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Abstract 
An inverse problem arising from recovery of wavespeed for a one-dimensional problem in a 
medium with constant background wavespeed in the presence of damping is discussed. Our 
method is based upon Born’s approximation and the assumption that wavespeed and 
damping are well approximated by the background speed plus a perturbation term. An 
approximate form of Green’s function for seismic data is used to derive the inversion 
formula. The procedure is then implemented on a medium which has two layers over which 
the wavespeed changes due to change in the physical properties.  

Article Outline 
1. Introduction  
2. The one-dimensional inverse problem  
3. Inversion formula for data gathered in multilayer model  
4. Numerical results and graphs  
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1. Introduction 
The inverse problem play an important role in mapping the interior of earth, geological 
prospecting and gaining information about inaccessible parts of different bodies. One or 
more signals are introduced near the surface of the body in a region of interest and responses 
from irregularities or inclusions in the interior are recorded. This received scattered profile is 
then used to recover the variations from a background medium. In case of seismic inversion, 
a homogenous elastic model with constant density and elastic parameters provides an 
important benchmark.  

Under the assumption of constant density, Claerbout [2] presented an approximation method 
to the inverse problem for velocity inversion. Gerver [5] demonstrated that the velocity of 
propagation can be determined from observations at one point. Cohen and Bleistein [3], 
Cohen and Hagin [4] among others used Born’s approximation [6] and high frequency 
assumptions to study the inverse problem in one and higher dimensions. The linearization 
used in the inversion procedure is often the Born’s approximation. For this approximation, it 
is assumed that the variation in the physical parameters within an inhomogeneity is a small 
perturbation of the parameters of the background medium. An excellent account of the 
seismic inversion based upon these techniques can be found in Bleistein et al. [1]. Zaman and 
Masood [9] have introduced the damping effects with constant density in the model through 
damped wave equation [7]. The damping effects may be present in the medium due to 
moisture or other inhomogeneities. This model has been further used by Zaman et al. [10] to 
study recovery of damping parameter, wavespeed and bulk modulus under the high 
frequency assumption.  

In this paper we present a one-dimensional model in a medium with damping and derive an 
inversion formula for variation in the velocity and the damping parameter of the medium. It 
is assumed that variation in the velocity and damping parameter is described by small 
perturbation terms so that Born’s approximation can be used to linearize the inversion 
formula. The procedure is then applied to a multi layer medium in which the velocity and 
damping have two step changes from the background medium.  

2. The one-dimensional inverse problem 
The formulation of the forward scattering problem will be conducted in the frequency 
domain for some observable parameter, u(x, xs, ω), called the “field”. Here, x represents the 
general field, while xs represents the location of the source, and ω represents frequency. The 
field may represent plane acoustic pressure waves (propagating parallel to the x-axis) in a 
two or three-dimensional medium, the transverse displacement of a string in one dimension, 
or some other equally appropriate parameter that may be represented as a one-dimensional 
wave. The only important condition is that propagating of u(x, xs, ω) be governed by the 
scalar Helmholtz equation with damping.

(1)
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together with the radiation condition

(2)

with damping γ(x) and source placed at point xs. It is assumed that the source point is to the 
left of the region where v(x) and γ(x) are unknown. We introduce a notation that allows 
variation in damping and sound speed to have parallel form as in equation (3). Therefore, 
introduce the reference velocity v0, and a perturbation α in the form

(3)

rewriting (1) using the perturbation representation (3) yields an equivalent Helmholtz 
equation

(4)

Here, the term involving α(x) has moved to the right side of the equation. Eq. (4) is posed in 
terms of the total field u(x, xs, ω) generated by the impulsive source −δ(x − xs) plus the more 
complicated “scattering source” represented by the term on the far right in (4). The scattered 
waves generated by this new “source” have interacted with regions at greater depth than xs 
and xg and contain information about the wavespeed profile at these greater depths. The total 
field u(x, xs, ω) can be separated into the incident part uI(x, xs, ω) in the absence of the 
perturbations and uS(x, xs, ω) in the presence of perturbations. Thus set

u(x,xs,ω)=uS(x,xs,ω)+uI(x,xs,ω). (5)
Substitute (5) in (4) and, we reach at the following equations:

