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Abstract

The Fisher equation, which arises in the study of reaction diffusion waves in biology, does not display a high level of
symmetry properties. Consequently, only travelling wave solutions are obtainable using the method of invariants. This has
a direct bearing on studying perturbed forms of the equation which may arise from considering, e.g., damping or dissipa-
tive factors. We show, here, how one can get around this limitation by appending some unknown function to the pertur-
bation and obtain interesting practical results using invariants. The ideas have significant consequences for equations
which do not admit large class of symmetry properties. The method used in this analysis is then extended to other classes
of evolution type equations that involve perturbations, for, e.g., the KdV type equations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It can easily be shown that the Fisher equation:

ut ¼ uxx þ kuð1� uÞ ð1:1Þ
which models the behaviour of reaction–diffusion waves in biology only admits point symmetries involving
time and space translations (see [1], [2] for a mathematical treatment of the equation with specific reference
to ‘invariant theory’). Thus, invariant solutions are obtainable in terms of travelling waves only. Nevertheless,
some interesting situations do arise here (see the above references). Interestingly, the equation displays
Painleve properties for certain values of k (see [1]) which is related to Lagrangian properties of the reduced
travelling wave form [2]. The drawback with an equation admitting translation symmetries only is the restric-
tion one is subjected to for analysis of perturbed forms of the equation using the now established method of
‘approximate symmetries’ (Baikov et al. [3]). For example, perturbations of the equation in damping or
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dissipative terms of the first-order, viz., ut and ux, is not possible. Also, we note that (1.1) does not admit first-
order conservation laws. Some studies of the equation have also been done in [4].

Here, we suggest a way one can do an analysis, using the approximate symmetry method. Essentially, we
study versions of the perturbed form including first-order dissipative terms:

ut � uxx � kuð1� uÞ þ �f ðx; tÞux ¼ 0 ð1:2Þ
and show, using group methods, how one needs to classify the function f(x, t) which results in imposing certain
‘approximate symmetries’.

We then consider perturbations of the KdV and modified KdV equation:

ut þ að1þ buÞuux þ cuxxx ¼ 0; a; c > 0: ð1:3Þ
We summarize the essentials of the approximate symmetry method.

Consider an rth-order system of perturbed partial differential equations of n independent variables
x = (x1,x2, . . .,xn) and m dependent variables u = (u1,u2, . . .,um) with � a small parameter:

Ebðx; u; uð1Þ; . . . ; uðrÞ; �Þ ¼ Oð�kþ1Þ; b ¼ 1; . . . ; ~m; ð1:4Þ
where u(1),u(2), . . .,u(r) denote the collections of all first, second, . . ., rth-order partial derivatives, that is,
uai ¼ DiðuaÞ; uaij ¼ DjDiðuaÞ; . . ., respectively, with the total differentiation operator with respect to xi given by:

Di ¼ o
oxi

þ uai
o
oua

þ uaij
o
ouaj

þ � � � ; i ¼ 1; . . . ; n; ð1:5Þ

where the summation convention is used whenever appropriate.
The symmetry generator:

X ¼ X 0 þ �X 1 þ � � � þ �kX k ð1:6Þ
is called a kth-order approximate symmetry generator of (1.4) if

XðEbÞ��ð1:4Þ ¼ Oð�kþ1Þ ð1:7Þ
holds, where

Xb ¼ nib
o
oxi

þ gab
o
oua

þ fab;i
o
ouaj

þ fab;i1i2
o

ouai1 i2
þ � � � ; b ¼ 0; . . . ; k

are Lie–Bäcklund symmetry operators and nib, g
a
b are differential functions, and the additional coefficients are

uniquely determined by the prolongation formulae:

fab;i ¼ DiðgaÞ � uajDiðnjÞ;
fab;i1i2���is ¼ Disðfai1i2���is�1

Þ � uaji1���is�1
DisðnjÞ; s > 1:

