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ABSTRACT

We investigate the inverse problem associated with the heat equation involving 
recovery of initial temperature distribution in a two-layered model from the information 
of final temperature profile. An integral representation for the problem is found, from 
which a formula for initial temperature is derived using Picard’s criterion and the 
singular system of the associated operators.
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INITIAL INVERSE PROBLEM IN A TWO-LAYER HEAT CONDUCTION MODEL

GLOSSARY

i i = 1 corresponds to the layer 0 ≤ x ≤ a, and i = 2 corresponds to the layer a ≤ x ≤ b

ci Thermal conductivity i = 1, 2

di Thermal diffusivity i = 1, 2

fi (x) Final temperature distribution i = 1, 2

fin Fourier coefficients i = 1, 2

gi (x) Initial temperature distribution i = 1, 2

L2 [., .] The space of the square integrable functions

M1
c1

d1

∫ a

0
φ2

1n(ζ)dξ

M2
c2

d2

∫ b

a
φ2

2n (ζ) dξ

Nn Normalizing constants

‖.‖ Norm

φin (x) Eigenfunctions i = 1, 2

λn Eigenvalues.

1. INTRODUCTION

The classical direct problem in heat conduction is to determine the temperature distribution of a body as
the time progresses. The task of determining the initial temperature distribution from the final distribution is
distinctly different from the direct problem and it is identified as the initial inverse heat conduction problem.
This type of inverse problem is extremely ill-posed, see e.g. Engl et al. [1]. There is another approach to this
inverse problem that consists of a complete reformulation of the governing equation. The inverse problem based
upon the parabolic heat equation is closely approximated by a hyperbolic heat equation; see e.g. Weber [2],
and Elden [3]. This alternate formulation gives rise to an inverse problem, which is stable and well-posed and
thus gives more reliable results. The need to consider the alternate formulation has some physical advantages.
In many applications, one encounters the situation where the usual parabolic heat equation does not serve as a
realistic model. For instance, if the speed of propagation of the thermal signal is finite, i.e. for short-pulse laser
applications, then the hyperbolic differential equation correctly models the problem; see Vedavarz et al. [4] and
Gratzke et al. [5] among others. Moreover, as we see later, the parabolic heat conduction model can be treated
as a limiting case of the hyperbolic model.

The transient-temperature distribution in a composite medium consisting of several layers in contact has
numerous applications in engineering, see e.g. Özişik [6]. In this paper, the mathematical formulation of
the determination of the initial temperature distribution from the final temperature distribution in a composite
medium consisting of two parallel layers of slabs shown in Figure 1 is presented. This problem can be transformed
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to an integral equation of the first kind; from that, a formula for initial temperature distribution can be derived
by using Picard’s theorem and singular system of the associated operator, see e.g. Groetsch [7].

In the second section the heat conduction problem in a two-layer medium is formulated. In the third section
the direct problem is solved. The initial inverse problem is considered in the fourth section. Regularization of the
initial inverse problem in the parabolic heat equation by an alternate approach is presented in the fifth section.
Finally, in the last section a summary of results is presented.
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Figure 1. Two-layer slab in perfect thermal contact at the interface.

2. FORMULATION OF THE PROBLEM

We consider a two-layer slab that consists of the first layer in 0 ≤ x ≤ a and the second layer in a ≤ x ≤ b, which
are in perfect thermal contact at x = a, as illustrated in Figure 1. Let c1 and c2 be the thermal conductivities,
and d1 and d2 the thermal diffusivities for the first and second layer, respectively. The temperature distribution
at the point x and t in the first layer is given by u1 (x, t) and in the second layer by u2 (x, t). These temperature
distributions satisfy the following governing equation in the two regions:

d1
∂2u1 (x, t)

∂x2
=

∂u1 (x, t)
∂t

in 0 ≤ x ≤ a, t > 0, (1)

d2
∂2u2 (x, t)

∂x2
=

∂u2 (x, t)
∂t

in a ≤ x ≤ b, t > 0, (2)

subject to the boundary conditions:

u1 (0, t) = u2 (b, t) = 0, t > 0, (3)

u1 (a, t) = u2 (a, t) , t > 0, (4)

c1
∂u1 (a, t)

∂x
= c2

∂u2 (a, t)
∂x

, t > 0. (5)

