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Abstract

Wolfe and Mond–Weir type second-order symmetric duals are formulated and appropriate duality theorems are established under
�-bonvexity/�-pseudobonvexity assumptions. This formulation removes several omissions in an earlier second-order primal dual
pair introduced by Devi [Symmetric duality for nonlinear programming problems involving �-bonvex functions, European J. Oper.
Res. 104 (1998) 615–621].
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1. Introduction

A pair of primal and dual problems in mathematical programming is called symmetric if the dual of the dual is the
primal problem, that is, when the dual is recast in the form of primal, its dual is the primal problem. The duality in
linear programming is symmetric. It is not so in nonlinear programming in general. Dorn [6] introduced the concept
of symmetric duality in quadratic programming. His results were extended to general nonlinear programs in [4] for
convex/concave functions and then in [1] over arbitrary cones.

Mangasarian [9] introduced the concept of second-order duality for nonlinear problems. He has also indicated a
possible computational advantage of the second-order dual over the first order dual. This motivated several authors
[2,5,8,10,12,13] in this field. Recently, Yang et al. [13] studied second-order multiobjective symmetric dual programs
and established the duality relations under F -convexity assumptions.

In this paper, we have studied Wolfe and Mond–Weir type second-order symmetric duality over arbitrary cones and
proved duality results under �-bonvexity/�-pseudobonvexity assumptions, respectively. This paper removes several
omissions in the definitions, models and proofs (see Remarks 2.1, 3.1 and 3.2) in [5]. It may be noted that as emphasized
by Chandra and Kumar [3], the study of second-order symmetric duality under �-pseudobonvexity assumptions has to
be on the lines of Mond and Weir [10] and not on the lines of Dantzig et al. [4].

∗ Corresponding author.
E-mail address: trgmaiitr@rediffmail.com (T.R. Gulati).

0377-0427/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2007.08.021



Author's personal copy

348 T.R. Gulati et al. / Journal of Computational and Applied Mathematics 220 (2008) 347– 354

2. Notations and preliminaries

Let C1 and C2 be closed convex cones with nonempty interiors in Rn and Rm, respectively. For i = 1, 2, C�
i , called

the polar of Ci , is defined as follows:

C�
i = {z : xTz�0 for all x ∈ Ci}.

Suppose that S1 ⊆ Rn and S2 ⊆ Rm are open sets such that C1 × C2 ⊂ S1 × S2.

Definition 2.1 (Suneja et al. [12]). A twice differentiable function k : S1 × S2 �→ R is said to be �1-bonvex in the
first variable at u ∈ S1, if there exists a function �1 : S1 × S1 �→ Rn such that for v ∈ S2, r ∈ Rn, x ∈ S1,

k(x, v) − k(u, v)��T
1 (x, u)[∇xk(u, v) + ∇xxk(u, v)r] − 1

2 rT∇xxk(u, v)r

and k(x, y) is said to be �2-bonvex in the second variable at v ∈ S2, if there exists a function �2 : S2 × S2 �→ Rm such
that for u ∈ S1, p ∈ Rm, y ∈ S2,

k(u, y) − k(u, v)��T
2 (y, v)[∇yk(u, v) + ∇yyk(u, v)p] − 1

2pT∇yyk(u, v)p.

Definition 2.2 (Suneja et al. [12]). A twice differentiable function k : S1 × S2 �→ R is said to be �1-pseudobonvex in
the first variable at u ∈ S1, if there exists a function �1 : S1 × S1 �→ Rn such that for v ∈ S2, r ∈ Rn, x ∈ S1,

�T
1 (x, u)[∇xk(u, v) + ∇xxk(u, v)r]�0 	⇒ k(x, v)�k(u, v) − 1

2 rT∇xxk(u, v)r

and k(x, y) is said to be �2-pseudobonvex in the second variable at v ∈ S2, if there exists a function �2 : S2 ×S2 �→ Rm

such that for u ∈ S1, p ∈ Rm, y ∈ S2,

�T
2 (y, v)[∇yk(u, v) + ∇yyk(u, v)p]�0 	⇒ k(u, y)�k(u, v) − 1

2pT∇yyk(u, v)p.

