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Substitution

You can use substitution to convert a complicated integral into a simpler one. In these problems, I'll
let u equal some convenient x-stu� | say u = f(x). To complete the substitution, I must also substitute

for dx. To do this, compute
du

dx
= f 0(x), so du = f 0(x) dx. Then dx =

du

f 0(x)
.

Example. Compute

Z
(2x+ 3)100 dx.

Z
(2x+ 3)100 dx =

Z
u100 � du

2
=

1

2

Z
u100 du =

1

202
u101 +C =

1

202
(2x+ 3)101 +C:

�
u = 2x+ 3; du = 2 dx; dx =

du

2

�

Example. Compute

Z
dxp
4� 7x

.

Z
dxp
4� 7x

=

Z
1p
u
�
�
�du

7

�
= �1

7

Z
u�1=2 du = �2

7
u1=2 +C = �2

7
(4� 7x)1=2 +C:

�
u = 4� 7x; du = �7 dx; dx = �du

7

�

Example. Later on, I'll derive the integration formula

Z
dx

x
= ln jxj+C:

Use this formula to compute

Z
1

3x+ 1
dx.

Z
1

3x+ 1
dx =

Z
1

u
� du
3

=
1

3

Z
du

u
=

1

3
ln juj+ C =

1

3
ln j3x+ 1j+ C:

�
u = 3x+ 1; du = 3 dx; dx =

du

3

�

Example. Compute

Z
x(x2 + 5)50 dx.

Z
x(x2 + 5)50 dx =

Z
xu50 � du

2x
=

1

2

Z
u50 du =

1

102
u51 + C =

1

102
(x2 + 5)51 + C:

�
u = x2 + 5; du = 2x dx; dx =

du

2x

�
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Notice that in the second step in the last example, the x's cancelled out, leaving only u's. If the x's had
failed to cancel, I wouldn't have been able to complete the substitution.

But what made the x's cancel? It was the fact that I got an x from the derivative of u = x2 + 5. This
leads to the following rule of thumb.

Substitute for something whose derivative is also there.

Example. Compute

Z
sin(3x+ 1) dx.

Z
sin(3x+ 1) dx =

Z
sinu � du

3
=

1

3

Z
sinu du = �1

3
cosu+ C = �1

3
cos(3x+ 1) +C:

�
u = 3x+ 1; du = 3 dx; dx =

du

3

�

Example. Compute

Z
(sin 5x)7 cos 5x dx.

Z
(sin 5x)7 cos 5x dx =

Z
u7 cos 5x � du

5 cos 5x
=

1

5

Z
u7 du =

1

40
u8 +C =

1

40
(sin 5x)8 + C:

�
u = sin 5x; du = 5 cos 5x dx; dx =

du

5 cos 5x

�

Example. Compute

Z
1p

x(
p
x+ 9)2

dx.

Z
1p

x(
p
x+ 9)2

dx =

Z
1p
xu2

� 2px du = 2

Z
u�2 du = �2

u
+C = � 2p

x+ 9
+C:

�
u =

p
x+ 9; du =

dx

2
p
x
; dx = 2

p
x du

�

Example. Compute

Z sin
1

x
x2

dx.

Z sin
1

x
x2

dx =

Z
sinu

x2
� (�x2 du) = �

Z
sinu du = cosu+ C = cos

1

x
+ C:

�
u =

1

x
; du = �dx

x2
; dx = �x2 du

�

Example. Compute

Z
(2x� 1)(2x+ 3)40 dx.

Z
(2x� 1)(2x+ 3)40 dx =

Z
(u � 4)u40 du =

Z
(u41 � 4u40) du =

�
u = 2x+ 3; du = 2 dx; dx =

du

2
; x =

1

2
(u � 3)

�

1

42
u42 � 4

41
u41 +C =

1

42
(2x+ 3)42 � 4

41
(2x+ 3)41 +C:
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Math 162
1-24-1998

Integration by Parts

If u and v are functions of x, the Product Rule says that

d(uv)

dx
= u

dv

dx
+ v

du

dx
:

Integrate both sides: Z
d(uv)

dx
dx =

Z
u
dv

dx
dx+

Z
v
du

dx
dx;

uv =

Z
u dv +

Z
v du;

Z
u dv = uv �

Z
v du:

This is the integration by parts formula. The integral on the left corresponds to the integral you're
trying to do. Parts replaces it with some junk (uv) and another integral (

R
v du). You'll make progress if

the new integral is easier to do than the old one.
I'm going to set up parts computations using tables; it is much easier to do repeated parts computations

this way than to use the standard u-dv-v-du approach. To see where the table comes from, start with the
parts equation: Z

u dv = uv �

Z
v du:

Apply parts to the integral on the right, di�erentiating
du

dx
and integrating v. This gives

Z
u dv = uv�

��
du

dx

��Z
v dx

�
�

Z �Z
v dx

��
d2u

dx2

�
dx

�
= uv�

�
du

dx

��Z
v dx

�
+

Z �Z
v dx

��
d2u

dx2

�
dx:

If I apply parts yet again to the new integral on the right, I would get

Z
u dv = uv �

�
du

dx

��Z
v dx

�
+

�
d2u

dx2

��Z �Z
v dx

�
dx

�
�

Z �Z �Z
v dx

�
dx

��
d3u

dx3

�
dx:

There's a pattern here, and it's captured by the following table:

d

dx

Z
dx

+ u dv

&

�
du

dx
v

&

+
d2u

dx2

Z
v dx

&

�
d3u

dx3

Z �Z
v dx

�
dx

...
...