The boundary condition (3) can be replaced by an insulated boundary, i.e. ∂xu1(0, t) = ∂xu2(b, t) = 0, or by
a radiating type boundary condition depending upon how the boundary of the bar is kept in a given situation.
If the energy dissipates at the boundary then the condition (3) can be replaced by convective type boundary
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conditions. The analysis for these boundary conditions can be carried out in a manner similar to that described
in this paper. We assume the final temperature distribution of two regions at time t = T is given by:

fi(x) = ui(x, T ) , i = 1, 2. (6)

Our aim is to recover initial temperature profiles of the first and the second layer given by:

gi(x) = ui(x, 0) , i = 1, 2. (7)

3. THE DIRECT PROBLEM

We assume the solution of the direct problem in the form:

ui(x, t) =
∞∑

n=1

vn(t) φin(x) , i = 1, 2. (8)

The corresponding eigenvalue problem is:

d2φin (x)
dx2

+
λ2

n

di
φin (x) = 0, 0 ≤ x ≤ a, i = 1, 2, (9)

subject to the boundary conditions:

φ1n (0) = φ2n (b) = 0, (10)

c1
dφ1n (a)

dx
= c2

dφ2n (a)
dx

. (11)

The general solution of the eigenvalue problem (9) can be found to be:

φin (x) = Ain sin
(

λnx√
di

)
+ Bin cos

(
λnx√

di

)
, i = 1, 2. (12)

The next step is to apply conditions (10) and (11) for the determination of four coefficients Ain, Bin. Without
loss of generality, we set of the non-vanishing coefficients, say A1n equal to unity. This leads to the following
form of eigenfunctions:

φ1n (x) = sin
(

λnx√
d1

)
, (13)

φ2n (x) = A2n sin
(

λnx√
d2

)
+ B2n cos

(
λnx√

d2

)
, (14)

where A2n and B2n are given by:

A2n = sin
(

λna√
d1

)
sin

(
λna√

d2

)
+

c1

c2

√
d2

d1
cos

(
λna√

d1

)
cos

(
λna√

d2

)
, (15)

B2n = sin
(

λna√
d1

)
cos

(
λna√

d2

)
− c1

c2

√
d2

d1
cos

(
λna√

d1

)
sin

(
λna√

d2

)
. (16)
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The eigenvalues λn are solution of the following transcendental equation:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sin
(

λna√
d1

)
− sin

(
λna√

d2

)
− cos

(
λna√

d2

)
c1
c2

√
d2
d1

cos
(

λna√
d1

)
− cos

(
λna√

d2

)
sin

(
λna√

d2

)

0 sin
(

λnb√
d2

)
cos

(
λnb√

d2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (17)

This transcendental equation can be solved for λn by assigning numerical values to the constants, see [6],
pages 47–50.

The eigenfunctions given by (13) and (14) are complete in L2 [0, b]. Therefore gi (x) ∈ L2 [0, a], i = 1, 2, can
be expanded as:

gi (x) =
∞∑

n=1

knφin (x) , i = 1, 2, (18)

where

kn =
1

Nn

[
c1

d1

∫ a

0

φ1n (x) g1 (x) dx +
c2

d2

∫ b

a

φ2n (x) g2 (x) dx

]
, (19)

and

Nn =
c1

d1

∫ a

0

φ2
1n (ζ) dξ +

c2

d2

∫ b

a

φ2
2n (ζ) dξ. (20)

We use the solution assumed by separation of variables (8) in (1) and (2) which leads to the following ordinary
differential equation:

dvn (t)
dt

+ λ2
nvn (t) = 0, (21)

together with

vn (0) = kn. (22)

The direct solution of the problem is now complete and the temperature distribution ui(x, t), i = 1, 2 in any one
of the two regions is given by:

ui(x, t) =
∞∑

n=1

exp
(−λ2

nt
) 1

Nn
φin(x)




c1
d1

∫ a

0
φ1n (ζ) g1 (ζ) dζ

+ c2
d2

∫ b

a
φ2n(ζ)g2 (ζ) dζ


 , i = 1, 2. (23)

4. THE INVERSE SOLUTION

The method we use to solve the inverse problem is based on the reduction of the direct problem to an integral
equation of the first kind. The expression (23) together with condition (6) leads to an integral equation of the
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first kind. That integral equation can be inverted by the application of Picard’s theorem, using the singular
system of the integral operator involved.