(6)

(7)

We now construct a Green’s function representation of (7)

(8)

Consider the case where the source and receiver are located at same place (for simplicity we 
choose xs = xg ≡ 0, v0(x) = v0 and γ0(x) = γ0). Let

uI(x,0,ω)=g(x,0,ω).
This is the “zero-offset problem”. Following Wu [8] we assume
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(9)

The Green’s function may then be written as

(10)

The solution of (7), after Born’s approximation [1, Chapter 2], written in terms of Green’s 
function can be written as

(11)

Now using the Green’s function representations (10) in (11),

(12)

and retaining only the leading order terms in ω, we have

(13)

Since α(x) = 0 for x < 0, (13) is Fourier type integral because lower limit can be extended to 
−∞. This can be treated as a Fourier transform of α(x) and inversion can be performed. The 
result is

(14)

As simple check on this result, note that when γ0 = 0, this results reduces to the constant-
background inversion formula [1]. 

3. Inversion formula for data gathered in multilayer 
model 
We will apply our constant-background inversion formula (14) to data gathered in the two-
layer model. Let u(x, ω) be a solution of the problem (1) with radiation condition. Here 

(15)

We begin to solve this problem by writing down fairly general solutions in each of the three 
regions, with constant to be determined by interface and radiation conditions. The solution 
satisfying the radiation condition can be found to be
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(16)

We require that u and its first derivative are continuous at x = h1 and x = h2. This requirement 
leads to the following system of equations:

A1-A2-A3=-1,

(17)

where τ = 2(h2 − h1). 

Solving for A1, A2, and A3 yields
 

(18)

where

(19)

By expanding the denominator in (18) in a geometric series , the 
response can be written as

(20)
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First, consider the case F(ω) = 1. The Fourier inversion of each term in this series can be 
carried out to obtain the following expression giving the variation in velocity profile.

(21)

If R1 and R2 are independent of ω, that is

(22)

then

(23)

We find that

4. Numerical results and graphs 
For two layers, the band-filter for the band

[-ω4,-ω3] [-ω3,-ω2] [-ω2,-ω1] [ω1,ω2] [ω2,ω3] [ω3,ω4]
has the transform functions as in Fig. 1. The band limiting of α(x) can be obtained by the 
convolution theorem. Since we have Eq. (24). Let

and by convolution theorem

ψ(t)bandlimited=ψ(t) F(ω), (25)
where F(ω) is the filter which is symmetric and nonnegative in the ω-domain. The filter is 
given by the resulting equation
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(26)

where

from Eq. (24), the band limiting of α(x) for two layers is

The first term in this expression is just what can be obtained for the single layer, −4R1, where 
R1 is the reflection coefficient of the first boundary. For small perturbations α = O(ε), this 
term reproduces the step at x = h1 to all orders in ε. The second term produces a step at 
x = h1 + (h2 − h1)c0/c1, instead of a step at x = h2 as shown in Fig. 2 for frequencies of 10, 
20, 50, and 60 Hz, respectively. The amplitude,  is correct to order ε. 

 
 

 (6K)  

Fig. 1. The band-limiting for the band F(w) for four frequencies.  

 

 

 (10K) 

Fig. 2. The bandwidth of the data is a trapezoid with corner frequencies of 10, 20, 50 and 60 Hz, 
respectively.  

 

Let us now return to the band limited data, that is to say F(ω) is no longer identically equal to 
1. We compute the reflectivity function β(x), to the solution representation (20). 

(28)

as the out put from the inversion formula as in Fig. 3. 
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 (9K)  

Fig. 3. Step data 10, 20, 50 and 60 Hz, respectively, (with derivative operator).  

 

5. Conclusion 
We solve the inverse problem of determination of velocity profile in a mutilayered medium 
by writing down fairly general solutions in the multilayered regions, with constants to be 
determined by interface and radiation conditions. We derive approximate solutions to the 
inverse problem of finding the velocity and damping from the observed wave-field. In order 
to evaluate the singular integral involved in the inversion formula, a band limiting filter for 
delta function is used. The results are presented graphically.  
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