It has been revealed in [11] by means of an example that the above class of functions is an extension of bonvex
functions. For r and p to be zero vectors, the above definitions reduces to that of �-convex/pseudoconvex functions.
The examples of such functions are given in [7].

Remark 2.1. It may be noted that the �i involved in the definitions of �i-bonvex/ pseudobonvex functions in [5] are
taken from Ci ×Ci �→ Ci(i =1, 2). Since every convex function is �1-bonvex with �1(x, u)=x −u. Therefore, taking
�1 : C1 × C1 �→ C1 amounts to assuming that

x ∈ C1, u ∈ C1 ⇒ �1(x, u) = x − u ∈ C1,

which is not true for a closed convex cone C1. In particular, if C1 = Rn+, then x�0, u�0 does not imply x − u�0.

3. Wolfe type second-order symmetric duality

We now consider the following pair of Wolfe type second-order symmetric dual nonlinear programming problems
over arbitrary cones:

Primal (WP):

Minimize F(x, y, p) = k(x, y) − yT(∇yk(x, y) + ∇yyk(x, y)p) − 1
2pT∇yyk(x, y)p

subject to ∇yk(x, y) + ∇yyk(x, y)p ∈ C�
2, (3.1)

x ∈ C1. (3.2)

Dual (WD):

Maximize G(u, v, r) = k(u, v) − uT(∇xk(u, v) + ∇xxk(u, v)r) − 1
2 rT∇xxk(u, v)r

subject to − ∇xk(u, v) − ∇xxk(u, v)r ∈ C�
1, (3.3)

v ∈ C2. (3.4)
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Remark 3.1. The pair of primal and dual problems studied in [5] are

Primal (P):

Minimize F(x, y) = L(x, y) − yT∇yk(x, y)

subject to (x, y) ∈ C1 × C2,

∇yk(x, y), ∇yyk(x, y)p ∈ C�
2.

Dual (D):

Maximize G(u, v) = N(u, v) − uT∇xk(u, v)

subject to (u, v) ∈ C1 × C2,

− ∇xk(u, v), −∇xxk(u, v)r ∈ C�
1,

where L(x, y) = k(x, y) − 1
2pT∇yyk(x, y)p and N(u, v) = k(u, v) − 1

2 rT∇xxk(u, v)r .
It may be noted that in the above dual pair, the author has taken two constraints

∇yk(x, y) ∈ C�
2 and ∇yyk(x, y)p ∈ C�

2

instead of the single constraint (3.1) in (WP). However, in the proof of the strong duality theorem the above two
constraints have been erroneously taken together in g(z) (g(z) = ∇yk(x, y) + ∇yyk(x, y)p) and so instead of two
only one Lagrangian multiplier is used while writing the Fritz John necessary optimality conditions. Moreover, if the
constraints are taken as in Problems (P) and (D) along with two multipliers, then the strong duality theorem does not
follow on the lines of the proof in [5] or the one given in this paper.

3.1. The duality results

We now establish the duality results for (WP) and (WD). It may be noted that with the constraints taken as in (WP),
we require bonvexity assumptions instead of pseudobonvexity assumptions taken in [5] to prove the weak duality
theorem.

Theorem 3.1. (Weak duality). Let (x, y, p) be feasible for the primal problem (WP) and (u, v, r) be feasible for the
dual problem (WD). Let

(i) k(., v) be �1-bonvex in the first variable at u,
(ii) −k(x, .) be �2-bonvex in the second variable at y,

(iii) �1(x, u) + u ∈ C1 for all x ∈ C1,
(iv) �2(v, y) + y ∈ C2 for all v ∈ C2.

Then F(x, y, p)�G(u, v, r).