Consider the case g1 (x) �= 0 and g2 (x) = 0. The expression (23) in this case is:

ui(x, t) =
∞∑

n=1

exp
(−λ2

nt
) 1

Nn
φin(x)

[
c1

d1

∫ a

0

φ1n (ζ) g1 (ζ) dζ

]
, i = 1, 2. (24)

Using condition (6) in the expression (24) leads to:

fi (x) =
∫ a

0

Ki (x, ζ) g1 (ζ) dζ, i = 1, 2, (25)

where

Ki (x, ζ) =
ci

di

∞∑
n=1

exp
(−λ2

nT
) 1

Nn
φin(x) φ1n (ζ) , i = 1, 2. (26)

Our aim is to solve the integral Equation (25) for the unknown initial temperature distribution g1 (x).
To accomplish this goal, we record the final profile in the first layer, that is i = 1. Therefore expressions
(25) and (26) reduce to:

f1 (x) =
∫ a

0

K1 (x, ζ) g1 (ζ) dζ, (27)

where

K1 (x, ζ) =
c1

d1

∞∑
n=1

exp
(−λ2

nT
) 1

Nn
φ1n(x) φ1n (ζ) . (28)

Thus the inverse problem is reduced to solving an integral equation of the first kind. The singular system in the
first layer of the integral operator in (27) is:

{
M1

Nn
exp

(−λ2
nT

)
;

√
c1

M1d1
φ1n (x) ,

√
c1

M1d1
φ1n (x)

}
, (29)

where

M1 =
c1

d1

∫ a

0

φ2
1n (ζ) dξ. (30)

In the expression (29), the first term in the braces represents the singular values and the next two terms correspond
to the singular functions. Such a decomposition of an operator is called the singular value decomposition, see
Engl [1].

Now by application of Picard’s theorem (see [1]) the inverse problem is solvable iff

∞∑
n=1

(
Nn

M1

)2

exp
[
2λ2

nT
] |f1n|2 < ∞, (31)
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where

f1n =
√

c1

M1d1

∫ a

0

φ1n (ζ) f1(ζ) dζ, (32)

are the classical Fourier coefficients of f1. In this case, by Picard’s theorem, we can recover the initial profile by
the following expression:

g1 (x) =
√

c1

M1d1

∞∑
n=1

Nn

M1
exp

[
λ2

nT
]
f1nφ1n (x) . (33)

Picard’s theorem demonstrates the ill-posed nature of the problem considered. If we perturb the data by setting
fδ = f + δφn we obtain a perturbed solution gδ = g + δφn exp

[
λ2

nT
]
. Hence the ratio

∥∥gδ − g
∥∥ /

∥∥fδ − f
∥∥ =

exp
[
λ2

nT
]

can be made arbitrarily large due to the fact that the singular values exp
[−λ2

nT
]

decay exponentially.
This rate of decay depends on the size of the eigenvalues and on the size of the time displacement. It is also
intuitively clear that for large values of T , the influence of the initial condition on the solution reduces and thus
initial condition may not be recoverable, see [8] for the effect of T on recovery of the initial profile.

In case we choose g1 (x) = 0 and g2 (x) �= 0, then a similar procedure leads to the following singular system
in the second layer:

{
M2

Nn
exp

(−λ2
nT

)
;

√
c2

M2d2
φ2n (x) ,

√
c2

M2d2
φ2n (x)

}
, (34)

where

M2 =
c2

d2

∫ b

a

φ2
2n (ζ) dξ. (35)

The condition for existence of solution is:

∞∑
n=1

(
Nn

M2

)2

exp
[
2λ2

nT
] |f2n|2 < ∞, (36)

where

f2n =
√

c2

M2d2

∫ b

a

φ2n (ζ) f2(ζ) dζ, (37)

are the classical Fourier coefficients of f2. In this case the initial profile is given by the following expression:

g2 (x) =
√

c2

M2d2

∞∑
n=1

Nn

M2
exp

[
λ2

nT
]
f2nφ2n (x) . (38)

5. REGULARIZING THE INVERSE SOLUTION

In order to overcome the ill-posedness of the inverse problem, we may model the problem by introducing a
hyperbolic term with a small parameter in the classical heat equation. It is well established that this new model
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regularizes the problem in classical heat model, see e.g. Masood and Zaman [9], Masood et al. [8], Zaman and
Masood [10]. The hyperbolic heat conduction model in two layers has the following form:

d1
∂2u1 (x, t)

∂x2
=

∂u1 (x, t)
∂t

+ ε
∂2u1 (x, t)

∂t2
in 0 ≤ x ≤ a, t > 0, (39)

d2
∂2u2 (x, t)

∂x2
=

∂u2 (x, t)
∂t

+ ε
∂2u1 (x, t)

∂t2
in a ≤ x ≤ b, t > 0, (40)

where the parameter ε is assumed to be small and ε → 0+. Together with conditions (3)– (7) and one additional
condition given below:

∂ui

∂t
(x, 0) = 0, i = 1, 2. (41)

In this case instead of (21), we get the following ordinary differential equation:

ε
d2vn (t)

dt2
+

dvn (t)
dt

+ λ2
nvn (t) = 0, (42)

together with:

vn (0) = kn, (43)

and

∂vn (0)
∂t

= 0. (44)

Since ε → 0+, this is a singular perturbation problem. We apply the WKBJ method [11] to obtain an asymptotic
representation for the solution of (42) containing parameter ε; the representation is to be valid for small values
of the parameter. It is demonstrated in [11] that the solution stays closer to the exact solution for large values
such as ε = 0.5. The solution of (42) is given by:

vn(t) =
(

ελ2
n − 1

2ελ2
n − 1

)
kn exp

[−λ2
nt

]
+

(
ελ2

nkn

2ελ2
n − 1

)
exp

[
λ2

nt − t

ε

]
. (45)

The remaining procedure of finding the inverse solution is same as in the previous section. The inverse solutions
(33) and (38) for the hyperbolic heat conduction model can be written as:

g1 (x) =
√

c1

M1d1

∞∑
n=1

Nn

M1

f1nφ1n (x)


(
ελ2

n − 1
2ελ2

n − 1

)
kn exp

[−λ2
nT

]

+
(

ελ2
nkn

2ελ2
n − 1

)
exp

[
λ2

nT − T

ε

]




. (46)

g2 (x) =
√

c2

M2d2

∞∑
n=1

Nn

M2

f2nφ2n (x)


(
ελ2

n − 1
2ελ2

n − 1

)
kn exp

[−λ2
nT

]

+
(

ελ2
nkn

2ελ2
n − 1

)
exp

[
λ2

nT − T

ε

]




. (47)
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The solutions given by (33) and (38) can be recovered by letting ε → 0+ in Equations (46) and (47) respectively.
This shows that the parabolic heat conduction model can be treated as a limiting case of the hyperbolic heat
conduction model. It is shown in [8] that by choosing an appropriate value of the parameter ε the hyperbolic
heat conduction model behaves much better than the parabolic heat conduction model.

Example 1. Consider the initial temperature distributions of the form

g1 (x) = φ12 (x) = sin
(

λ2x√
d1

)
, and g2 (x) = 0. (48)

The initial profiles should be of the form so that the integrals appearing in the expression (23) exist and converge
to the initial profiles as the time approaches to zero. One such criterion for the integrals to exist is that g1 (x) is
continuous in 0 < x < a and g2 (x) is continuous in a < x < b. More generally, we can choose the initial profiles
which are measurable and satisfy a criteria of boundedness, see John [12].

To see that the initial profile (48) is recovered by the processing formula (33), first we calculate the final data f12

given by (32). The expression (27) yields

f1 (x) =
M1

N2
exp

(−λ2
2T

)
φ12 (x) , (49)

and the expression (32) yields

f12 =
√

d1

c1M1

M2
1

N2
exp

(−λ2
2T

)
. (50)

Now the initial profile given by (48) can be recovered if we use the final data given by (50) in the processing
formula (33). The initial profile given by (48) can also be recovered exactly by the processing formula (46).

Example 2. Consider the initial temperature distribution of the form

g2 (x) = φ22 (x) , and g1 (x) = 0. (51)

By following a similar procedure as in the previous example, this initial profile can be recovered by the processing
formula (38). This initial profile can also be recovered by the processing formula (47).

At present, the method presented in this paper may not seem to work if both g1 (x) and g2 (x) are non-zero.
Some other method or the method presented in this paper with some modifications may extend it to the case
where both the initial profiles are non-zero.

6. CONCLUSIONS

The recovery of initial temperature distribution from the observation of final temperature distribution in a
two-layer model is presented. It is shown that if the initial temperature distribution in either one of the layer is
zero then the problem can be solved using singular value decomposition.

The inverse solution of the heat conduction model is characterized by discontinuous dependence on the data.
A small error in the nth Fourier coefficient is amplified by the factor exp

[
λ2

nT
]
. Thus it depends on the rate

of decay of singular values and this rate of decay also depends on the size of the parameter T . In order to
get some meaningful information, one has to consider first few degrees of freedom in the data and has to filter
out everything else depending on the rate of decay of singular values and the size of parameter T . It is shown
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that a complete reformulation of the heat conduction problem as a hyperbolic equation may produce meaningful
results. The hyperbolic model with a small parameter is stable and regularizes the heat conduction equation.
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