
ARTICLE  IN  PRESS

Applied Mathematics Letters ( ) –
www.elsevier.com/locate/aml

A note on a symmetry analysis and exact solutions of
a nonlinear fin equation

A.H. Bokharia, A.H. Karab,∗, F.D. Zamana

a Department of Mathematical Science, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
b School of Mathematics and Centre for Differential Equations, Continuum Mechanics and Applications,

University of the Witwatersrand, Wits 2050, Johannesburg, South Africa

Received 6 June 2005; received in revised form 15 February 2006; accepted 16 February 2006

Abstract

A similarity analysis of a nonlinear fin equation has been carried out by M. Pakdemirli and A.Z. Sahin [Similarity analysis of
a nonlinear fin equation, Appl. Math. Lett. (2005) (in press)]. Here, we consider a further group theoretic analysis that leads to an
alternative set of exact solutions or reduced equations with an emphasis on travelling wave solutions, steady state type solutions
and solutions not appearing elsewhere.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A fin is an extended surface device attached to the surface of a structure protruding into the adjacent fluid, where its
purpose is to increase the heat transfer between the solid surface and the fluid [1]. This device is used to enhance the
transfer of heat from a surface to its surrounding medium. Because of the wide ranging applications, the analysis of
fin heat transfer is of great significance. A large variety of contributions have been made in this direction. One of the
early studies of temperature dependent straight fins with internal heat generation was done in [2]. Razelos and Imre [3]
analyzed the conductive heat transfer of a convecting fin from the base to its tip. Jany and Bejan [4] have investigated
the optimum shape for straight fins with temperature dependent conductivity. A critical review of different models of
fins has been presented in [5].

The equations governing fins with temperature dependent conductivity are nonlinear diffusion type differential
equations. Due to the mathematical complexity of these equations exact analytical solutions are not easily tractable.
In most cases only numerical procedures have been presented. Aziz [6], Krane [7] have used perturbation techniques
to find a numerical solution, while Muzzio [8] adopted the Galerkin method to obtain approximate solutions in the
case of temperature dependent conductivity. Chiu and Chen [9] uses the Adomian decomposition method for solving
the convective longitudinal fin equation with variable conductivity (see [10]).
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Finding analytic exact solutions to non-linear heat conduction (diffusion) equations arising from variable thermal
conductivity is a challenging task. Recently Pakdemirli and Sahin [11] have used symmetry methods in an attempt to
obtain some similarity solutions of a non-linear fin equation arising from temperature dependent thermal conductivity
and a variable heat transfer coefficient. They present some interesting solutions which are valid in some special cases
of conductivity and heat transfer coefficients. The symmetry method provides a powerful tool for the generation
of the transformations that can be used to transform the given non-linear partial differential equation to a simpler
equation while preserving the invariance of the original equation. Consequently, it enjoys widespread application and
has attracted the attention of many researchers. An account of this method can be found in [12] and [13]. In this note
we study the fin equation with temperature dependent thermal conductivity and present some new exact solutions and
provide a direction for providing more solutions using symmetry techniques.

The reader can then utilize the exact solution by generating values of the constants that arise from a given set of
boundary or initial values. The resultant graphical forms of the solution may be quite involved but obtainable through
standard packages.

The non-dimensional non-linear fin equation in the case of temperature dependent thermal conductivity is [6]

∂

∂x
(k(u)ux) − N2 f (x)u = ut , (1.1)

where u is the dimensionless temperature, k the thermal conductivity, f the heat transfer coefficient and N the fin
parameter. The generator of point symmetry of (1.1) is of the form

X = ξ(x, t, u)
∂

∂x
+ τ (x, t, u)

∂

∂ t
+ φ(x, t, u)

∂

∂u
(1.2)

and its second prolongation on Eq. (1.1) modulo the solutions of (1.1) leads to ξ = ξ(x, t) and τ = τ (t) and a system
of linear partial differential equations (pdes) in ξ , τ and φ, namely,

ku

k
φ = 2ξ − τt ,

2
∂

∂u
(kφx) = kξxx − ξt ,

φkuu + kφuu + kuφu − φ
k2
u

k
= 0,

ku

k
φN2 f u − φN2 f + kφxx + φu N2 f u − 2ξx N2 f u − ξ N2 fxu − φt = 0.

(1.3)

2. Results

We analyze and present exact solutions or reduced forms of (1.1) arising from symmetry—the reduced form is an
ordinary differential equation (ODE).

2.1. Symmetry generators

In this section we summarize some of the generators of point symmetry that arise for specific cases of interest. In
some cases, these produce a knowledge of new solutions.

2.1.1. k = um

In the first case, we consider a polynomial form of the thermal conductivity, namely, k(u) = um for m �= 0. From
(1.3)(a), it is clear that φ = 1

m (2ξ − τ )u + α(x, t) and (1.3)(c) implies α = 0. Thus,

φ = 1

m
(2ξx − τt )u (2.1)

and (1.3)(b), (1.3)(d) lead to, respectively,
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ξ = Ax + B,

τ = C + D

mN2
emN2t − (Ax + B) fx t,

(2.2)

where A, B , C and D are constants.
(a) The case f = F , a constant, gives rise to a four-dimensional Lie algebra of point symmetries,

X1 = ∂

∂ t
, X2 = ∂

∂x
, X3 = x

∂

∂x
+ 2

m
u

∂

∂u
,

X4 = emN2 t ∂

∂ t
− mN2emN2 t u

∂

∂u

(2.3)

whose non-zero commutators are [X2, X3] = X1 and [X1, X4] = mN2FX4.
(b) With f = 1/x2, (1.1) admits a two-dimensional algebra X1 = ∂

∂t and X2 = t ∂
∂t + 1

2 x ∂
∂x .

