King Fahd University Of Petroleum \& Minerals Mathematical sciences Department

Term: 042
Math 131 - Finite Mathematics

Time allowed: 90 minutes
Name:
ID\# :
Section:
Serial:

Question	Full Mark	Student mark
1	5	
2	5	
3	10	
4	10	
5	10	
6		
Total		

Question $1:(5$ Points)

An investor wants to invest $\$ 50,000$ in two companies for one year. The annual returns of the two companies are 6% and 10% respectively. Find the amounts of money that he will invest in the two companies if the total annual return is equivalent to an annual return of 7% on the entire amount.

Solution:

Let $\mathrm{x}=$ The amount that will be invested in the $1^{\text {st }}$ company. Thus $\$(50,000-\mathrm{x})$ will be invested in the $2^{\text {nd }}$ company. Then:

$$
\begin{aligned}
& 0.06 x+0.1(50,000-x)=0.07(50,000) \Rightarrow 0.06 x-0.1 x+5,000=3,500 \\
& \Rightarrow-0.04 x=3,500-5,000=-1,500 \\
& \quad x=\frac{-1,500}{-.04}=37,500
\end{aligned}
$$

Thus $\$ 37,500$ will be invested in the $1^{\text {st }}$ company and $\$ 12,500$ will be invested in the $2^{\text {nd }}$ company.

Question 2 :(5 Points)

A publisher sells a magazine for $\$ 3$ per one and costs him $\$ 2.2$ per one. In addition, he earns 10% of the total sale from advertisement. What is the minimum number of magazines that he should sell to get at least $\$ 1200$ as a profit?

Solution:

Let $\mathrm{x}=$ The number of magazines that he will sell. Then:
Profit $=T R-T C=3 x+0.1(3 x)-2.2 x=3.3 x-2.2 x=1.1 x$
Then
Profit $\geq 1,200$ iff $1.1 x \geq 1,200$ iff $x \geq \frac{1200}{1.1}=1090.91$,
Therefore, he should sell at least 1,091 to get at least $\$ 1200$ as a profit.

Question 3:(10 Points)

Find the equation of the line that passes through $(2,1)$ and perpendicular to the line $3 y+6 x=12$.

Solution:

The slope of the line $3 y+6 x=12$ is (-2). Therefore, the slope of the required line is $1 / 2$. Then the equation of the required line is given by:

$$
y-1=\left(\frac{1}{2}\right)(x-2)
$$

which implies that

$$
y=\frac{x}{2}
$$

a) The demand function for a certain product is $p=2400-3 q$, where p the price in dollars per unit is and q is the number of units demanded per month. Find the number of units that maximizes the total revenue and determine the maximum total revenue.
(5 Points)

Solution:

$$
T R=p q=(2,400-3 q) q=2,400 q-3 q^{2}
$$

The $T R$ is a quadratic function in q. The vale of q which maximizes $T R$ is given by: $q=\frac{-2,400}{2(-3)}=400$, which implies that the maximum total revenue is:

$$
2,400(400)-3(400)^{2}=\$ 480,000
$$

Question 4 :(10 Points)

A producer sells his product at $\$ 32$ per unit. If the fixed costs of his product are $\$ 8,200$ and the variable costs are $\$ 20$ per unit. Assume that he sells his entire product, then:
a. Determine the breaking even point
(6 Points)

Solution:

Let $\mathrm{x}=$ The number of units that he will sell. Then:
Profit $=P=T R-T C=32 x-(8,200+20 x)=12 x-8,200$
Then: Profit $=0$ iff $12 x=\frac{8,200}{12}$ iff $x=683.33$
Therefore, the breaking even point quantity is 683.33 units and the breaking even total revenue is $\$ 12(683.33)=\$ 8,199.96$, which implies that the breaking even point is (683.33,8199.96).
b. If the total costs have increased 10%, then find the level of production at the new breaking even point.
(4 Points)

Solution:

Profit $=P=T R-T C=32 x-(8,200+20 x)(1.1)=10 x-9,020$
Then: Profit $=0$ iff $10 x=9,020$ iff $x=902$
Thus 902 is the breaking even quantity.

Question 5:(10 Points)

a) Solve the following system of linear equations by matrix reduction:

$$
\begin{aligned}
2 x-2 y-6 z & =-10 \\
6 x-3 y-12 z & =-24 \\
-x-y+z & =1
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 & -2 & -6 & -10 \\
6 & -3 & -12 & -24 \\
-1 & -1 & 1 & 1
\end{array}\right]\left(R_{1} / 2 \text { and } R_{2} / 3\right)} \\
& {\left[\begin{array}{cccc}
1 & -1 & -3 & -5 \\
2 & -1 & -4 & -8 \\
-1 & -1 & 1 & 1
\end{array}\right]\left(-2 R_{1}+R_{2} \text { and } R_{1}+R_{3}\right)}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & -1 & -3 & -5 \\
0 & 1 & 2 & 2 \\
0 & -2 & -2 & -4
\end{array}\right]\left(R_{1}+R_{2} \text { and } 2 R_{2}+R_{3}\right)
$$

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & -3 \\
0 & 1 & 2 & 2 \\
0 & 0 & 2 & 0
\end{array}\right]\left(R_{3} / 2\right)
$$

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & -3 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 0
\end{array}\right]\left(R_{3}+R_{1} \text { and }-2 R_{3}+R_{2}\right)
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Thus $x=-3, y=2$ and $z=0$
b) Solve the following nonlinear system of equations:

$$
\begin{align*}
& x^{2}=5+y \tag{1}\\
& x=y-1 \tag{2}
\end{align*}
$$

Solution:

From (2), $y=x+1$. Then substitute this value of y in (1) we get:

$$
x^{2}=5+x+1=x+6
$$

Then it follows that: $x^{2}-x-6=0 \Rightarrow(x-3)(x+2)=0$
Which implies that $\mathrm{x}=3$ or $\mathrm{x}=-2$. If $\mathrm{x}=3$, then $\mathrm{y}=4$ and if $\mathrm{x}=-2$, then $\mathrm{y}=-1$. Therefore, the solutions of the system are: $(3,4)$ and $(-2,-1)$.

Question 6:(10 Points)

Find x and y , which maximize Z geometrically:
$Z=10 x+15 y$
subject to :

$$
\begin{aligned}
x+2 y & \leq 40 \\
-x-y & \geq-34 \\
x, y & \geq 0
\end{aligned}
$$

and find the maximum value of Z. Solution:

The feasible region is the black region in the figure with corner points $\mathrm{O}, \mathrm{A}, \mathrm{B}$ and C . The value of Z at these points are: $0,340,370$ and 300 respectively. Thus, B maximizes Z and the maximum value of Z will be 370 .