Proof. By �1-bonvexity of k(., v) and �2-bonvexity of −k(x, .), we have

k(x, v) − k(u, v)��T
1 (x, u){∇xk(u, v) + ∇xxk(u, v)r} − 1

2 rT∇xxk(u, v)r , (3.5)

k(x, y) − k(x, v)� − �T
2 (v, y){∇yk(x, y) + ∇yyk(x, y)p} + 1

2pT∇yyk(x, y)p. (3.6)

Adding (3.5) and (3.6), we obtain

k(x, y) − k(u, v)��T
1 (x, u){∇xk(u, v) + ∇xxk(u, v)r} − 1

2 rT∇xxk(u, v)r

− �T
2 (v, y){∇yk(x, y) + ∇yyk(x, y)p} + 1

2pT∇yyk(x, y)p. (3.7)

From (3.3) and hypothesis (iii), we get

{�1(x, u) + u}T{∇xk(u, v) + ∇xxk(u, v)r}�0
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or

�T
1 (x, u){∇xk(u, v) + ∇xxk(u, v)r}� − uT{∇xk(u, v) + ∇xxk(u, v)r}. (3.8)

Similarly, (3.1) and hypothesis (iv) yield

−�T
2 (v, y){∇yk(x, y) + ∇yyk(x, y)p}�yT{∇yk(x, y) + ∇yyk(x, y)p}. (3.9)

Inequalities (3.7)–(3.9) give

k(x, y) − k(u, v)� − uT{∇xk(u, v) + ∇xxk(u, v)r} − 1
2 rT∇xxk(u, v)r

+ yT{∇yk(x, y) + ∇yyk(x, y)p} + 1
2pT∇yyk(x, y)p,

or

F(x, y, p)�G(u, v, r). �

Theorem 3.2. (Strong duality). Let k : Rn × Rm �→ R be thrice differentiable and let (x̄, ȳ, p̄) be a local optimal
solution for (WP). Let

(i) ∇yyk(x̄, ȳ) is nonsingular,
(ii) the vector p̄T∇y(∇yyk(x̄, ȳ)p̄) = 0 implies p̄ = 0.

Then (x̄, ȳ, r̄ = 0) is feasible for (WD) and F(x̄, ȳ, p̄) = G(x̄, ȳ, r̄).

Also, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of (WP) and (WD), then (x̄, ȳ, p̄ = 0)

and (x̄, ȳ, r̄ = 0) are global optimal solutions of (WP) and (WD), respectively.

Proof. Since (x̄, ȳ, p̄) is a local optimal solution of (WP), by the Fritz John necessary optimality conditions on convex
cone domain given in [1], there exist �1 ∈ R+, �2 ∈ C2, such that the following conditions are satisfied at (x̄, ȳ, p̄):

(x − x̄)T{�1∇xk(x̄, ȳ) + ∇yxk(x̄, ȳ)(−�1ȳ + �2)

+ ∇x(∇yyk(x̄, ȳ)p̄)(−�1ȳ + �2 − 1
2�1p̄)}�0 for all x ∈ C1, (3.10)

(∇yyk(x̄, ȳ)(−�1ȳ + �2 − �1p̄) + ∇y(∇yyk(x̄, ȳ)p̄)(−�1ȳ + �2 − 1
2�1p̄) = 0, (3.11)

∇yyk(x̄, ȳ)(−�1ȳ + �2 − �1p̄) = 0, (3.12)

�T
2 (∇yk(x̄, ȳ) + ∇yyk(x̄, ȳ)p̄) = 0, (3.13)

(�1, �2) �= 0. (3.14)

Since ∇yyk(x̄, ȳ) is nonsingular, (3.12) gives

�2 = �1(ȳ + p̄). (3.15)

We claim that �1 �= 0. Indeed if �1 = 0, then (3.15) implies �2 = 0, which contradicts (3.14). Hence

�1 > 0. (3.16)

Using (3.15) in (3.11), we get ∇y(∇yyk(x̄, ȳ)p̄)( 1
2�1p̄) = 0, which by hypothesis (ii) and (3.16) yields

p̄ = 0. (3.17)

From (3.15) and (3.17), we obtain

�2 = �1ȳ. (3.18)
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Using (3.17) and (3.18) in (3.10), we get

(x − x̄)T∇xk(x̄, ȳ)�0 for all x ∈ C1. (3.19)

Let x ∈ C1. Then x̄ + x ∈ C1 and so (3.19) implies xT∇xk(x̄, ȳ)�0 for all x ∈ C1. Therefore, −∇xk(x̄, ȳ) ∈ C�
1 .

