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Abstract

The nonlinear wave equation with variable long wave velocity and the Gordon-type
equations (in particular, the φ4-model equation) display a range of symmetry gener-
ators, inter alia, translations, Lorentz rotations and scaling - all of which are related
to conservation laws. We do a study of the symmetries of a large class with a view to
reduction and solution of these equations which has been analysed, to some extent,
using other techniques giving rise to a different class of solutions.

1 Introduction

The method of ‘invariants’ to reduce differential equations (des) is now well known via the
Lie symmetry method (e.g., see [1] or [2]). This is especially useful when trying to solve
nonlinear partial des (pdes).

The nonlinear pde

βutt + αut = (f(u)ux)x + λu(1 − un) (1.1)

has a lengthy history of analysis, both analytically and numerically, for various combina-
tions of the parameters n, α, β and λ. We have the following examples.
(i) When n = 1, α = 1, β = 0 and f = 1, we have the Fisher equation which arises in the
study of reaction-diffusion waves in biology. A detailed symmetry study with a variational
bias on its reduced form had been done in [3]. (See also [3] for details of the methods
adopted and analysis of the Fitzhugh-Nagumo equation).
(ii) The case n = 2, α = 0, β = 1 and f = 1 gives the φ − 4 model equation.
(iii) With λ = 0, α = 1 and β = 0, we have the nonlinear diffusion equation.
(iv) When λ = 0, α = 0 and β = 1, we have the nonlinear (1-1) wave equation whose long
wave speed is given by f(u). In some studies, the speed is assumed to be a function of ux,
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i.e., f is replaced by g(ux), say.
(v) In (iv) above, if α is assumed to be nonzero but ‘small’, then the wave equation is
construed as a wave equation with a ‘damping’ term.
(vi) The Telegraph equation is also obtainable with n = 1 and α, β 6= 0.
In (iii)-(v), λ 6= 0 implies a model with a ‘source’ term. In our studies below, we will
consider various classes of (ii), (iv) and (v). A symmetry analysis of the respective equa-
tion will be done leading to a reduction and solution of the pde or it may better that the
reduced form can be pursued using alternative techniques.

Some preliminaries and notation are briefly presented here. Consider an rth-order
system of partial differential equations of n independent and m dependent variables, viz.,

Eβ(x, u, u(1), . . . , u(r)) = 0 , β = 1, . . . , m̃ . (1.2)

A conservation law of (1.2) is the equation DiT
i = 0 , on the solutions of (1.2). Here the

total differentiation operator is

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · , i = 1, . . . , n. (1.3)

The tuple T = (T 1, . . . , Tn) is called a conserved vector/flow of (1.2). A generalized Lie
symmetry operator is given by

X = ξi ∂

∂xi
+ ηα ∂

∂uα
+ ζα

i

∂

∂uα
i

+ ζα
i1i2

∂

∂uα
i1i2

+ · · · , (1.4)

where ξi, ηα are dependent only on (x, u) in the case of point symmetries and the addi-
tional coefficients are

ζα
i = Di(W

α) + ξjuα
ij ,

ζα
i1i2

= Di1Di2(W
α) + ξjuα

ji1i2
,

...

(1.5)

and W α is the Lie characteristic function defined by W α = ηα − ξjuα
j . The conserved flow

T is easily obtainable from Noether’s Theorem if (1.2) is variational and the corresponding
Lagrangian generates Noether symmetries which are the generators that leave invariant
the respective variational functional. In such situations, one may twice reduce the de using
the symmetry as the reduced equation inherits the symmetry via the conservation law (see
[4, 5]).

The conservation laws of an equation lead, inter alia, to a system of reduced equations
corresponding to the pde by the introduction of an additional dependent variable called
the potential variable. For example, in the case of two independent variables x and t, the
conservation law

DtT
1 + DxT 2 = 0

lead to vx = T 1 and vt = −T 2, where v is the potential variable. In certain special cases,
the Lie point symmetries of this system lead to nonlocal (potential) symmetries of the
original pde which would provide new exact solutions to the pde (see [2]). There are other
advantages to studying the Lie symmetries of the potential system as discussed in [3].
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The principle Lie algebra of point symmetry generators of (1.1) is the translations
{∂x, ∂t}. Separately, these would lead to linear momentum and energy conservation solu-
tions, respectively. The latter is usually regarded as steady state solutions. The combi-
nation c∂x + ∂t leads to travelling wave or soliton type solutions, where c represents the
speed of the wave. In this case, the combined symmetry leads to the invariants y = x− ct
and w(y) = u so that (1.1) becomes

