King Fahd University of Petroleum and Minerals
Department of Mathematical Sciences
Math 202
First Exam
Semester II, 1999 (982)

Name: \qquad ID \#: \qquad
Section (circle one): \# 3 (8:00-8:50)
\# 4 (9:00-9:50)
FORM(1)

Notes

- You must show all your work to justify your answer.
- Be as organized as possible.

Problem		points
1		12
2		10
3		10
4		10
5		10
6		12
7		6
8		6
9		6
10		6
11		6
12		100
Total:		

State whether the given differential equations are linear or nonlinear. Give the order of each equation.
(a) $\quad x^{2} d y+\left(y-x y-x e^{x}\right) d x=0$.
(b) $\frac{d y}{d x}=\sqrt{1+\left(\frac{d^{2} y}{d x^{2}}\right)^{2}}$.
(c) $\quad\left(1-y^{2}\right) d x+x d y=0$.

Solve the given differential equation $y^{2} d x=\left(3 x^{4}+2 x y\right) d y$.

Problem \# 3
Solve the given differential equation
$\frac{d y}{d x}=-\frac{4}{x^{2}}-\frac{1}{x} y+y^{2}$,
where $y_{1}=\frac{2}{x}$ is a particular solution.

Problem \# 4
Solve the given differential equation
$\cos ^{2}(x) \sin (x) d y+\left(y \cos ^{3}(x)-1\right) d x=0$

Problem \# 5
Solve the given differential equation

$$
\frac{d y}{d x}=y+x(y+1)^{2}+1
$$

Problem \# 6
(12 points)
Solve the given differential equation

$$
y^{2}-y-\left(y e^{x}+y e^{-x}-\sqrt{y} e^{x}-\sqrt{y} e^{-x}\right) \frac{d y}{d x}=0 .
$$

Problem \# 7

If $y(x)$ is the solution of the following initial value problem

$$
(x+\sqrt{x}) d y=(y+\sqrt{y}) d x, \quad y(4)=0
$$

then $y(25)=$
(a) $1 / 9$
(b) $16 / 9$
(c) 1
(d) $4 / 9$
(e) none of the above

Problem \# 8

If $y(x)$ is the solution of the following initial value problem

$$
(4 y+2 x-5) d x+(6 y+4 x-1) d y=0, \quad y(-1)=0
$$

then $y(x)=$
(a) $4 x y+x^{2}-5 x+3 y^{2}-y=0$
(b) $4 x y+x^{2}-5 x+3 y^{2}-y=4$
(c) $4 x y+x^{2}-5 x+3 y^{2}-y=8$
(d) $4 x y+x^{2}-5 x+3 y^{2}-y=6$
(e) none of the above

Problem \# 9

(6 points)
If the following differential equation is exact,

$$
\left(2 x y^{2}+y e^{x}\right) d x+\left(2 x^{2} y-k e^{x}-1\right) d y=0, \quad y(-1)=2
$$

then $k=$
(a) 1
(b) 2
(c) 4
(d) 0
(e) none of the above

Problem \# 10

A thermometer is removed from a room where the air temperature is $70^{\circ} \mathrm{F}$ to the outside, where the temperature is $10^{\circ} \mathrm{F}$. After $\frac{1}{2}$ minute, the thermometer reads $50^{\circ} \mathrm{F}$. How long will it take for the thermometer to reach $15^{\circ} \mathrm{F}$?
(a) $t=\frac{\ln 2}{\ln 9-\ln 4}$
(b) $t=\frac{\ln 3}{\ln 9-\ln 4}$
(c) $t=\frac{\ln 6}{\ln 9-\ln 4}$
$(d) t=\frac{\ln 12}{\ln 9-\ln 4}$
(e) none of the above

Problem \# 11

A large tank is filled with 500 gallons of pure water. Brine containing 2 lb of salt per gallon is pumped into the tank at rate of 5 gallons per minute. The well-mixed solution is pumped out at the same rate. Find the number of pounds of salt in the tank after 50 min .
(a) $1000\left(1-e^{-1}\right)$
(b) $1000\left(1-e^{-1 / 2}\right)$
(c) $1000\left(1-e^{-2}\right)$
(d) $1000\left(1-e^{-10}\right)$
(e) none of the above

Problem \# 12

If $y(x)$ is the solution of the following initial value problem

$$
y(\ln (x)-\ln (y)) d y=(x \ln (x)-x \ln (y)-y) d y, \quad y(1)=e
$$

then $y(x)=$

$$
(a) x=y e^{e / y} \quad(b) x=y e^{1 / e y}
$$

(c) $\ln \left|\ln \frac{x}{y}\right|=\ln |y|-1$

$$
\text { (d) } \ln \left|\ln \frac{x}{y}\right|=-\ln |y|-2 \quad \text { (e) none of the above }
$$

