y = \sqrt{x}$, x = 0, and y = 2 about the y-axis is equal to
 - (a) $\frac{32\pi}{5}$
 - (b) $\frac{8\pi}{3}$
 - (c) $\frac{16\pi}{5}$
 - (d) $\frac{64\pi}{3}$
 - (e) $\frac{4\pi}{5}$

Q	MM	V1	V2	V3	V4
1	a	С	b	d	d
2	a	a	С	С	c
3	a	b	d	е	b
4	a	е	b	С	b
5	a	С	е	С	c
6	a	e	e	a	d
7	a	d	С	С	b
8	a	С	a	a	b
9	a	b	e	С	a
10	a	е	d	С	d
11	a	е	a	a	a
12	a	b	e	С	c
13	a	a	a	С	d
14	a	d	С	d	d
15	a	С	е	С	c
16	a	a	a	b	e
17	a	a	e	a	c
18	a	С	С	b	a
19	a	b	d	a	d
20	a	е	b	a	d