...

To make the table, put alternating +'s and �'s in the left-hand column. Take the original integral and
break it into a u (second column) and a dv (third column). (I'll discuss how you choose u and dv later.)
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Di�erentiate repeatedly down the u-column, and integrate repeatedly down the dv-column. (You don't write
down the dx; it's kind of implicitly there in the third column, since you're integrating.)

How do you get from the table to the messy equation above? Consider the �rst term on the right: uv.
You get that from the table by taking the + sign, taking the u next to it, and then moving \southeast" to
grab the v.

If you compare the table with the equation, you'll see that you get the rest of the terms on the right
side by multiplying terms in the table according to the same pattern:

, ! ,

&
,

The table continues downward inde�nitely, so how do you stop? If you look at the last messy equation
above and compare it to the table, you can see how to stop: Just integrate all the terms in a row of the table.

You'll see that in many examples, the process will stop naturally when the derivative column entries

become 0.

Example. Compute

Z
x3e2x dx.

Parts is often useful when you have di�erent kinds of functions in the same integral. Here I have a
power (x3) and and exponential (e2x), and this suggests using parts.

I have to \allocate" x3e2x dx between u and dv | remember that dx implicitly goes into dv. I will use
u = x3 and dv = e2x dx. Here's the parts table:

d

dx

Z
dx

+ x3 e2x

&

� 3x2
1

2
e2x

&

+ 6x
1

4
e2x

&

� 6
1

8
e2x

&

+ 0 !
1

16
e2x

You can see the derivatives of x3 in one column and the integrals of e2x in another. Notice that when I
get a 0, I cut o� the computation.

Therefore, Z
x3e2x dx =

1

2
x3e2x �

3

4
x2e2x +

6

8
xe2x �

6

16
e2x +

Z
0 dx:

But

Z
0 dx is just 0 (up to an arbitrary constant), so I can write

Z
x3e2x dx =

1

2
x3e2x �

3

4
x2e2x +

6

8
xe2x �

6

16
e2x + C:

Before leaving this problem, it's worth thinking about why the x3 went into the derivative column and
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the e2x went into the integral column. Here's what would happen if the two were reversed:

d

dx

Z
dx

+ e2x x3

&

� 2e2x
1

4
x4

&

+ 4e2x
1

20
x5

...
...

...

This is bad for two reasons. First, I'm not getting that nice 0 I got by repeatedly di�erentiating x3.
Worse, the powers in the last column are getting bigger! This means that the problem is getting more

complicated, rather than less.
Here's another attempt which doesn't work:

d

dx

Z
dx

+ 1 x3e2x

&

� 0

Z
x3e2x dx

I got a 0 this time, but how can I �nd the integral in the second row? | it's the same as the original
integral! Putting the entire integrand into the integration column never works.

Here's a rule of thumb which re
ects the preceding discussion. When you're trying to decide which part
of an integral to put into the derivative column, the order of preference is roughly

Logs Inverse trigs Powers Trig Exponentials

L-I-P-T-E.
According to this rule, in Z

x(lnx)2 dx;

you'd try the log (lnx)2 in the derivative column ahead of the power x.
And in Z

e2x sin 5x dx;

you'd try the trig function sin 5x in the derivative column, because it has precedence over the exponential
e2x.

Example. Compute

Z
lnx dx.

d

dx

Z
dx

+ lnx 1
&

�
1

x
! x

3



Z
lnx dx = x lnx�

Z
dx = x lnx� x+ C:

Example. Compute

Z
(lnx)2 dx.

d

dx

Z
dx

+ (lnx)2 1
&

�
2 lnx

x
! x

Z
(lnx)2 dx = x(lnx)2 � 2

Z
lnx dx = x(lnx)2 � 2(x lnx� x) +C:

Example. Compute

Z
x(x+ 4)50 dx.

First, Z
(x+ 4)50 dx =

Z
u50 du =

1

51
u51 + C =

1

51
(x+ 4)51 +C:

[u = x+ 4; du = dx]

The same substitution shows thatZ
(x+ 4)51 dx =

1

52
(x+ 4)52 +C:

Now do the original integral by parts:

d

dx

Z
dx

+ x (x + 4)50

&

� 1
1

51
(x+ 4)51

&

+ 0
1

2652
(x+ 4)52

Z
x(x+ 4)50 dx =

1

51
x(x+ 4)51 �

1

2652
(x+ 4)52 +C:

Example. Compute

Z
arctanx dx.

