King Fahd University of Petroleum and Minerals Department of Mathematical Sciences Math 202 First Exam Semester II, 1999 (982)

Name:		ID #:	
Section (circle one):	# 3 (8:00-8:50)	# 4 (9:00-9:50)	$\operatorname{FORM}(1)$

Notes

- You must show all your work to justify your answer.
- Be as organized as possible.

Problem	points
1	12
2	10
3	10
4	10
5	10
6	12
7	6
8	6
9	6
10	6
11	6
12	6
Total:	100

Problem # 1

(12 points)State whether the given differential equations are linear or nonlinear. Give the order of each equation.

(a)
$$x^2 dy + (y - xy - xe^x) dx = 0.$$

(b)
$$\frac{dy}{dx} = \sqrt{1 + (\frac{d^2y}{dx^2})^2}.$$

(c)
$$(1 - y^2)dx + xdy = 0.$$

Problem # 2 Solve the given differential equation $y^2 dx = (3x^4 + 2xy)dy.$

(10 points)

(10 points)

Problem # 3 Solve the given differential equation

$$\frac{dy}{dx} = -\frac{4}{x^2} - \frac{1}{x}y + y^2,$$

where $y_1 = \frac{2}{x}$ is a particular solution.

Problem # 4 Solve the given differential equation

4

 $\cos^2(x)\sin(x)dy + (y\cos^3(x) - 1)dx = 0$

(10 points)

Problem # 5 Solve the given differential equation $\frac{dy}{dx} = y + x(y+1)^2 + 1$

(12 points)

Problem # 6 Solve the given differential equation

$$y^{2} - y - (ye^{x} + ye^{-x} - \sqrt{y}e^{x} - \sqrt{y}e^{-x})\frac{dy}{dx} = 0.$$

(6 points)

(6 points)

Problem # 7

If y(x) is the solution of the following initial value problem

then y(25) = (a)1/9 (b)16/9 (c)1 (d)4/9 (e) none of the above

Problem # 8

...

If y(x) is the solution of the following initial value problem

$$(4y + 2x - 5)dx + (6y + 4x - 1)dy = 0, \quad y(-1) = 0$$

 $(x + \sqrt{x})dy = (y + \sqrt{y})dx, \quad y(4) = 0$

then y(x) = $(a)4xy + x^2 - 5x + 3y^2 - y = 0$ $(b)4xy + x^2 - 5x + 3y^2 - y = 4$ $(c)4xy + x^2 - 5x + 3y^2 - y = 8$ $(d)4xy + x^2 - 5x + 3y^2 - y = 6$ (e) none of the above

Problem # 9

If the following differential equation is exact,

$$(2xy^{2} + ye^{x})dx + (2x^{2}y - ke^{x} - 1)dy = 0, \quad y(-1) = 2$$

(a)1 (b)2 (c)4 (d)0 (e) none of the above

Problem # 10

then k =

A thermometer is removed from a room where the air temperature is 70° F to the outside, where the temperature is 10° F. After $\frac{1}{2}$ minute, the thermometer reads 50° F. How long will it take for the thermometer to reach 15° F? $(a)t = \frac{\ln 2}{\ln 9 - \ln 4}$ $(b)t = \frac{\ln 3}{\ln 9 - \ln 4}$ $(c)t = \frac{\ln 6}{\ln 9 - \ln 4}$ $(d)t = \frac{\ln 12}{\ln 9 - \ln 4}$ (e) none of the above

Problem # 11

A large tank is filled with 500 gallons of pure water. Brine containing 2 lb of salt per gallon is pumped into the tank at rate of 5 gallons per minute. The well-mixed solution is pumped out at the same rate. Find the number of pounds of salt in the tank after 50 min. (a) $1000(1 - e^{-1})$ (b) $1000(1 - e^{-1/2})$ (c) $1000(1 - e^{-2})$ (d) $1000(1 - e^{-10})$ (e) none of the above

Problem # 12

If y(x) is the solution of the following initial value problem

$$y(\ln(x) - \ln(y))dy = (x\ln(x) - x\ln(y) - y)dy, \quad y(1) = e$$

then $y(x) = (a)x = ye^{e/y}$ (b) $x = ye^{1/ey}$ (c) $\ln |\ln \frac{x}{y}| = \ln |y| - 1$
. (d) $\ln |\ln \frac{x}{y}| = -\ln |y| - 2$ (e) none of the above

(6 points)

(6 points)

(6 points)

(6 points)