King Fahd University of Petroleum and Minerals Department of Mathematical Sciences Math 202 Second Exam Semester I, 1998–99 (981)

Name:	ID #:
Section #:	_

Notes

- You must show all your work to justify your answer.
- Be as organized as possible.

Problem	
1	
2	
3	
4	
5	
6	
7	
Total:	

Problem # 1.

Given that $y_1 = x^3 \ln x$ is a solution of the homogeneous differential equation

$$(1) \quad x^2y'' - 5xy' + 9y = 0$$

(a) Find a second solution y_2 of equation (1). (4 points)

(b) Solve the following differential equation subject to the initial conditions (4 points)

$$x^{2}y'' - 5xy' + 9y = x^{-4}$$
 $y(1) = 0, y'(1) = 1.$

(c) Find an interval around x = 1 for which the above initial value problem in part (b) has a unique solution. (2 points)

(10 points)

Solve the given differential equation subject to the indicated initial conditions

$$y'' + y = 8\cos 2x - 4\sin x,$$
 $y\left(\frac{\pi}{2}\right) = -1, \ y'\left(\frac{\pi}{2}\right) = 0.$

[Use undetermined coefficients-Annihilator approach].

Problem # 3.

3

Solve the given system subject to the initial conditions

$$2x' + y' = y + t$$

$$x' + y' = t^{2}; \quad x(0) = 1, \ y(0) = 1.$$

Problem # 4.

 $y''' + y' = \tan x$

(b) State an interval on which the general solution of the above differential equation is defined. (2 points)

(10 points)

(a) Solve the following differential equation subject to the initial conditions. (7 points)

 $x^{3}y''' + 3x^{2}y'' + 2xy' = 0$ y(1) = 5, y'(1) = 3, y''(1) = 1.

(b) Find the general solution of the following differential equation (3 points)

 $(D^4 + 2D^2 + 1)(D^2 - 2D + 1)y = 0.$

Problem # 6.

(a) Obtain the Wronskian of the functions

$$y_1 = 1$$
, $y_2 = x$, $y_3 = \frac{x^4}{12} - \frac{x^2}{2}$.

(b) Are the functions $y_1(x), y_2(x), y_3(x)$ linearly dependent or linearly independent? (use the result from part (a)). (2 points)

(c) Given that $y_{p_1} = e^x + e^{-x}$ and $y_{p_2} = e^x - e^{-x}$ are particular solutions of $xy'' + 2y' - xy = 2e^x - 2e^{-x}$ and $xy'' + 2y' - xy = 2e^x + 2e^{-x}$, respectively, find particular solutions of $xy'' + 2y' - xy = 3e^x + 5e^{-x}$. (5 points)

(10 points)

(3 points)

Problem # 7.

Find the general solution of the following differential equation

 $2y'' - xy''' + 12x^3 = 0.$

(10 points)