Parts is also useful when the integrand is a single, unsimpli�able lump. You can't do anything interesting
with arctanx, so use parts.

d

dx

Z
dx

+ arctan x 1
&

�
1

x2 + 1
! x
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Therefore, Z
arctanx dx = x arctanx�

Z
x

x2 + 1
dx:

I can do the new integral by substituting u = x2 + 1. Then du = 2x dx, so dx =
du

2x
:

x arctanx�

Z
x

x2 + 1
dx = x arctanx�

Z
x

u
�
du

2x
= x arctanx�

1

2

Z
du

u
= x arctanx�

1

2
ln juj+ C =

x arctanx�
1

2
ln jx2 + 1j+ C:

Example. Compute

Z
�=2

0

x sinx dx.

If you do a de�nite integral using parts, compute the antiderivative using parts as usual, then slap on
the limits of integration at the end.

d

dx

Z
dx

+ x sinx
&

� 1 � cos x
&

+ 0 � sinx

Thus, Z �=2

0

x sinx dx = [�x cosx+ sinx]
�=2

0
= 1:

Example. Compute

Z
ex sin 2x dx.

d

dx

Z
dx

+ ex sin 2x
&

� ex �
1

2
cos 2x

&

+ ex �
1

4
sin2xZ

ex sin 2x dx = �
1

2
ex cos 2x+

1

4
ex sin 2x�

1

4

Z
ex sin 2x dx:

What's this? All that work and you get the original integral again!
Actually, you're almost done. Jog your brain and get out of \parts mode". Instead, look at the equation

as an equation to be solved for the original integral. It looks like this:

original integral = some junk� original integral:

Just move the copy of the original integral on the right back to the left!Z
ex sin 2x dx = �

1

2
ex cos 2x+

1

4
ex sin 2x�

1

4

Z
ex sin 2x dx;

5

4

Z
ex sin 2x dx = �

1

2
ex cos 2x+

1

4
ex sin 2x;

Z
ex sin 2x dx = �

2

5
ex cos 2x+

1

5
ex sin 2x+ C:
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Partial Fractions

Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals

of the form Z
P (x)

Q(x)
dx; whereP (x) and Q(x) are polynomials:

The idea is to break

P (x)

Q(x)
into a sum of smaller terms which are easier to integrate.

(A function of the form
P (x)

Q(x)
, where P (x) and Q(x) are polynomials, is called a rational function.)

I'll by doing an example to give you a feel for the procedure. Then I'll go back and explain the steps

in the method. The procedure is a bit long, and requires a substantial amount of algebra. Therefore, before

using partial fractions, you should be sure that there isn't an easier way to do the integral.

First, I want to mention a formula that often comes up in these problems:Z
1

ax+ b
dx =

1

a
ln jax+ bj+C; a 6= 0:

(Do you see how to work it out? Substitute u = ax+ b, so du = a dx.) For example,Z
1

x� 7

dx = ln jx� 7j+ C;

Z
1

7x+ 5
dx =

1

7
ln j7x+ 5j+ C;

Z
1

3� 2x
dx = �1

2
ln j3� 2xj+ C:

Example. Compute

Z
17� 3x

x2 � 2x� 3
dx.

x2 � 2x� 3 = (x � 3)(x+ 1). Write

17� 3x

(x� 3)(x+ 1)
=

A

x� 3
+

B

x+ 1
:

Multiply both sides by (x� 3)(x+ 1) to clear denominators:

17� 3x = A(x+ 1) +B(x � 3):

Let x = 3. I get

17� 9 = 4A+ 0; so 8 = 4A; or A = 2:

Let x = �1. I get
17 + 3 = 0� 4B; so 20 = �4B; or B = �5:

Therefore,

17� 3x

(x� 3)(x+ 1)

=
2

x� 3

� 5

x+ 1

:

So Z
17� 3x

x2 � 2x� 3

dx =

Z �
2

x� 3

� 5

x+ 1

�
dx = 2 ln jx� 3j � 5 ln jx+ 1j+ C:
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Consider an integral of the form Z
P (x)

Q(x)
dx;

where P (x) and Q(x) are polynomials.

Recall that the degree of a polynomial is the highest power of the variable that occurs in it. Nonzero

constants have degree 0; by convention, 0 has degree �1.

Step 1. If the degree of the top is greater than or equal to the degree of the bottom, divide the bottom into

the top.

Example. Compute

Z
2x3 � 5x2 � x+ 5

x2 � 1
dx.