(c) If f = enx , n �= 0, the algebra of Lie point symmetries is generated by X1 = ∂
∂t and X2 = t ∂

∂t − (1/n) ∂
∂x −

(1/m)u ∂
∂u .

2.1.2. k(u) = k, a constant
(a) f = xn leads to the symmetry generators X1 = ∂

∂t , X2 = u ∂
∂u , Xα = α(x, t) ∂

∂u , where α satisfies Eq. (1.1) for
this choice of f .

(b) f = enx generates the algebra as in (a).
(c) f = 1

x2 admits the symmetries

X1 = ∂

∂ t
, X2 = 1

2
x

∂

∂x
+ t

∂

∂ t
,

X3 = u
∂

∂u
, X4 = −4ktx

∂

∂x
− 4kt2

∂

∂ t
+ (2kt + x2)u

∂

∂u
,

Xα = α(x, t)
∂

∂u
,

(2.4)

where α satisfies (1.1).
(d) f = 1 leads to the symmetry generators

X1 = ∂

∂ t
, X2 = ∂

∂x
, X3 = u

∂

∂u
,

X4 = − 1

2N2 x
∂

∂x
− 1

N2 t
∂

∂ t
+ tu

∂

∂u
, X5 = −2kt

∂

∂x
+ xu

∂

∂u
,

X6 = −4ktx
∂

∂x
− 2k

N2 t (2N2t − 1)
∂

∂ t
+ (4kN2t2 + x2)u

∂

∂u
, Xα = α(x, t)

∂

∂u
,

(2.5)

where α satisfies (1.1).

2.2. Invariant solutions

Here, we consider some exact solutions which are symmetry invariant or invariant under a subalgebra of
symmetries. In particular, we point out to the reader the cases that give rise to travelling wave solutions for the
temperature function u which are of practical interest but seemed to be ignored in the literature regarding (1.1). Other
reduced equations and/or solutions are also presented.

2.2.1. f = F , a constant

(a) Travelling wave solutions

(i) For all k(u), travelling wave solutions are obtained by the symmetry c∂x + ∂t , where c is the wave speed. This
generator yields the invariants y = x − ct and v = u with v = v(y). That is, (1.1) becomes

k(v)v′′ + k ′v′2 − N2Fv + cv′ = 0. (2.6)
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(ii) For k = k(um), (2.6) becomes

vmv′′ + mvm−1v′2 − N2Fv + cv′ = 0 (2.7)

which for m = 1 (k = u) is vv′′ + v′2 − N2Fv + cv′ = 0.

(iii) For k = 1, the reduced form is

v′′ − N2Fv + cv′ = 0. (2.8)

which has the solution

v(y) = e
(−c−

√
c2+4kN2 )y
2k C1 + e

(−c+
√

c2+4kN2 )y
2k C2. (2.9)

(b) As regards k = um , from the list in (2.3), X4 is also a symmetry which yields another exact solution from the
invariants y = x and v = eFN2 t u, namely,

vv′′ + mv′ = 0 (2.10)

which is further reducible by X1. In fact, the solution is obtainable from Cmy = ∫ 1
ln v

dv; C is a constant.

2.2.2. f = f (x)

(a) Steady state solutions
Since (1.1) admits ∂t as a symmetry generator for all cases of k(u), it generates the steady state solution

d

dy
(k(v)v′) − N2 f (y)v = 0 (2.11)

which is an ode (in v = v(y), where y = x and v = u). Its solution would usually be associated with conservation of
energy. We consider some special cases for f and k(u) = k, a constant.

(i) f (x) = x2 yields kv′′ − N2y2v = 0 for (2.11) whose solution is

v(y) =
(

Ny2√
k

)1/4
BesselI

[
− 1

4 ,
Ny2

2
√

k

]
C2Gamma

[
3
4

]
√

2
+ e

− Ny2

2
√

k C1HermiteH

[
−1

2
,

√
N y

k1/4

]
. (2.12)

(ii) f = enx yields kv′′ − N2enyv = 0 whose solution is

v(y) = BesselI

[
0,

2
√

eny N2
√

kn

]
C1 + 2BesselK

[
0,

2
√

eny N2
√

kn

]
C2. (2.13)

(iii) f = 1/x2 yields kv′′ − N2(1/y2)v = 0 whose complex solution is

v(y) = y
i
(
−i

√
k−

√
−k−4N2

)
2
√

k C1 + y
i
(
−i

√
k+

√
−k−4N2

)
2
√

k C2. (2.14)

2.2.3. Some general cases

(a) The reduced ode for the case 2.1.1(b) is, using X2,

vm(4yv′′ + 2v′) + 4mvm−1yv′2 − (1/y)N2v + yv′ = 0,

where y = x2/t and v = u.

(b) The reduced ode for the case 2.1.1(c) is, using X2,

n2vm(v′′ + (2/m)v′ + (1/m2)v) + mn2vm−1(v′ + (1/m))2 − N2v − e−yv′ = 0,

where y = nx + ln t and v = e−(n/m)xu.
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(c) For f = F , a constant, the symmetry ∂x (translation in x), for all k(u) yields the ode

ut = −N2F t (2.15)

whose solution is u = Ce−N2F t , C a constant. Here, the temperature u tends to zero with time.

3. Conclusion

We have shown that a further probe into a symmetry analysis of the fin equation gives rise to some interesting
solutions for various forms of the heat transfer coefficient and thermal conductivity. In particular, steady state and
travelling wave solutions of the temperature have practical value—the latter may imply soliton type behaviour of the
temperature. Where the reduced form of the ode is not ‘trivial’ one may resort to a numerical scheme for the reduced
equation using given boundary and/or initial conditions.
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