Math 101

Quiz 3&4 (chapter 2)

Name: ID #: Section: Serial:

Question	Answer
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total/10	

- 1. An equation of the tangent line to the curve $y = \frac{1}{x^3}$ when x = -1 is given by
 - (a) y = -3x 2
 - (b) y = -2x 3
 - (c) $y = -\frac{1}{3}x \frac{4}{3}$
 - (d) $y = \frac{1}{3}x + 1$
 - (e) y = -3x 4

- 2. If $f(x) = \frac{x + |x|}{|x|}$, then which one of the following statements is **TRUE**?
 - (a) $\lim_{x \to 0^+} f'(x) = \infty$
 - (b) $\lim_{x \to \infty} f'(x) = 1$
 - (c) $\lim_{x \to -\infty} f'(x) = 1$
 - (d) $\lim_{x \to 0^{-}} f'(x) = 0$
 - (e) $\lim_{x\to 0} f'(x) = \pm 1$

3. Which one of the following statements is **TRUE** about the continuity of the function?

continuity of the function?
$$f(x) = \begin{cases} \frac{x^3 - 1}{x^2 + 3x - 4}, & x \neq 1, -4\\ 4, & x = 1\\ 5, & x = -4 \end{cases}$$

- (a) f has an infinite discontinuity at x = 1
- (b) f has a jump discontinuity at x = 1
- (c) f has a removable discontinuity at x = 1
- (d) f is continuous at x = -4
- (e) f has a removable discontinuity at x = -4

4. If the function

$$f(x) = \begin{cases} \frac{x+b}{b+1} & x < 0\\ x^2 + b & x \ge 0 \end{cases}$$

is continuous everywhere, then f(-1) =

- (a) 0
- (b) -1
- (c) 2
- (d) 4
- (e) -3

- 5. Let $f(x) = \sqrt{1 3x}$. The **greatest possible** value of $\delta > 0$ for which $\lim_{x \to -1} f(x) = 2$, when $\varepsilon = \frac{1}{2}$ is
 - (a) $\frac{7}{12}$
 - (b) $\frac{9}{12}$
 - (c) $\frac{5}{12}$
 - (d) $\frac{5}{2}$
 - (e) $\frac{3}{2}$

- $6. \qquad \lim_{x \to -\infty} (x + \sqrt{x^2 + 2x}) =$
 - (a) 0
 - (b) 1
 - (c) -2
 - (d) 2
 - (e) -1

- 7. The function $f(x) = \begin{cases} x^2 + b \ x & \text{if } x \le 1 \\ a \ x + b & \text{if } x > 1 \end{cases}$ is differentiable everywhere. Then b = x = 1
 - (a) 1
 - (b) 2
 - (c) -2
 - (d) -1
 - (e) 0

- 8. Where is $f(x) = \ln(1 \sqrt{x})$ continuous?
 - (a) $(0, \infty)$
 - (b) (0,1)
 - (c) [0,1)
 - (d) $(1, \infty)$
 - (e) $(0, \infty)$

- $9. \qquad \lim_{x \to -1^+} \frac{x}{\sqrt{x+1}} =$
 - (a) ∞
 - (b) $-\infty$
 - (c) 0
 - (d) 1
 - (e) 2

- 10. If $\lim_{x\to 3} \frac{f(x)-4}{x-3} = 5$, then $\lim_{x\to 3} x f(x) =$
 - (a) 12
 - (b) 15
 - (c) 0
 - (d) 5
 - (e) -4