The top has degree 3 while the bottom has degree 2. Divide the bottom into the top:

2x3 � 5x2 � x+ 5

x2 � 1

= 2x� 5 +
x

x2 � 1

:

So Z
2x3 � 5x2 � x+ 5

x2 � 1

dx =

Z �
2x� 5 +

x

x2 � 1

�
dx:

Integrate
x

x2 � 1
by substitution:

Z
x

x2 � 1

dx =
1

2

Z
du

u
=

1

2

ln juj+C =
1

2

ln jx2 � 1j+C:

�
u = x2 � 1; du = 2x dx; dx =

du

2x

�

Hence, Z �
2x� 5 +

x

x2 � 1

�
dx = x2 � 5x+

1

2
ln jx2 � 1j+ C:

In this problem, division simpli�ed the integral enough that it wasn't necessary to go any further in the

partial fractions procedure.

Example. Consider the integral

Z
x2

x2 � 1
dx. The top and the bottom have the same degree. Divide the

bottom into the top:

x2

x2 � 1

= 1 +
1

x2 � 1

:

Therefore, Z
x2

x2 � 1
dx =

Z �
1 +

1

x2 � 1

�
dx:

There's more to do: The integral is passed along to the next step in the partial fractions procedure.

Example. Consider the integral

Z
7x2 � 25x+ 20

x(x� 2)
2

dx.
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The top has degree 2 while the bottom has degree 3, so you do not need to divide. The integral is passed

along to the next step in the partial fractions procedure.

Step 1 is a preliminary operation which puts the integral into a good form for the rest of the procedure.

Before going on, check to see whether you can use a simple technique (like substitution) to do the integrals

you've obtained. Sometimes (as in the example above) you can complete the integration immediately. If you

don't see a simple way to �nish, then proceed to Step 2.

Step 2. You will now have an integral that looks likeZ
P (x)

Q(x)
dx;

where P (x) and Q(x) are polynomials, and the top is smaller in degree than the bottom. (The division

process may spew out some other junk, but that can be integrated immediately. You only need to worry

about the remaining fractional part.)

Factor the bottom of the fraction into a product of linear terms and irreducible quadratic terms.

A linear term is a term where the variable occurs only to the �rst power. Here are some linear terms:

x� 1; 2x� 3; x:

An irreducible quadratic term is a quadratic term with only imaginary (complex) roots. That is, it

is a quadratic which \doesn't factor". Here are some irreducible quadratic terms:

x2 + 1; x2 � 2x+ 5:

You can check that a quadratic is irreducible by using the general quadratic formula to �nd its roots.

If the roots are complex numbers, the quadratic does not factor.

Warning: x2 � 2 is not irreducible:

x2 � 2 = (x�
p
2)(x+

p
2):

(\Ugly" factors are allowed.) And x2 is not considered an irreducible quadratic: It is (x�0)(x�0), the

square of a linear term. This distinction will become important in Step 3.

Example. In the second example above, I obtainedZ �
1 +

1

x2 � 1

�
dx:

The \1" integrates immediately to x. So consider

Z
1

x2 � 1
dx. Factor the denominator of the fraction:

Z
1

x2 � 1
dx =

Z
1

(x� 1)(x+ 1)
dx:

Now pass the integral along to the next step.

Example. In an earlier example, I obtained

Z
7x2 � 25x+ 20

x(x� 2)
2

dx:
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The bottom is already factored. Note that (x� 2)
2
is not considered a quadratic factor; it's considered

to be a linear factor raised to a power.

Example. Consider the integral

Z
1

x3 � 1

dx.

Factor the denominator of the fraction:Z
1

x3 � 1
dx =

Z
1

(x� 1)(x2 + x+ 1)
dx:

Note that x2 + x+ 1 has only imaginary roots.

Remark. It is known that any polynomial can be factored into linear terms and irreducible quadratic terms.

However, the \can be" in the last sentence does not mean that you can always do it in practice! In fact,

another branch of mathematics calledGalois theory says that there is no general formula for �nding exactly

the roots of polynomials of degree 5 or higher.

To understand how partial fractions works, it's not necessary to consider huge or intractable examples.

For that reason, the polynomials in the problems will usually be easy to factor. Moreover, programs like

Mathematica can approximate roots, and that is often good enough for applications. However, you should

keep in mind that factoring polynomials is, in general, not a simple thing.

Step 3. Obtain the partial fractions decomposition for the fraction.

This is the heart of the partial fractions method. It is basically a lot of algebra, but it's su�ciently

complicated that the best way to describe it is by doing some examples.

Example. Compute

Z
1

(x� 1)(x+ 1)
dx.

I want to �nd numbers A and B such that

1

(x� 1)(x+ 1)
=

A

x� 1
+

B

x+ 1

is an algebraic identity. This means that the equation should be true for all values of x for which both

sides are de�ned.

First, multiply through to clear denominators.

