King Fahd University Of Petroleum \& Minerals Mathematical sciences Department

```
Second Major exam - Term: 042
(A)
Math 131 - Finite Mathematics
```

Time allowed: 90 minutes
Name:
ID\# :
Section:
Serial:

Question	Full Mark	Student mark
1	8	
2	8	
3	8	
4	8	
5	8	
6	10	
Total	50	

Question 1 (8 points) :

Find the dual of the following linear programming problem and then solve it.'
Minimize: $Z=8 x_{1}+8 x_{2}+12 x_{3}$
$\begin{array}{lrr}\text { subjectto: } & -2 x_{1}+2 x_{2}+2 x_{3} \geq-6 \\ 2 x_{1}-2 x_{2}-2 x_{3} \leq 6 \\ 2 x_{1}-2 x_{2}+2 x_{3} \geq 6 \\ x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0\end{array} \quad \rightarrow \quad 2 x_{1}-2 x_{2}+2 x_{3} \geq 6 ~ 子 ~ x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$

Then the dual problem is:
Maximize: $\quad W=-6 y_{1}+6 y_{2}$

$$
\text { which implies that } \begin{aligned}
& -2 y_{1}+2 y_{2}+s_{1}=8 \\
& 2 y_{1}-2 y_{2}+s_{2}=8 \\
& 2 y_{1}+2 y_{2}+s_{3}=12 \\
& y_{1} \geq 0, y_{2} \geq 0, s_{1} \geq 0, s_{2} \geq 0, s_{3} \geq 0
\end{aligned}
$$

subject to:
$-2 y_{1}+2 y_{2} \leq 8$
$2 y_{1}-2 y_{2} \leq 8$
$2 y_{1}+2 y_{2} \leq 12$
$y_{1} \geq 0, y_{2} \geq 0 \quad$ and $w+6 y_{1}-6 y_{2}=0$

Then:
$\left[\begin{array}{ccccccc}-2 & 2 & 1 & 0 & 0 & 0 & 8 \\ 2 & -2 & 0 & 1 & 0 & 0 & 8 \\ 2 & 2 & 0 & 0 & 1 & 0 & 12 \\ 6 & -6 & 0 & 0 & 0 & 1 & 0\end{array}\right] \Rightarrow\left[\begin{array}{ccccccc}-1 & 1 & 1 / 2 & 0 & 0 & 0 & 4 \\ 2 & -2 & 0 & 1 & 0 & 0 & 8 \\ 2 & 2 & 0 & 0 & 1 & 0 & 12 \\ 6 & -6 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccccccc}-1 & 1 & 1 / 2 & 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 1 & 0 & 0 & 16 \\ 4 & 0 & -1 & 0 & 1 & 0 & 4 \\ 0 & 0 & 3 & 0 & 0 & 1 & 24\end{array}\right]$

$$
\left[\begin{array}{ccccccc}
-1 & 1 & \frac{1}{2} & 0 & 0 & 0 & 4 \\
0 & 0 & 1 & 1 & 0 & 0 & 16 \\
4 & 0 & -1 & 0 & 1 & 0 & 4 \\
0 & 0 & 3 & 0 & 0 & 1 & 0
\end{array}\right)
$$

which implies that $y_{1}=0, s_{1}=0, y_{2}=4, s_{2}=16, s_{3}=4$
and the maximum value of \mathbf{W} equals $\mathbf{2 4}$ which is the same as the minimum value of \mathbf{Z}

Question 2 (8 points):

If a principal of $\$ 2300$ accumulated to $\$ 2700$ in 4 years at an interest rate which is compounded quarterly, then find:
a) the nominal rate of interest. (4 points)

Solution: $\quad S=P(1+r)^{n} \quad$ which implies that

$$
\begin{aligned}
& 2700=2300(1+r)^{16} \rightarrow \frac{2700}{2300}=(1+r)^{16} \rightarrow \operatorname{In}\left(\frac{2700}{2300}\right)=16 \operatorname{In}(1+r) \\
& \rightarrow \operatorname{In}(1+r)=\frac{\operatorname{In}\left(\frac{2700}{2300}\right)}{16}=0.010 \rightarrow 1+r=e^{0.010}=1.01005 \\
& \rightarrow r=0.01005
\end{aligned}
$$

Which implies that: the nominal interest rate $=\mathbf{4}(\mathbf{0 . 0 1 0 0 5)} \mathbf{\%}=\mathbf{4 \%}$.
b) the effective rate of this investment. (4 points)

$$
\begin{aligned}
r_{e} & =\left(1+\frac{\text { nominal rate }}{4}\right)^{4}-1 \\
& =\left(1+\frac{0.04}{4}\right)^{4}-1=4.1 \%
\end{aligned}
$$

