King Fahd University of Petroleum and Minerals

Department of Mathematical Sciences
Math 202
Second Exam
Semester I, 1998-99 (981)

Name: \qquad ID \#: \qquad
Section \#: \qquad

Notes

- You must show all your work to justify your answer.
- Be as organized as possible.

Problem	
1	
2	
3	
4	
5	
6	
7	
Total:	

Given that $y_{1}=x^{3} \ln x$ is a solution of the homogeneous differential equation
(1) $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0$
(a) Find a second solution y_{2} of equation (1).
(b) Solve the following differential equation subject to the initial conditions (4 points)

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=x^{-4} \quad y(1)=0, y^{\prime}(1)=1 .
$$

(c) Find an interval around $x=1$ for which the above initial value problem in part (b) has a unique solution.

Solve the given differential equation subject to the indicated initial conditions

$$
y^{\prime \prime}+y=8 \cos 2 x-4 \sin x, \quad y\left(\frac{\pi}{2}\right)=-1, \quad y^{\prime}\left(\frac{\pi}{2}\right)=0 .
$$

[Use undetermined coefficients-Annihilator approach].

Solve the given system subject to the initial conditions

$$
\begin{aligned}
& 2 x^{\prime}+y^{\prime}=y+t \\
& x^{\prime}+y^{\prime}=t^{2} ; \quad x(0)=1, y(0)=1 .
\end{aligned}
$$

(a) Solve the following differential equation by variation of parameters.

$$
y^{\prime \prime \prime}+y^{\prime}=\tan x
$$

(b) State an interval on which the general solution of the above differential equation is defined.
(a) Solve the following differential equation subject to the initial conditions. (7 points)

$$
x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}+2 x y^{\prime}=0 \quad y(1)=5, y^{\prime}(1)=3, y^{\prime \prime}(1)=1 .
$$

(b) Find the general solution of the following differential equation

$$
\left(D^{4}+2 D^{2}+1\right)\left(D^{2}-2 D+1\right) y=0 .
$$

(a) Obtain the Wronskian of the functions

$$
y_{1}=1, \quad y_{2}=x, \quad y_{3}=\frac{x^{4}}{12}-\frac{x^{2}}{2} .
$$

(b) Are the functions $y_{1}(x), y_{2}(x), y_{3}(x)$ linearly dependent or linearly independent? (use the result from part (a)).
(c) Given that $y_{p_{1}}=e^{x}+e^{-x}$ and $y_{p_{2}}=e^{x}-e^{-x}$ are particular solutions of $x y^{\prime \prime}+2 y^{\prime}-x y=$ $2 e^{x}-2 e^{-x}$ and $x y^{\prime \prime}+2 y^{\prime}-x y=2 e^{x}+2 e^{-x}$, respectively, find particular solutions of $x y^{\prime \prime}+2 y^{\prime}-x y=3 e^{x}+5 e^{-x}$.

Find the general solution of the following differential equation

$$
2 y^{\prime \prime}-x y^{\prime \prime \prime}+12 x^{3}=0
$$