1 = A(x+ 1) +B(x � 1):

Since this equation is to be true for all x, it must true for x = 1. Plug in x = 1. I obtain 1 = 2A, so

A = 1=2.

I chose x = 1 because it killed the B(x � 1)-term, and this allowed me to solve for A.

I see that setting x = �1 will kill the A(x + 1) term. Doing so, I get 1 = 2B, so B = 1=2.

Therefore,

1

(x� 1)(x+ 1)
=

1

2

1

x� 1
+

1

2

1

x+ 1
:

(Check: If you add the fractions on the right, you'll get the fraction on the left.)

Now it's easy to do the integral:Z
1

(x� 1)(x+ 1)

dx =

Z �
1

2

1

x� 1

+
1

2

1

x+ 1

�
=

1

2

ln jx� 1j+ 1

2

ln jx+ 1j+ C:
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Example. Compute

Z
2� x2

x(x� 1)
2
dx.

This example will show how to handle repeated factors | in this case, (x� 1)
2
. Here's what you do:

2� x2

x(x� 1)
2
=
A

x
+

B

x� 1
+

C

(x� 1)
2
:

For a repeated factor, you have one term for each power up to the power the factor is raised to. In

this case, you have a term for x� 1 and a term for (x� 1)
2
.

Multiply to clear denominators:

2� x2 = A(x� 1)
2
+ Bx(x� 1) +Cx:

Let x = 0. I get 2 = A.

Let x = 1. I get 1 = C.

Plug the A and C values back in:

2� x2 = 2(x� 1)
2
+ Bx(x� 1) + x: (�)

With only B left, I can plug in any number and solve for B. I'll let x = 2:

2� 4 = 2 + 2B + 2; �6 = 2B; B = �3:

Therefore,

2� x2

x(x� 1)
2
=

2

x
� 3

x� 1

+
1

(x� 1)
2
:

Hence,Z
2� x2

x(x� 1)
2
dx =

Z �
2

x
� 3

x� 1

+
1

(x� 1)
2

�
dx = 2 ln jxj � 3 ln jx� 1j � 1

x� 1

+ C:

Alternatively, take equation (*). Multiply out the B-term:

2� x2 = 2(x� 1)
2
+B(x2 � x) + x:

Di�erentiate!

�2x = 4(x� 1) +B(2x � 1) + 1:

Di�erentiate again!

�2 = 4 + 2B; �6 = 2B; B = �3:
At any point, you can plug in any number for x, or you can di�erentiate both sides of the equation.

Example. Compute

Z
7x2 � 25x+ 20

x(x� 2)
2

dx.

In this case, the repeated factor is the \(x� 2)
2
". I want A, B, and C so that

7x2 � 25x+ 20

x(x� 2)
2

=
A

x
+

B

x� 2
+

C

(x� 2)
2
:

Clear denominators:

7x2 � 25x+ 20 = A(x� 2)
2
+ Bx(x� 2) +Cx:
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Plugging in x = 0 and x = 2 will kill lots of terms. First, set x = 0. I obtain 20 = 4A+ 0+ 0, so A = 5.

Next, set x = 2. Then 28� 50 + 20 = 0 + 0 + 2C so C = �1.
Put A = 5 and C = �1 back into the equation:

7x2 � 25x+ 20 = 5(x� 2)
2
+ Bx(x� 2)� x:

Set x = 1. I get 2 = 5� B � 1, so B = 2.

Substitute the A, B, and C values into the original decomposition:

7x2 � 25x+ 20

x(x� 2)
2

=

5

x
+

2

x� 2
� 1

(x� 2)
2
:

Finally, do the integral:

Z
7x2 � 25x+ 20

x(x� 2)
2

dx =

Z �
5

x
+

2

x� 2
� 1

(x� 2)
2

�
dx = 5 ln jxj+ 2 ln jx� 2j+ 1

x� 2
+ C:

Example. How would you try to decompose

5x4 � 3x+ 1

(x� 3)
4
(x+ 2)

2

using partial fractions? That is, what is the initial partial fractions equation?

The linear factor x� 3 is repeated 4 times, and the linear factor x+ 2 is repeated 2 times. So you use

5x4 � 3x+ 1

(x� 3)
4
(x+ 2)

2
=

A

x� 3

+
B

(x� 3)
2
+

C

(x� 3)
3
+

D

(x� 3)
4
+

E

x+ 2

+
F

(x+ 2)
2
:

You could do the x+2 terms �rst instead. Notice that the numerator 5x4� 3x+ 1 has no e�ect on the

decomposition.

Example. How would you try to decompose

3x3 + 4x� 17

x3(2x� 1)
2

using partial fractions? That is, what is the initial partial fractions equation?

The linear factor x is repeated 3 times and the linear factor 2x� 1 is repeated twice. Therefore, you

should try to solve

3x3 + 4x� 17

x3(2x� 1)
3

=
A

x
+

B

x2
+

C

x3
+

D

2x� 1
+

E

(2x� 1)
2
:

Notice that the top of the fraction is irrelevant in deciding how to set up the decomposition. It only

comes in during the solution process.

