King Fahd University of Petroleum and Minerals
Department of Mathematical Sciences
Math 202 Exam I
Semester II, 2006-(052)
Dr. Faisal Fairag

Serial No:	

Question \#		Points
1		30
2		30
3		30
4		30
5		10
6		15
7		15
8		15
9		220
10		
11		
Total:		

1. Solve: $\quad x y^{\prime}=2 x e^{x}-y+6 x^{2} \quad(\# 13 /$ page 73$)$
(Show all your work)
2. Solve: $\quad(3 x+y) d y=(x+3 y) d x \quad(\# 7 /$ page 78$)$
(Show all your work. Hint: it is homog of degree 1)
3. Solve: $\quad y^{\frac{1}{2}} y^{\prime}+y^{\frac{3}{2}}-x^{2}=0$
(Show all your work)
4. Solve: $\quad(2 x+y+1) y^{\prime}=1 \quad(\# 14 /$ page 85$)$
(Show all your work)
5. Use an appropriate substitution to reduce the DE

$$
\begin{equation*}
y^{\prime}=-x^{4}+\frac{2}{x} y+y^{2} \tag{1}
\end{equation*}
$$

into a linear DE. Write the new DE in the following form

$$
\begin{equation*}
u^{\prime}+p(x) u=f(x) \tag{2}
\end{equation*}
$$

where $y_{1}=x^{2}$ is a known solution of the DE. [Note: Just reduce it to linear DONOT SOLVE]
6. $y=2 \frac{1+c e^{4 x}}{1-c e^{4 x}}$ is a one-parameter family of solutions of the first-order DE $y^{\prime}=y^{2}-4$. Which one of the following statements is TRUE.
(a) $y=2$ is a singular solution
(b) $y=2$ is a trivial solution
(c) $y=0$ is a trivial solution
(d) $y=-2$ is a singular solution
(e) $y=0$ is a particular solution
7. The DE

$$
\begin{equation*}
y^{2} x^{\frac{3}{2}} d x+y^{2} x^{\frac{3}{2}} d y=x y^{\frac{9}{2}} d y \tag{3}
\end{equation*}
$$

is classified as
(a) separable
(b) linear in y
(c) linear in x
(d) exact
(e) made exact
(f) homog. of degree α
(g) Bernoulli in y
(h) Bernoulli in x
(i) $y^{\prime}=f(A x+B y+C)$
(j) Riccati in y
(k) Riccati in x
8. Find an appropriate integrating factor which make the non-exact DE

$$
\begin{equation*}
6 x y d x+\left(4 y+9 x^{2}\right)=0 \tag{4}
\end{equation*}
$$

an exact DE.
(a) y^{6}
(b) x^{2}
(c) y^{-2}
(d) $12 x$
(e) y^{2}
9. If $y(x)$ is the solution of the IVP

$$
\begin{equation*}
x^{2} y^{\prime}=y(1-x), \quad y(-1)=-1 \tag{5}
\end{equation*}
$$

Then $y(2)=\quad$ [Note: equation (5) is separable]
(a) $\frac{1}{2} e^{-3 / 2}$
(b) $-\frac{1}{2} e^{-1 / 2}$
(c) $\frac{1}{2} e^{3 / 2}$
(d) 0
(e) $\frac{1}{2} e^{-1 / 2}$
10. Determine a region of the xy plane for which the differential equation

$$
\begin{equation*}
y^{\prime}=\frac{y^{2}+4}{x^{2}-4} \tag{6}
\end{equation*}
$$

would have a unique solution.
(a) $(-4,4)$
(b) $(0,+\infty)$
(c) $(-\infty, 0)$
(d) $(4,+\infty)$
(e) $(-\infty, 4)$
11. Give an example of an exact linear first-order DE where $y=2 x$ is a particular solution.