ð1:8Þ

In (1.7) and hereafter j(1.4) means ‘‘evaluated on the solutions of Eq. (1.4)’’.
For equations of first-order in the perturbed variable � (see [3]), if X0 is a generator of Lie (point) symmetry

of a differential equation:

E0 ¼ 0; ð1:9Þ
then an approximate symmetry, X = X0 + �X1, of the perturbed differential equation

E0 þ �E1 ¼ 0 ð1:10Þ
is obtained by solving for X1 in

X 1ðE0ÞjE0¼0 þ H ¼ 0; ð1:11Þ
where

H ¼ 1

�
X 0ðE0 þ �E1ÞjE0þ�E1¼0 ð1:12Þ

(E1 is the perturbation and H is referred to as an auxilliary function).
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2. Perturbations of the Fisher equation

A point symmetry generator admitted by (1.1) is:

X 0 ¼ o
ot

þ k
o
ox

: ð2:1Þ

When k = 0, the invariant solution is a steady one and k5 0 provide a travelling wave solution where k is the
speed of the wave. If X 1 ¼ s o

ot þ n o
o þ / o

ou in (1.11), by (1.12):

H ¼ ðkf x þ ftÞux; ð2:2Þ
Eq. (1.11) is

/t � /xx � k/ð1� 2uÞ þ ðkf x þ ftÞux ¼ 0; ð2:3Þ
from which the analysis reveals:

s ¼ aðtÞ; n ¼ bðx; tÞ; b ¼ 1
2
atxþ cðtÞ;

/ ¼ dðt; xÞuþ eðt; xÞ;
� 1

2
attx� at � 2dx þ kf x þ ft ¼ 0;

dtuþ et þ dkðu� u2Þ � atkðu� u2Þ � ðdxxuþ exxÞ � kðduþ eÞ þ 2kuðduþ eÞ ¼ 0:

ð2:4Þ

The calculations reveal that f(x, t) is of particular forms. We proceed further with a specific choice of f and
determine approximate point symmetries of (1.2). We choose f ¼ �3

2
kxekt with (k = 0, viz., the steady state

case) so that (1.2) becomes:

ut � uxx � kuð1� uÞ � 3

2
�kxekt

� �
ux ¼ 0: ð2:5Þ

We get:

s ¼ 1� 3�ekt;

n ¼ �3
2
�kxekt;

/ ¼ 3k�ektðu� 1Þ;
ð2:6Þ

so that the approximate symmetry is:

G ¼ �3

2
�kxekt

o
ox

þ ð1� 3�ektÞ o
ot

þ 3�kektðu� 1Þ o
ou

: ð2:7Þ

The invariants of G are given by:

dx
�3
2
�kxekt

¼ dt
1� 3�ekt

¼ du
3�kðu� 1Þekt ; ð2:8Þ

which are y and v, viz.,

y ¼ x2

1� 3�ekt
ð2:9Þ

and

v ¼ ðu� 1Þð1� 3�ektÞ: ð2:10Þ
After substitutions and simplifications we get:

3k�x2ektv0

1� 3�ekt
þ 3�kektv� 4x2v00

1� 3�ekt
� 2v0 þ kvðð1� 3�ektÞ þ vÞ � 3�kx2ektv0 ¼ 0: ð2:11Þ

Therefore,

3�kyektv0 þ 3�kektv� 4yv00 � 2vþ kvðð1� 3�ektÞ þ vÞ � 3�kx2ektv0 ¼ 0; ð2:12Þ
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which implies,