Notice also that \x3" is considered a linear term (x) raised to the third power. You get one term on the

right for x, one for x2, and one for x3 | no \skipping"!

Example. Compute

Z
1

(x� 1)(x2 + x+ 1)
dx.

6



In this example, there's an irreducible quadratic factor x2 + x+ 1. In this case, I try

1

(x � 1)(x2 + x+ 1)

=
A

x� 1

+
Bx+ C

x2 + x+ 1

:

Thus, a quadratic factor (or a quadratic factor to a power) will produce terms on the right with \two

letters" on top.

The rationale is the same as the one I gave for repeated factors. I don't know what kind of fraction to

expect, so I have to take the most general case.

(You might ask: \Well, why not try
Bx2 + Cx+D

x2 + x+ 1
| or higher powers?" The answer is that if I had

a quadratic or something bigger on top, I could divide �rst to reduce to a Bx+ C form.)

The solution procedure is similar to those used above. Clear denominators:

1 = A(x2 + x+ 1) + (Bx +C)(x� 1):

Set x = 1. This gives 1 = 3A, so A = 1=3. Plug it back in:

1 =
1

3

(x2 + x+ 1) + (Bx +C)(x� 1):

x = 0 will kill B, leaving C to be solved for. Setting x = 0, I get 1 = 1=3 � C, so C = �2=3. Plug it

back in:

1 =
1

3

(x2 + x+ 1) + (Bx � 2

3

)(x� 1):

Now I can either plug in a value for x at random, or di�erentiate. I'll di�erentiate:

0 =
1

3
(2x+ 1) + (Bx� 2

3
) +B(x � 1):

Di�erentiate again:

0 =
2

3

+B +B:

I get B = �1=3.
Plug the values back into the original fractional decomposition:

1

(x� 1)(x2 + x+ 1)
=

1

3

1

x� 1
� 1

3

x+ 2

x2 + x+ 1
:

The integral is

Z
1

(x � 1)(x2 + x+ 1)
dx =

Z �
1

3
� 1

x� 1
� 1

3
� x+ 2

x2 + x+ 1

�
dx:

I'll do the integrals separately. First,

Z
1

3

� 1

x� 1

=
1

3

ln jx� 1j+ C:

Next,

1

3

Z
x+ 2

x2 + x+ 1

dx =
1

6

Z
2x+ 4

x2 + x+ 1

dx =
1

6

Z
2x+ 1 + 3

x2 + x+ 1

dx =

1

6

�Z
2x+ 1

x2 + x+ 1

dx+ 3

Z
1

x2 + x+ 1

dx

�
:

7



The �rst integral succumbs to a substitution:

Z
2x+ 1

x2 + x+ 1

dx =

Z
du

u
= ln juj+ C = ln jx2 + x+ 1j+C:

�
u = x2 + x+ 1; du = (2x+ 1) dx; dx =

du

2x+ 1

�

The second requires completing the square:

Z
1

x2 + x+ 1
dx =

Z
1

x2 + x+
1

4
+

3

4

dx =

Z
1

(x+
1

2
)
2
+

3

4

dx =

p
3

2

Z
1

3

4
u2 +

3

4

du =

"
x+

1

2
=

p
3

2
u; dx =

p
3

2
du

#

2p
3

Z
1

u2 + 1
du =

2p
3

arctanu+ C =

2p
3

arctan

2(x+
1

2
)

p
3

+C:

(Whew!) Putting the two together,

1

3

Z
x+ 2

x2 + x+ 1

dx =
1

6

ln jx2 + x+ 1j+ 1p
3

arctan

2(x+
1

2
)

p
3

+C:

Finally, the original problem is

Z
1

(x� 1)(x2 + x+ 1)

dx =
1

3

ln jx� 1j � 1

6

ln jx2 + x+ 1j � 1p
3

arctan

2(x+
1

2
)

p
3

+ C:

What a mess! This is why you should consider other methods before you turn to partial fractions!
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1-24-1998

Trigonometric Integrals

For trig integrals involving powers of sines and cosines, there are two important cases:

1. The integral contains an odd power of sine or cosine.

2. The integral contains only even powers of sines and cosines.

I will look at the odd power case �rst. It turns out that the same idea can be used to integrate some
powers of secants and tangents, so I'll digress to do some examples of those as well.

