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Abstract

Lie symmetry method is applied to analyze Fisher equation in cylindrical
coordinates. Symmetry algebra is found and symmetry invariance is used to
reduce the equation to a first order ODE. The first order ODE is further analyzed
to obtain exact solution of Fisher equation in explicit form.
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The Lie symmetry approach to study a non-linear partial differential equa-
tion is based on finding its symmetry algebra which leads to reductions and
construction of exact solutions of the PDE under investigation. Symmetry so-
lutions of Fisher equation [6]

∂u

∂t
− ∂2u

∂x2
= u(1− u),

which arises in Heat Transfer, Biology & Ecology, have been investigated in
[1, 3, 5]. It is well known for heat equation models that, in general, the thermal
properties of the medium are not constant and may depend upon the tempera-
ture [7]. This leads to the following generalization

∂u

∂t
− ∂

∂x

(
u

∂u

∂x

)
= u(1− u). (1)

If ∇ denotes the gradient operator then, in higher dimensions, this equation
takes the form

∂u

∂t
−∇ ·

(
u
∇u

∂x

)
= u(1− u), (2)

where complete symmetry analysis of this equation needs to be carried out.
Here, we investigate Equation (2) in case of cylindrical domains with u depend-
ing only on radius. If the radial variable is denoted by x then the corresponding
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Fisher equation is given by

∂u

∂t
− 1

x

∂

∂x

(
xu

∂u

∂x

)
= u(1− u). (3)

Our aim is to apply classical Lie symmetry method to find an exact solution of
Equation (3). Firstly the symmetries of Equation (3) are found and reduction
to second order ODE is obtained through a suitable symmetry invariance. The
reduced ODE is further analyzed to obtain exact solution of Equation (3) in
explicit form.

We use the standard method, cf. [2, 4], for finding the infinitesimal symmetry
generators of Equation (3). To obtain the symmetries, we take the infinitesimal
generator of a point symmetry of the form

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
.

Let X2 denote the second prolongation of the vector field X. Using the invari-
ance condition X2(E) |E=0= 0 gives the following over-determined system of
determining equations.

ξu = 0 = τu = τx

−uξ + xφ + x2ξt − uxξx + uxτt + 2x2φx − ux2ξxx + 2ux2φxu = 0
−xφ + 2uxφ− uxτt + u2xτt + xφt + uxφu − u2xφu − uφx − uxφxx = 0
φ− 2uξx + uτt = 0
−2ξx + τt + φu + uφuu = 0.

The solution to above system gives

ξ = 0

τ = −e−tk1 + k2

φ = −e−tk1u.

Hence, the symmetry algebra of Equation (3) is two dimensional and is spanned
by

X1 = −e−t ∂

∂t
− e−tu

∂

∂u
and X2 =

∂

∂t
.

The reduction via X2 will lead to t-invariant solutions which are not of
interest, so we reduce Equation (3) by exploiting the symmetry X1. Solving the
characteristic system for X1I = 0 gives the similarity variables for X1 as

z(x, t) = x and V (z) = e−tu. (4)

Using these similarity variables reduces Equation (3) to the second order ODE

zV
d2V

dz2
+ z

(
dV

dz

)2

+ V
dV

dz
− zV 2 = 0. (5)

2



Further, it is easy to see that Equation (5) admits the symmetry X = V ∂
∂V .

The similarity variables for X = V ∂
∂V are

s = z and w(s) =
V ′

V
, (6)

which reduce it to the Riccati equation

dw

ds
= −2w2 − 1

s
w + 1. (7)

In order to solve the Riccati equation (7) we substitute

w(s) =
y′(s)
2y(s)

(8)

to get

s2 d2y

ds2
+ s

dy

ds
− 2s2y = 0.

This is modified Bessel equation of order ν = 0 whose general solution is

y(s) = a1I0(
√

2s) + a2K0(
√

2s)

where I0(x) and K0(x), respectively, denote modified Bessel functions of first
and second kind of order zero.

Writing a1
a2

= C1 and using Equation (8) we see that the general solution of
Riccati Equation (7) is given by

w(s) =
1
2

{√
2
C1I1(

√
2s)−K1(

√
2s)

C1I0(
√

2s) + K0(
√

2s)

}
.

Finally using the substitutions given by Equations (4) and (6) we obtain an
exact solution of the Fisher Equation (3) in cylindrical coordinates, given by

u(x, t) = C2e
t

√
C1I0(

√
2x) + K0(

√
2x).

Because the equation under investigation was studied over cylindrical domains,
as expected the solution involves Bessel functions. The asymptotic behavior of
the solution can be understood from the well known asymptotic behavior of the
modified Bessel functions [8] which is

I0(x) ∼ ex

√
2πx

, K0(x) ∼ e−x

√
2
π x

for large x.
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