Also, from (3.16), (3.18) and �2 ∈ C2, we obtain ȳ ∈ C2. Thus, (x̄, ȳ, r̄ = 0) satisfies the constraints (3.3) and (3.4)
and so it is a feasible solution for the dual problem (WD).

Now, letting x = 0 and 2x̄ in (3.19), we get x̄T∇xk(x̄, ȳ) = 0. Further, from (3.13), (3.16) to (3.18), we obtain
ȳT∇yk(x̄, ȳ) = 0. Hence,

F(x̄, ȳ, p̄ = 0) = G(x̄, ȳ, r̄ = 0).

Also, it follows from Theorem 3.1 that (x̄, ȳ, p̄ = 0) and (x̄, ȳ, r̄ = 0) are global optimal solution for (WP) and (WD),
respectively. �

Remark 3.2. Since in symmetric duality, the dual of the dual is the primal problem, the statement and proof of the
converse duality theorem go exactly as for the strong duality theorem and hence its proof is not required, e.g., see
[8,12,13]. It is not so in [5]. Further, while proving the converse duality theorem, the author obtained:

F(x, ȳ)�F(x̄, ȳ) for all feasible (x, ȳ) for (P)

(where the problem (P) is defined in Remark 3.1) and concluded that (x̄, ȳ) is the optimal solution for the primal
problem (P). This is not correct since in order to show optimality of (x̄, ȳ) one needs to prove

F(x, y)�F(x̄, ȳ) for all feasible (x, y) for (P).

Theorem 3.3. (Converse duality). Let k : Rn × Rm �→ R be thrice differentiable and let (ū, v̄, r̄) be a local optimal
solution for (WD). If

(i) ∇xxk(ū, v̄) is nonsingular,
(ii) the vector r̄T∇x(∇xxk(ū, v̄)r̄) = 0 implies r̄ = 0,

then (ū, v̄, p̄ = 0) is feasible for (WP) and F(ū, v̄, p̄) = G(ū, v̄, r̄).

Also, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of (WP) and (WD), then (ū, v̄, p̄ = 0)

and (ū, v̄, r̄ = 0) are global optimal solutions of (WP) and (WD), respectively.

Proof. Follows on the lines of Theorem 3.2. �

4. Mond–Weir type second-order symmetric duality

In this section we establish duality theorems for the following pair of Mond–Weir type second-order symmetric dual
nonlinear programming problems over arbitrary cones:

Primal (MP):

Minimize L(x, y, p) = k(x, y) − 1
2pT∇yyk(x, y)p

subject to ∇yk(x, y) + ∇yyk(x, y)p ∈ C�
2, (4.1)

yT(∇yk(x, y) + ∇yyk(x, y)p)�0, (4.2)

x ∈ C1. (4.3)

Dual (MD):

Maximize M(u, v, r) = k(u, v) − 1
2 rT∇xxk(u, v)r

subject to − ∇xk(u, v) − ∇xxk(u, v)r ∈ C�
1, (4.4)

uT(∇xk(u, v) + ∇xxk(u, v)r)�0, (4.5)

v ∈ C2. (4.6)
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Theorem 4.1. (Weak duality). Let (x, y, p) be feasible for the primal problem (MP) and (u, v, r) be feasible for the
dual problem (MD). Let

(i) k(., v) be �1−pseudobonvex in the first variable at u,
(ii) −k(x, .) be �2− pseudobonvex in the second variable at y,

(iii) �1(x, u) + u ∈ C1 for all x ∈ C1,
(iv) �2(v, y) + y ∈ C2 for all v ∈ C2.

Then

L(x, y, p)�M(u, v, r).

Proof. Since (x, y, p) is feasible for (MP) and (u, v, r) is feasible for (MD), so by the dual constraint (4.4) and
hypothesis (iii), we have

(�1(x, u) + u)T[∇xk(u, v) + ∇xxk(u, v)r]�0.