(βc2 − f)w′′ − αcw′ − f ′(w′)2 − λw(1 − wn) = 0. (1.6)

2 The φ4-model equation

In this section, we consider the well known φ4-model equation of mathematical physics

utt = uxx + λu(1 − u2). (2.1)

2.1 Exact and approximate analytical solutions

There are numerous but specific studies of the equation as far as the travelling wave type
solutions are concerned leading to kink-antikink analyses [6] and some discrete models [7].
After doing a Lie point symmetry analysis, we reduce the equation by successive reduction
and obtain exact and approximate analytical solutions of travelling wave type and those
invariant under Lorentz rotations. To our knowledge, the latter, which is of physical
significance as it involves Lorentz spin conservation, have not been considered by any
exact or analytical methods. We also briefly look at a variational form and conservation
laws of (2.1).
Firstly, from (1.6), equation (2.1) leads to the nonlinear ode

(1 − c2)w′′ + λw(1 − w2) = 0 (2.2)

which has a Lagrangian

L =
1

2
w′2 +

λ

1 − c2
(−1

2
w2 − 1

4
w4).

The Noether symmetries corresponding to L would lead to a double reduction of (2.2)
and, hence, to a solution. Alternatively, we note that (2.2) reduces to the first-order ode

dγ

dµ
=

λ

1 − c2

µ(1 − µ2)

γ
,

where µ = w, γ = w′, so that

γ =

√

2λ

1 − c2
(
µ2

2
− µ4

4
) + k,

where k is a constant. Substituting back, the first-order ode in w and y is integrable. The
simplest case k = 0 leads to the solution of (2.1)

u = ±

√

2tanh2(c1 − s
√

λ/(1 − c2) − 2

tanh(c1 − s
√

λ/(1 − c2)
, (2.3)
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(s = x − ct). Equation (2.1) also admits the Lorentz rotation symmetry x∂t + t∂x whose
invariants are y = x2 − t2 and w = u. With this choice, (2.1) leads to an ode in w = w(y)
given by

4yw′′ + 4w′ + λw(1 − w2) = 0, (2.4)

which has a straightforward/standard Lagrangian

L = 2yw′2 − λ(
1

2
w2 − 1

4
w4).

However, it can be shown that L does not generate any Noether symmetry so that a double
reduction cannot be done as suggested above in the travelling wave case. Moreover, (2.4)
does not admit any Lie point symmetries. We, thus, need to resort to other analytical
methods. In particular, we may use the well known perturbation technique (see [8, 9]) on
yw′′ + w′ + ǫw(1 − w2) = 0 with the assumption that ǫ = λ/4 is relatively small. Sub-
stitution back into u and (x, t) would give an explicit analytical solution to the φ4-model
equation.

2.2 Conservation laws

One can determine the components of the conserved flow (T 1, T 2) by the definition of the
conservation law. This route is cumbersome. We resort to the straightforward/standard
Lagrangian of (2.1) given by

L =
1

2
u2

x − 1

2
u2

t −
λ

4
(2u2 − u4).

Its Noether symmetries X = ξ∂x + τ∂t + η∂u are given by

XL + L(Dtτ + Dxξ) = Df + Dg, (2.5)

where X is prolonged accordingly and (f, g) is a gauge vector dependent on (x, t, u). It
turns out that the complete algebra of Lie points symmetries form the algebra of Noether
symmetries which implies that three conserved vectors can be obtained by Noether’s the-
orem

T 1 = Lτ + (η − ξux − τut)Lut
− f,

T 2 = Lξ + (η − ξux − τut)Lux
− g.

(2.6)

That is, conservation of linear momentum and energy are given by (uxut, L − u2
x) and

(L + u2
t ,−uxut), respectively. Lorentz spin is given by

(
1

2
xu2

x +
1

2
xu2

t + tuxut −
λ

2
x(

1

2
u2 − 1

4
u4),−1

2
tu2

x − 1

2
tu2

t − xuxut −
λ

2
t(

1

2
u2 − 1

4
u4)).
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3 The nonlinear wave equation

3.1 Long wave speed dependencies on u

3.1.1 A (1-1) nonlinear wave equation with long wave speed f(u) = mum−1 is given by
utt = (mum−1ux)x (m 6= 0) which is

utt − mum−1uxx + (1 − m)mum−2u2
x = 0. (3.1)

It can be shown that its algebra of Lie point symmetry generators is spanned by

{∂x, ∂t, x∂x + t∂t,
1

2
(m − 1)t∂t + u∂u}.

