King Fahd University of Petroleum and Minerals
Department of Mathematical Sciences
Math 202
Final Exam
Semester II, 1998-99 (982)

Name: \qquad ID \#: \qquad
Section (circle one): \# 3 (8:00 - 8:50)
\# 4 (9:00 - 9:50)
FORM(1)

Problem		points
1		10
2		13
3		12
4		12
5		4
6		4
7		4
8		4
9		4
10		100
11		
12		4
Total:		4

Find two linearly independent solutions of the system $X^{\prime}=\left[\begin{array}{rr}5 & 1 \\ -2 & 3\end{array}\right] X$.

$$
\begin{aligned}
& X_{1}(t)= \\
& X_{2}(t)=
\end{aligned}
$$

\qquad
\qquad

Problem \# 2. (Show all your work)
(13 points)
Given that $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$ are the eigenvalues of the matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 2 & -1 \\ 0 & 1 & 0\end{array}\right]$. Find three linearly independent solutions of the system $X^{\prime}=A X$.
\qquad
$X_{2}(t)=$ \qquad
$X_{3}(t)=$ \qquad
The general solution is $X(t)=c_{1} X_{1}(t)+c_{2} X_{2}(t)+c_{3} X_{3}(t)$

Solve the given system

$$
\begin{aligned}
& 2 x^{\prime}-5 x+y^{\prime}=e^{t} \\
& x^{\prime}-x+y^{\prime}=5 e^{t}
\end{aligned}
$$

$x(t)=$

$y(t)=$

Consider the following differential equation

$$
x y^{\prime \prime}+(x-6) y^{\prime}-3 y=0 .
$$

Obtain two linearly independent series solutions about the regular singular point $x_{0}=0$.

Consider the following differential equation

$$
x y^{\prime \prime}+2 y^{\prime}-x y=0 .
$$

Obtain two linearly independent series solutions about the regular singular point $x_{0}=0$.

Determine all the singular points and the ordinary points of the following differential equation:

$$
x^{2}(x+2)^{2} y^{\prime \prime}+\left(x^{2}-4\right) y^{\prime}+2 y=0
$$

Classify each singular point as regular or irregular.

Ordinary points are: \qquad
Regular singular points are: \qquad
Irregular singular points are: \qquad

Problem \# 7 (Fill in the blanks)
Find the indicial equation and the indicial roots of:

$$
x y^{\prime \prime}+2 y^{\prime}-x y=0 .
$$

Given that $x_{0}=0$ is a regular singular point,

Indicial equation is \qquad
Indicial roots: $r_{1}=$ \qquad $r_{2}=$ \qquad

$$
r_{1}-r_{2}=
$$

\qquad

Problem \# 8 (Fill in the blanks)
(11 points)
Without solving, classify each of the following equation as to:
(a) Separable (b) homogeneous (c) exact (d) linear in x (e) linear in y (f) Bernoulli and (g) Ricatti
(I) $\quad y^{\prime}-4=5 y+y^{2}$ \qquad , \qquad , \qquad (II) $y^{\prime}=\frac{x-y}{x}$ \qquad , \qquad , \qquad
(III) $x y y^{\prime}+y^{2}=2 x$ \qquad , \qquad , \qquad
(IV) $\left(x^{2}+\frac{2 y}{x}\right) d x=\left(3-\ln x^{2}\right) d x$ \qquad , \qquad , \qquad
(V) $2 x y y^{\prime}+y^{2}=2 x^{2}$ \qquad , \qquad , \qquad

If $y(x)$ is the solution of the following initial value problem:

$$
x y^{\prime}+y=\frac{1}{y^{2}}, \quad y(1)=2
$$

then $y(2)=$
(a) $\frac{\sqrt[3]{15}}{2}$
(b) $\frac{\sqrt[3]{34}}{3}$
(c) $\frac{\sqrt[3]{1007}}{10}$
(d) $\frac{\sqrt[3]{71}}{4}$
(e) None of the above.

Problem \# 10 (Circle the correct answer)

If $y(x)$ is the solution of the following initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}+y=4 x^{2}-3, \quad y(0)=21, \quad y^{\prime}(0)=-16
$$

then $y(2)=$
(a) 9
(b) 41
(c) 5
(b) 69
(b) 41
(e) None of the above.

Problem \# 11 (Circle the correct answer)
The general solution of

$$
y^{\prime \prime}+2 y^{\prime}+y=\frac{e^{-x}}{x} \quad \text { is }
$$

(a) $y=c_{1} \cos x+c_{2} \sin x+x \ln x$
(b) $y=c_{1} \cos x+c_{2} \sin x+x e^{-x} \ln x$
(c) $y=c_{1} \cos x+c_{2} \sin x+x e^{x}$
(d) $y=c_{1} \cos x+c_{2} \sin x-x e^{-x} \ln x$
(d) None of the above.

Problem \# 12 (Circle the correct answer)
If $y(x)$ is the solution of the following initial value problem:

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0, \quad y(1)=0, \quad y^{\prime}(1)=1,
$$

then $y(4)=$
(a) 2
(b) 6
(c) 12
(d) 20
(e) None of the above.