This together with (4.5) implies

�T
1 (x, u)[∇xk(u, v) + ∇xxk(u, v)r]�0.

Now, by the �1-pseudobonvexity of k(., v) at u, we have

k(x, v)�k(u, v) − 1
2 rT∇xxk(u, v)r . (4.7)

Similarly, (4.1), hypothesis (iv) and (4.2) give

−�T
2 (v, y)[∇yk(x, y) + ∇yyk(x, y)p]�0.

Therefore, by the �2-pseudobonvexity of −k(x, .) at y, we obtain

k(x, v)�k(x, y) − 1
2pT∇yyk(x, y)p. (4.8)

Finally, inequalities (4.7) and (4.8) yield

k(x, y) − 1
2pT∇yyk(x, y)p�k(u, v) − 1

2 rT∇xxk(u, v)r

or

L(x, y, p)�M(u, v, r). �

Theorem 4.2. (Strong duality). Let k : Rn × Rm �→ R be thrice differentiable and let (x̄, ȳ, p̄) be a local optimal
solution for (MP). If

(i) either ∇yyk(x̄, ȳ) is positive definite and p̄T ∇yk(x̄, ȳ)�0 or ∇yyk(x̄, ȳ) is negative definite and p̄T∇yk(x̄, ȳ)�0,
(ii) ∇yk(x̄, ȳ) + ∇yyk(x̄, ȳ)p̄ �= 0,

then p̄ = 0, (x̄, ȳ, r̄ = 0) is feasible for (MD) and L(x̄, ȳ, p̄) = M(x̄, ȳ, r̄).

Also, if the hypotheses of Theorem 4.1 are satisfied for all feasible solutions (MP) and (MD), then (x̄, ȳ, p̄ = 0) and
(x̄, ȳ, r̄ = 0) are global optimal solutions of (MP) and (MD), respectively.

Proof. Since (x̄, ȳ, p̄) is a local optimal solution for (MP), by the Fritz John necessary optimality conditions [1] there
exists �1 ∈ R+, �2 ∈ C2, �3 ∈ R+ such that the following conditions are satisfied at (x̄, ȳ, p̄):

(x − x̄)T{�1∇xk(x̄, ȳ) + ∇xyk(x̄, ȳ)(�2 − �3ȳ)

+ ∇x(∇yyk(x̄, ȳ)p̄)(�2 − 1
2�1p̄ − �3ȳ)}�0 for all x ∈ C1, (4.9)

(�1 − �3)∇yk(x̄, ȳ) + ∇yyk(x̄, ȳ)(�2 − �3ȳ − �3p̄)

+ ∇x(∇yyk(x̄, ȳ)p̄)(�2 − 1
2�1p̄ − �3ȳ) = 0, (4.10)



Author's personal copy

T.R. Gulati et al. / Journal of Computational and Applied Mathematics 220 (2008) 347– 354 353

∇yyk(x̄, ȳ)(�2 − �1p̄ − �3ȳ) = 0, (4.11)

�T
2 [∇yk(x̄, ȳ) + ∇yyk(x̄, ȳ)p̄] = 0, (4.12)

�3ȳ
T[∇yk(x̄, ȳ) + ∇yyk(x̄, ȳ)p̄] = 0, (4.13)

(�1, �2, �3) �= 0. (4.14)

By hypothesis (i), (4.11) yields

�2 = �1p̄ + �3ȳ. (4.15)

Now, we claim that �1 �= 0. Indeed, if �1 = 0, then (4.15) gives

�2 = �3ȳ

which together with (4.10) yields

�3[∇yk(x̄, ȳ) + ∇yyk(x̄, ȳ)p̄)] = 0.

By hypothesis (ii), ∇yk(x̄, ȳ) + ∇yyk(x̄, ȳ)p̄ �= 0. Therefore, �3 = 0 and hence �2 = 0, which contradicts (4.14). Thus
we obtain

�1 > 0. (4.16)

Subtracting (4.13) from (4.12) and using (4.15), (4.16), we get

p̄T[∇yk(x̄, ȳ) + ∇yyk(x̄, ȳ)p̄] = 0. (4.17)

Now suppose p̄ �= 0. Then hypothesis (i) implies that p̄T[∇yk(x̄, ȳ)+∇yyk(x̄, ȳ)p̄] �= 0, contradicting (4.17). Hence,

p̄ = 0. (4.18)

Therefore, (4.15) implies

�2 = �3ȳ. (4.19)

This together with (4.18), (4.10) and hypothesis (ii) yields �3 = �1 > 0. Therefore, from (4.19)

ȳ = �2

�3
∈ C2.