Example. Z
(sin 5x)3

�
1 + 4(cos 5x)2

�
dx =

Z
(sin 5x)2

�
1 + 4(cos 5x)2

�
sin 5x dx =

Z �
1� (cos 5x)2

� �
1 + 4(cos 5x)2

�
sin 5x dx =

�
u = cos 5x; du = �5 sin5x dx; dx = �

du

5 sin 5x

�

�
1

5

Z
(1� u2)(1 + 4u2) du = �

1

5

Z
(1 + 3u2 � 4u4) du = �

1

5
(u + u3 �

4

5
u5) +C =

�
1

5

�
cos 5x+ (cos 5x)3 �

4

5
(cos 5x)5

�
+ C = �

1

5
cos 5x�

1

5
(cos 5x)3 + +

4

25
(cos 5x)5 +C:

In this example, the key point was in the second line. I obtained an integral with lots of cos 5x's and a
single sin 5x. This allowed me to make the substitution u = cos 5x, because the sin 5x was available to make
du.

I got the sin 5x by \pulling it o�" the odd power of sin 5x. Then I converted the rest of the stu� to
cos 5x's using the identity (sin �)2 + (cos �)2 = 1. This is the generic procedure when you have at least one
odd power of sine or cosine.

Example. Z �
5(sinx)2=3 + 1

�
(cos x)3 dx =

Z �
5(sinx)2=3 + 1

� �
1� (sinx)2

�
(cosx) dx =

�
u = sinx; du = cos x dx; dx =

du

cos x

�

Z �
5u2=3 + 1

��
1� u2

�
du =

Z �
5u2=3 + 1� 5u8=3 � u2

�
du = 3u5=3 + u�

15

11
u11=3 �

1

3
u3 +C =

3(sinx)5=3 + sinx�
15

11
(sinx)11=3�

1

3
(sinx)3 + C:

Example. You can use a similar idea to integrate some powers of secants and tangents.

Z
(sec 3x)4 dx =

Z
(sec 3x)2(sec 3x)2 dx =

Z �
1 + (tan 3x)2

�
(sec 3x)2 dx =

�
u = tan 3x; du = 3(sec 3x)2 dx; dx =

du

3(sec 3x)2

�

1



1

3

Z
(1 + u2) du =

1

3
(u+

1

3
u3) +C =

1

3
tan 3x+

1

9
(tan 3x)3 + C:

In this example, I grabbed a (sec 3x)2, then converted the rest of the stu� to tan3x's using 1+(tan �)2 =
(sec �)2. The (sec 3x)2 was exactly what I needed to make du for the substitution u = tan 3x.

Notice that the argument 3x did not play an important role in the problem.

Example. Z
(tan �)3 d� =

Z
(tan �)2 tan � d� =

Z �
(sec �)2 � 1

�
tan � d� =

Z
(sec �)2 tan � d� �

Z
tan � d� =

Z
sec �(sec � tan � d�) �

Z
sin �

cos �
d�:

I can do the �rst integral using u = sec �, so du = sec � tan � d� and d� =
du

sec � tan �
:

Z
sec �(sec � tan � d�) =

Z
u du =

1

2
u2 + C =

1

2
(sec �)2 +C:

I can do the second integral using w = cos �, so dw = � sin � d� and d� =
dw

� sin �
:

Z
sin �

cos �
d� =

Z
1

w
dw = ln jwj+C = ln j cos �j+ C:

Therefore, Z
(tan �)3 d� =

1

2
(sec �)2 + ln j cos �j+ C:

The examples show that certain patterns that arise in trig integrals are good, in the sense that they
allow you to do a substitution which makes the integral easy. Here are some of the \good patterns":

� Lots of cos x's and a single sinx.

� Lots of sinx's and a single cosx.

� Lots of tanx's and a single (sec x)2.

� Lots of sec x's and a single sec x tanx.

You should aim for these patterns whenever possible.
If you have an integral involving sines and cosine in which all the powers are even, the method I just

described usually won't work. Instead, it is better to apply the following double angle formulas:

(sin �)2 =
1

2
(1� cos 2�)

(cos �)2 =
1

2
(1 + cos 2�)

Any even power of sinx or cos x can be expressed as a power of (sinx)2 or (cosx)2. Use the identities
above to substitute for (sinx)2 or (cos x)2, and multiply out the result. The net e�ect is to reduce the

powers that occur in the integral, while at the same time increasing the arguments (x! 2x).

2



Example.

Z
(cos 5x)2(sin 5x)2 dx =

Z �
1

2
(1 + cos 10x)

��
1

2
(1� cos 10x)

�
dx =

1

4

Z �
1� (cos 10x)2

�
dx =

1

4

Z
(sin 10x)2 dx =

1

4

Z
1

2
(1� cos 20x) dx =

1

8
(x�

1

20
sin 20x) + C:

Example. It is usually not a good idea to use the double angle formulas with odd powers. Consider the
following computation:

Z
(cos x)3 dx =

Z
(cosx)2 cosx dx =

Z
1

2
(1 + cos 2x) cosx dx:

The integral can be done in this form, but you either need to apply one of the angle addition formulas to
cos 2x cosx or use integration by parts. The problem is that having trig functions with di�erent arguments

in the same integral makes the integral a bit harder to do.
It would have been better to do the integral by using the \odd power" technique:

Z
(cosx)3 dx =

Z
(cos x)2 cos x dx =

Z �
1� (sinx)2

�
cos x dx =

�
u = sinx; du = cos x dx; dx =

du

cos x

�

Z
(1� u2) du = u�

1

3
u3 +C = sinx�

1

3
(sinx)3 +C:
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1-24-1998

Trig Substitution

Trig substitution reduces certain integrals to integrals of trig functions. The idea is to match the
given integral against one of the following trig identities:

1� (sin �)2 = (cos �)2

1 + (tan �)2 = (sec �)2

(sec �)2 � 1 = (tan �)2

� If the integral contains an expression of the form a2 � x2, try a substitution based on the �rst identity:
x = a sin �.

� If the integral contains an expression of the form a2+x2, try a substitution based on the second identity:
x = a tan �.

� If the integral contains an expression of the form x2� a2, try a substitution based on the third identity:
x = a sec �.

If you don't obtain one of the identities above after substituting, you've probably used the wrong
substitution.

Example. Z
(4� x2)3=2 dx =

Z �
4� 4(sin �)2

�3=2
(2 cos �) d� =

[x = 2 sin �; dx = 2 cos � d�]

Z �
4(cos �)2

�3=2
(2 cos �) d� = 16

Z
(cos �)4 d� = 16

Z �
(cos �)2

�2
d� =

16

Z �
1

2
(1 + cos 2�)

�2

d� = 4

Z �
1 + 2 cos 2� + (cos 2�)2

�
d� =

4

Z �
1 + 2 cos 2� +

�
1

2
(1 + cos 4�)

��
d� = 4

�
� + sin 2� +

1

2
(� +

1

4
sin 4�)

�
+ C =

6� + 4 sin 2� +
1

2
sin 4� + C:

To \match" the \4" in \4 � x2", I had to use x = 2 sin � (since 22 = 4). I used the double angle

formula to reduce the even powers of cosine.

To put the x's back, I need to express everything in terms of trig functions of � (as opposed to 2� or
4�). I use the double angle formulas for sine:

sin 2� = 2 sin � cos �; sin 4� = 2 sin 2� cos 2� = 2(2 sin � cos �)
�
2(cos �)2 � 1

�
= 4 sin � cos �

�
2(cos �)2 � 1

�
:

Therefore,

Z
(4� x2)3=2 dx = 6� + 8 sin � cos � + 2 sin � cos �

�
2(cos �)2 � 1

�
= 6� + 6 sin � cos � + 4(cos �)3 sin �:

1



Now draw a right triangle which shows the substitution.

x

θ

2

4 - x2

The triangle shows sin � =
x

2
, and by Pythagoras the third side is

p
4� x2. Therefore,

Z
(1� x2)3=2 dx = 6arcsin

x

2
+

3

2
x
p
4� x2 +

1

4
x(4� x2)3=2 + C:

Example. Compute

Z
dxp

25 + x2
.

25 + x2 looks like 1 + (tan �)2, so let x = 5 tan �. Then dx = 5(sec �)2 d�, so

Z
dxp

25 + x2
=

Z
5(sec �)2 d�p
25 + 25(tan �)2

=

Z
5(sec �)2 d�p
25(sec �)2

=

Z
5(sec �)2 d�

5 sec �
=

Z
sec � d� =

ln j sec � + tan �j+ C = ln

�����
p
25 + x2

5
+

x

5

�����+C:

x

θ

5

25 + x2

Example. Compute

Z
x dxp
25 + x2

.

This could be done using x = 5 tan �. But it's easier to do a u-substitution:

Z
x dxp
25 + x2

=

Z x � du
2xp
u

=
1

2

Z
dup
u
=
p
u+ C =

p
25 + x2 + C:

�
u = 25+ x2; du = 2x dx; dx =

du

2x

�

Example. Compute

Z p
x2 � 4 dx.

x2 � 4 looks like (sec �)2 � 1, so let x = 2 sec �. Then dx = 2 sec � tan � d�, and

Z p
x2 � 4 dx =

Z p
4(sec �)2 � 4(2 sec � tan � d�) =

Z p
4(tan �)2(2 sec � tan � d�) =

2



Z
(2 tan �)(2 sec � tan � d�) = 4

Z
sec �(tan �)2 d� = 4

Z
sec �

�
(sec �)2 � 1

�
d� =

4

Z
(sec �)3 d� � 4

Z
sec � d� = 2 sec � tan � + 2 ln j sec � + tan �j � 4 ln j sec � + tan �j+ C =

2 sec � tan � � 2 ln j sec � + tan �j = 1

2
x
p
x2 � 4� 2 ln

�����
x

2
+

p
x2 � 4

2

�����+C:

x

θ

2

x  - 42
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