�4yv00 � 2v0 þ kvðvþ 1Þ þ 9k�2yðektÞ2 ¼ 0: ð2:13Þ
Thus,

�4yv00 � 2v0 þ kvðvþ 1Þ ¼ 0: ð2:14Þ
Now solving the equation,

�4yv00 ¼ 2v0 � kvðvþ 1Þ; ð2:15Þ
with the Lie symmetry,

y
1
2
o
oy

; ð2:16Þ

having invariants a = v and b ¼ y
1
2v0. That is,

b
db
da

¼ k
4
ða2 þ aÞ; ð2:17Þ

leading to b ¼ k
1
2

2
a 1þ 2

3
a

� �1
2. Substituting a and b we get

y
1
2v0 ¼ k

1
2

2
v 1þ 2

3
v

� �1
2

; ð2:18Þ

i.e.,

y
1
2
dv
dy

¼ k
1
2

2
v 1þ 2

3
v

� �1
2

: ð2:19Þ

We get two solutions

ln
1� 1þ 2

3
v

� �1
2

1þ 1þ 2
3
v

� �1
2

2
4

3
5 ¼ k

1
2y

1
2 þ c ð2:20Þ

and

ln
v

1þ 1þ 2
3
v

� �2 ¼ k
1
2y

1
2 þ c: ð2:21Þ

Replacing v and y in the latter leads to

ln
ðu� 1Þð1� 3�ektÞ

1þ 1þ 2
3
ðu� 1Þð1� 3�ektÞ� �1

2

� �2
¼ k

1
2x

ð1� 3�ektÞ þ c: ð2:22Þ

The perturbed wave solution is displayed below for (i) 0 6 t 6 5, �20 6 x 6 20, k = 4, � = 0.1 and (ii)
0 6 t 6 2, �100 6 x 6 20, k = 4, � = 0.1, respectively. (See Fig. 1 and Fig. 2.)

3. Perturbations of the KdV equation

We now consider perturbations of some cases of the KdV type equations:

ut þ að1þ buÞuux þ cuxxx ¼ 0; a; c > 0; ð3:1Þ
which includes modified KdV equation and the Gardner equation:

ut � 6uux þ uxxx ¼ 12du2ux: ð3:2Þ
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Example 1. Firstly, as the case:

ut � 6uux þ uxxx ¼ 0 ð3:3Þ
is of particular physical interest (for e.g., it is widely used in the modelling of shallow water phenomena), we
look at the analysis of a perturbed form:

ut � 6uux þ uxxx þ �u ¼ 0: ð3:4Þ
As far as equation (3.3) is concerned, it is interesting to note that the dilation invariance under symmetry
x o
ox þ 3t o

ot � 2u o
ou leads to the ode:

27y3v000 þ 18y2v00 þ 3yvv0 þ yð24� yÞv0 � 2v2 � 24v� 18y2 ¼ 0; ð3:5Þ
where y = x3/t and v = x2u and invariance under X 0 ¼ t o

ox � 1=6 o
ou leads to the solution u = 1/(6t)(k � x), k

constant (see Fig. 3 for 0.1 6 t 6 100, �100 6 x 6 100, k = 1 and � = 0.1).
A nontrivial approximate symmetry of (3.4) is X ¼ t � ð�=2Þt2 o

ox þ ð�1=6þ ð�=6ÞtÞ o
ou so that with y = t the

new dependent variable v(y) is obtainable from:
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Fig. 2. Case (ii): 0 6 t 6 2, �100 6 x 6 20, k = 4 and � = 0.1.
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Fig. 1. Case (i): 0 6 t 6 5, �20 6 x 6 20, k = 4 and � = 0.1.
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v0 þ v �þ 2
1� �y
2y � �y2

� �
¼ 0; ð3:6Þ

so that uðx; tÞ ¼ x 1��y
2y��y2 þ k e��t

tð�t�2Þ (see graph in the following Fig. 4 perturbed solution, 0.1 6 t 6 100,
�100 6 x 6 100, k = 1 and � = 0.5).