The travelling wave solution (with wave speed c) is obtained by combining ∂x and ∂t so that
y = x−ct and w = u leading to the nonlinear ode c2w′′−mwm−1w′′+(1−m)mwm−2w′2 = 0
which after one integration leads to the variables separable ode (c2 − mwm−1)dw = kdy
so that an implicit solution is

c2u − um + k1 = k(x − ct),

where k and k1 are constants. The steady state solution is obtained when c = 0, viz.,

u = (k1 − kx)
1

m .

The dilation symmetry x∂x + t∂t leads to invariants y = x
t

and w = u by which (3.1)
becomes the ode, for w = w(y),

y2w′′′ + 2yw′ − mwm−1w′′ + (1 − m)mw′2 = 0

which after one integration leads to the first-order ode (y2 − mwm−1)w′ = k.
The conserved form in (3.1) leads to the potential system

−mum−1ux + vt = 0, vx − ut = 0 (3.2)

which generates a number of symmetries equivalent to the symmetries above and the
additional point symmetry

(tum + (m − 1)xv)∂x + (tv +
1

m
xu)∂t −

2uv

m
∂u − (

2

m + 1
um+1 +

1 + m

2m
v2)∂v

which is a potential symmetry of (3.1). An exact solution of (3.1) would lead to a solution
of (3.1) different from the above, i.e., a new solution.
3.1.2 Equation (3.1) with a damping term ǫut leads to the potential form

−mum−1ux + vt = 0, vx − ut = ǫu. (3.3)

Without showing the details, we note that for m 6= 1, the travelling wave similarity
variables lead to the solution c2 ln u − m

m−1um−1 = ǫc(x − ct) + k, k constant. Here, it is
clear that one cannot construe ǫ as small.
Now we note that (3.3) admits the scaling symmetry

m − 1

m + 1
x∂x +

2

m + 1
u∂u + v∂v
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reducing (3.3) to the system (with y = t, u = αx
2

m−1 and v = βx
m+1

m−1 where α = α(y) and
β = β(y))

m + 1

m − 1
β = α′ + ǫα, β′ =

2m

m − 1
αm, (3.4)

so that

α′′ + ǫα′ − 2m(m + 1)

(m − 1)2
αm = 0. (3.5)

This equation can be analysed using inverse variational methods as it admits a Lagrangian
after multiplication by eǫy. Alternatively, as a sample case, we choose m = 2 to show the
use of the approximate Lie symmetry method in analysing (3.5) assuming ǫ small (see [10]).
Equation (3.5) admits the approximate symmetry

y(1 +
ǫ

10
y)∂y − 2α(1 +

ǫ

5
y)∂α.

The zero and first invariants can then be used to obtain a reduction in the usual way.
Furthermore, a series or numerical study of (3.5) may be made. All of these routes require
a detailed attention and can be pursued as a separate study.

3.2 Long wave speed dependencies on ux

A potential form of the wave equation

utt = (aux +
b

2
u2

x)x (3.6)

is

ut = vx, vt = aux +
b

2
u2

x.

Its Lie point symmetry generators are the obvious translations and

x∂x + t∂t + u∂u + v∂v ,
b

2a2
x∂x + (

x

a
+

3b

2a2
)∂u + (t +

2b

a2
v)∂v , t∂u + x∂v.

Reducing (3.6) or the potential form by the travelling wave similarity variables y = x− ct
and w = u leads, on integration, to the ode b

2w′2 + aw′ − c2w′ = k (where k is a constant)
whose solution leads to

u = (
c2 − a ±

√
c2 − 2c2a + a2 − 2kb

b
)(x − ct) + k2,

k2 a constant.
The scaling transformation leads to the invariants y = x/t, α = u

x
and β = v

t
, where

α = α(y) and β = β(y). The potential form leads to the system of odes

−y2α′ = β′, β − yβ′ = a(α + yα′) +
β

2
(α + yα′)2

whose analytical solution can be somewhat cumbersome to obtain. A numerical scheme
may be the best here.
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4 Conclusion

We have presented the role of invariants in obtaining reduction and exact and approximate
analytical solutions to some classes of nonlinear wave equations with a source term in the
case of the φ-4 model equation.
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