Question 3 (8 points):

a. If $\$ 19320$ is invested for $\mathbf{8}$ years at an interest rate of $\mathbf{6 . 5 \%}$ compounded continuously, then find the compounded amount and compounded interest. (4 points)

Solution:

$$
\begin{aligned}
S & =P e^{r t}=19320 e^{(.065)(8)} \\
& =19320 e^{(.52)}=\$ 32496.77
\end{aligned}
$$

The compound interest $=\mathbf{S}-\mathbf{P}$

$$
\begin{aligned}
& =\$ 32496.77-19320 \\
& =\$ 13176.7
\end{aligned}
$$

b. If $\$ 6230$ is invested at an interest rate of $\mathbf{6 . 5 \%}$ which is compounded continuously, then find the how long does it take the amount to double? (4 points)

Solution:

$$
S=P e^{r t} \quad \rightarrow 2 P=P e^{(.065) t}
$$

which implies that

$$
\begin{aligned}
& \rightarrow 2=e^{(.065) t} \rightarrow \operatorname{In} 2=(.065) t \\
& \rightarrow t=\frac{\operatorname{In} 2}{.065}=10.66 \text { years }
\end{aligned}
$$

Question 4 (8 points):

a. A debt consists of $\$ 3550$ due in three years from now and $\$ 6250$ due in seven years from now is to be repaid by a payment of $\$ 2000$ in one years and $\$ 3000$ in three years and a final payment at the end of six years. If the interest rate is $\mathbf{9 \%}$ compounded semiannually, how much should be the final payment? (4 points)

Solution:

$$
\begin{aligned}
& 3550(1.045)^{-6}+6250(1.045)^{-14}=2000\left((1.045)^{-2}+3000(1.045)^{-6}+x(1.045)^{-12}\right. \\
& \rightarrow 2726.30+3374.83=1831.46+2303.69+0.59 x \\
& \rightarrow x=\frac{2726.30+3374.83-1831.46-2303.69}{0.59} \\
& \rightarrow x=\$ 3332.17
\end{aligned}
$$

b. An initial investment of $\$ \mathbf{3 0 0 0 0}$ in a project guarantees the cash flows of $\mathbf{\$ 1 0 0 0 0}$ after 3 years, $\$ 12000$ after 5 years and $\$ 14000$ after 6 years. If the interest rate is $\mathbf{6 \%}$ compounded semiannually, then determine whether the investment is profitable or not? (4 points)

Solution:

$$
\begin{aligned}
\text { The } N P V & =10000(1.03)^{-6}+12000(1.03)^{-10}+14000\left((1.03)^{-12}-30000\right. \\
& =8374.84+8929.13+9819.32-30000 \\
& =-\$ 2876.71
\end{aligned}
$$

Therefore, the investment is not profitable.

Question 5 (8 points):

a) An annuity of equal payments at the end of each quarter for 3 years is to be purchased of $\$ 16000$. If the interest rate is $\mathbf{8 \%}$ compounded quarterly then determine how much is each of the payments. (4 points)

Solution:

$$
A=R a_{n, r}, \text { where } a_{n, r}=\frac{1-(1+r)^{-n}}{r}=\frac{1-(1+.02)^{-12}}{.02}=10.58
$$

implies that

$$
R=\frac{A}{a_{n, r}}=\frac{16000}{10.58}=\$ 1512.29
$$

b) An annuity of equal payments at the beginning of each month is worth $\$ 12000$ after for 5 years. If the interest rate is $\mathbf{6 \%}$ compounded monthly then determine how much is each of the payments. (4 points)

Solution:

$$
S=R\left[S_{n+1, r}-1\right], \text { where } S_{n+1, r}=\frac{(1+r)^{(n+1)}-1}{r}=\frac{\left(1+\frac{.06}{12}\right)^{(60+1)}-1}{\frac{.06}{12}}=71.12
$$

implies that

$$
R=\frac{S}{s_{n+1, r}-1}=\frac{12000}{71.12-1}=\$ 171.14
$$

Question 6 :(10 Points)

a) In how many ways we can order a group of 6 men and 4 women in a line if the women are to stand in the back of the line? (3 points)

Solution:

(6!)(4!)
b) How many words can be formed the letters of the word 'statistics'? ($\mathbf{3}$ points)

Solution:

$$
\frac{10!}{3!3!2!}
$$

c) Draw 5 cars at random from a deck of 52 playing cards without replacement. Then find the probability of having at least one even number. (4 points)

Solution:

$\mathrm{P}($ at least one even number $)=1-\mathrm{P}($ no even numbers $)$

$$
=1-\frac{26 C 5}{52 C 5}
$$