Example 2. The calculations regarding the perturbation of the combined KdV-modified KdV equation, viz.,

ut þ að1þ buÞuux þ cuxxx ¼ �f ðt; x; u; uð1Þ; . . . ; uðrÞÞ; ð3:7Þ
does not reveal anything significant. Also, some analysis of the Gardner equation (3.2) has been dealt with
elsewhere, for e.g., [5]. Here, we consider the possibility of regarding the uux term as being a perturbation
in the modified KdV equation. Then the reverse is studied, i.e., u * 2ux is regarded as a perturbation of the
KdV equation, viz., supposing the term 12d in the Gardner equation is ‘small’.

(a) The first of these cases is:

ut þ 6u2ux þ uxxx þ �uux ¼ 0; ð3:8Þ
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Fig. 3. Unperturbed solution; 0.1 6 t 6 100, �100 6 x 6 100, k = 1 and � = 0.1.
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Fig. 4. Case (i): Perturbed solution; 0.1 6 t 6 100, �100 6 x 6 100, k = 1 and � = 0.1.
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where the unperturbed equation is a modified KdV equation ut + 6u2ux + uxxx = 0 with a Lie symmetry gen-
erator (scaling) X 0 ¼ 3t o

ot þ x o
ox � u o

ou. The auxilliary function H = uux and the approximate part of the re-
quired symmetry, X 1 ¼ n o

ox þ s o
ot þ / o

ou, is given by:

/t þ 12/uux þ 6u2/x þ /xxx þ uux ¼ 0: ð3:9Þ
The calculations yield an approximate symmetry:

X ¼ 3t
o
ot

þ x
o
ox

� uþ �

12

� � o
ou

: ð3:10Þ

The invariants are y = x3/t and v = (u + �/12)x. The reduced equation is an ode in v = v(y):

27y3v000 þ 27y2v00 � y2v0 � 6v� 6v3 þ 6yv0 þ 18yv2v0 ¼ 0; ð3:11Þ
whose analytical treatment is nontrivial.
(b) Now we consider the perturbed KdV equation supposing that the perturbation is 12du2ux = �u2ux, i.e.,

ut � 6uux þ uxxx þ �u2ux ¼ 0: ð3:12Þ
A point symmetry generator admitted by the unperturbed equation ut � 6uux + uxxx = 0 is X 0 ¼ t o

ox � 1
6

o
ou.

Here, H ¼ � 1
3
uux. Then X 1 ¼ n o

ox þ s o
ot þ / o

ou is obtained from:

/t � 6/ux � 6u/x þ /xxx � 1

3
uux ¼ 0; ð3:13Þ

giving an approximate generator X ¼ t � 1
36
�x

� �
o
ox � 1

12
�t o

ot � 1
6

o
ou. The invariants of X are y ¼ t�

1
3xþ 18

�
t
2
3 and

v ¼ u� 2
�
ln t leading to

� 1

3
v0 xt�

1
3 þ 18

�
t
2
3 � 54

�
t
2
3

� �
þ 2

�
� 6vv0t

2
3 � 12

�
v0t

2
3 ln t þ v000 þ �v0v2t

2
3 þ 4

�
vv0t

2
3 ln t þ 4

�2
v0t

2
3ðln tÞ2 ¼ 0; ð3:14Þ

from which simplifications lead to

v000 þ 2

�
� 1

3
yv0 þ t

2
3v0

16

�
� 6 vþ 2

�
ln t

� �
þ � vþ 2

�
ln t

� �2
" #

¼ 0: ð3:15Þ

Here, however, the cancellation of the ‘original variables’ cannot be achieved. This may be explained by the
nature of the perturbation term du2ux not being ‘small enough’ in comparison to other terms in the equation.
Thus, a further analysis is not pursued.

4. Conclusion

We have considered perturbations of well known evolution type equations that arise in mathematical phys-
ics. The analysis is carried out using the now well known approximate symmetry method. Interesting results
are obtained and in some cases we have presented three-dimensional plots of the invariant solutions. It may be
worth pursuing a study of these perturbed forms using conservation laws and associated symmetries in the
manner described in [6] and [7].
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