Further, using (4.18) and (4.19) in (4.9), we get

(x − x̄)T∇xk(x̄, ȳ)�0 for all x ∈ C1. (4.20)

Let x ∈ C1. Then x̄ +x ∈ C1 and so (4.20) implies xT∇xk(x̄, ȳ)�0 for all x ∈ C1. Therefore, −∇xk(x̄, ȳ) ∈ C∗
1 . Also

by letting x = 0 and 2x̄ in (4.20), we get x̄T ∇xk(x̄, ȳ) = 0 and hence (x̄, ȳ, r̄ = 0) satisfies the constraints (4.4)–(4.6),
that is, it is a feasible solution for the dual problem (MD). Moreover,

L(x̄, ȳ, p̄ = 0) = M(x̄, ȳ, r̄ = 0).

Now, by Theorem 4.1, (x̄, ȳ, p̄ = 0) and (x̄, ȳ, r̄ = 0) are global optimal solutions for (MP) and (MD), respectively.
�

Theorem 4.3. (Converse duality). Let k : Rn × Rm �→ R be thrice differentiable and let (ū, v̄, r̄) be a local optimal
solution for (MD). If

(i) either ∇xxk(ū, v̄) is positive definite and r̄T∇xk(ū, v̄)�0 or ∇xxk(ū, v̄) is negative definite and r̄T∇xk(ū, v̄)�0,
(ii) ∇xk(ū, v̄) + ∇xxk(ū, v̄)r̄ �= 0,

then r̄ = 0, (ū, v̄, p̄ = 0) is feasible for (MP) and L(ū, v̄, p̄) = M(ū, v̄, r̄).
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Also, if the hypotheses of Theorem 4.1 are satisfied for all feasible solutions (MP) and (MD), then (ū, v̄, p̄ = 0) and
(ū, v̄, r̄ = 0) are global optimal solutions of (MP) and (MD), respectively.

Proof. Follows on the lines of Theorem 4.2. �

5. Example

Let n = m = 2, C1 = {(x, y) : x − y = 0, x, y�0} and C2 = {(x, y) : x + y = 0, x�0, y�0}. Then C�
1 = {(x, y) :

x + y�0} and C�
2 = {(x, y) : x − y�0}.

Let k : R2 × R2 �→ R, k(x, y) = x2
1 + x2

2 − ey1 − ey2 . Then, our problems (WP) and (WD) reduce to
Primal (EWP):

Minimize F(x, y, p) = x2
1 + x2

2 +
(

−1 + y1(1 + p1) + p2
1

2

)
ey1 +

(
−1 + y2(1 + p2) + p2

2

2

)
ey2

subject to ey1(1 + p1)�ey2(1 + p2), x1 − x2 = 0, x1, x2 �0.

Dual (EWD):

Maximize G(u, v, r) = −(u1 + r1)
2 − (u2 + r2)

2 − ev1 − ev2

subject to (u1 + r1) + (u2 + r2)�0, v1 + v2 = 0, v1 �0, v2 �0.

The function k is �1-bonvex at u ∈ R2 with �1 = x − u and �2-boncave at y ∈ R2 with �2 = v − y. Therefore, the
assumptions of weak duality theorem are satisfied. Further, for the above function k(x, y),

(i) ∇yyk(x, y) is nonsingular, and
(ii) the vector pT∇y(∇yyk(x, y)p) = 0 implies p = 0.

That is, the assumptions of strong duality theorem (Theorem 3.2) are also satisfied. Therefore, the duality results studied
in Section 3 hold for the problems (EWP) and (EWD). This can be easily seen since the optimal value of the primal
and the dual problems is −2.
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