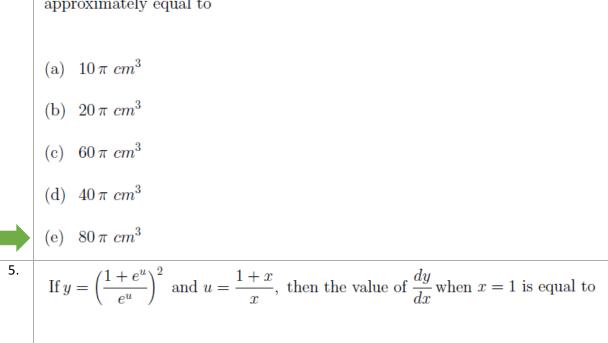
Solve and then select the correct answer:

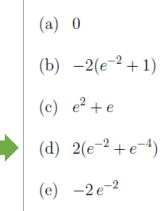
Serial No:

The equation of the tangent line to the curve $y = 2 \tan \left(\frac{\pi x}{4}\right)$ at x = 1 is

(a)
$$y = x + \frac{\pi}{4}$$


(a) $y = x + \frac{\pi}{4}$ (b) $y = \pi x + 2 - \pi$ (c) $y = -\pi x + 2 + \pi$ (d) $y = \frac{\pi}{4}x + 2 - \frac{\pi}{4}$ (e) $y = 3\pi x + 2 - 3\pi$ 2. Let $f(x) = 1 + 2x - x^2$, $x \le 1$. Then $\frac{df^{-1}}{dx}|_{x=-2} = \frac{df^{-1}}{dx}|_{x=-2} = \frac{df^{-1}}{dx}|_{x=-2$




(a)
$$\frac{xy}{y + \ln x}$$

(b) $\frac{y^2}{x - xy \ln x}$ (c) x^{y-1} (d) $\frac{x^2}{x + y \ln x}$

4.	The radius of a sphere was measured to be $20cm$ with a possible error in measurement
	of at most $0.05cm$. The maximum error in the computed volume of the sphere is
	approximately equal to

The slope of the tangent line to the curve $\sin(x+y)=xy$ at the point (0,0) is

	The area of a circle is decreasing at a rate of $\frac{8\pi}{9} cm^2/min$. At what rate is the radius the circle changing when the area is $\frac{\pi}{9} cm^2$?	s of
--	--	------

(a)
$$\frac{4}{3} cm/min$$

(b)
$$\frac{-4}{3} cm/mir$$

(c)
$$-2\pi \ cm/min$$

(d)
$$-2 \ cm/min$$

(e)
$$2\pi \ cm/min$$

8. If
$$y = x^2 \sin^{-1}(x^2) + \sqrt{1 - x^4}$$
, then $y' =$

7.

(a)
$$2x\sin^{-1}(x^2)$$

(b)
$$2x\sin^{-1}(x^2) + \frac{4x}{\sqrt{1-x^4}}$$

(a)
$$2x \sin^{-1}(x^2)$$

(b) $2x \sin^{-1}(x^2) + \frac{4x}{\sqrt{1-x^4}}$
(c) $x \sin^{-1}(x^2) + \frac{4x^3}{\sqrt{1-x^4}}$
(d) $\sin^{-1}(x^2) - \frac{2x^3}{\sqrt{1-x^4}}$
(e) $2x \sin^{-1}(x^2) - \frac{2x}{\sqrt{1-x^4}}$

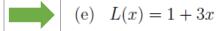
(d)
$$\sin^{-1}(x^2) - \frac{2x^3}{\sqrt{1-x^4}}$$

(e)
$$2x\sin^{-1}(x^2) - \frac{2x}{\sqrt{1-x^2}}$$

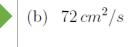
9. A man 2 m tall walks directly away from a street light that is 8 m high at the rate of 3 m/sec. How fast is the length of his shadow changing?

(a)
$$\frac{9}{2}$$
 m/sec

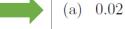
(b)
$$\frac{3}{2}$$
 m/sec


(c)
$$\frac{1}{2}$$
 m/sec

(d)
$$3 m/sec$$


(e)
$$\frac{1}{3}$$
 m/sec

10.	The linearization of $f(x) = e^{\tan^{-1}(3x)}$ at $x = 0$ is given by


- (a) L(x) = 3 x
- (b) L(x) = 3x
- (c) L(x) = 1 2x
- (d) L(x) = 2 + x

- 11. The edge of a cube increases at a rate of $3 \, cm/s$. When the edge length is $2 \, cm$, the rate at which the **surface area** of the cube is increasing is
 - (a) $40 \, cm^2/s$

- (c) $12 \, cm^2/s$
- (d) $36 \, cm^2/s$
- (e) $84 \, cm^2/s$
- 12. Using a suitable linear approximation, the value of ln(1.02) is approximated by

- (b) 0.01
- (c) 1.02
- (d) 1.01
- (e) 0.04