Instructor: Course #: Title:	King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics SYLLABUS Semester II: 2013-2014(132) Dr. A. Bonfoh MATH 590 Special Topics in Mathematics Infinite-dimensional Dynamical Systems
Objectives:	The course aims to solve and describe the large time behavior of solutions to nonlinear partial differential equations in infinite-dimensional phase- spaces.
Course Description:	This course will introduce recent research topics in infinite- dimensional dynamical systems associated with partial differential equations. The global attractor theory for dissipative evolution equations will be discussed in detail. The course will cover Sobolev and Hilbert spaces, existence and uniqueness of solutions, Semigroups, limits sets, the global attractor, continuity of the global attractor, finite dimensionality of attractors, exponential attractors, inertial manifolds. As typical examples, attractors for reaction- diffusion equations and Navier-Stokes equations will be studied.
Textbook:	J.C. Robinson, <i>Infinite-dimensional Dynamical systems</i> , Cambridge University Press, Cambridge, 2001
References:	 R. Temam, <i>Infinite-dimensional dynamical systems in Mechanics and Physics</i>, Second Edition, Springer-Verlag, New York, 1997 J. Hale, <i>Asymptotic behavior of Dissipative Systems</i>, Providence R.I., 1988. A.V. Babin, M.I. Vishik, <i>Attractors of Evolution Equations</i>, North Holland, Amsterdam, 1991. A. Eden, C. Foias, B.Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations, Masson, Paris, 1994.

Week	Date	Sec.	Topics	Suggested Homework Problems
1	Jan. 26-30	5.2	General Sobolev spaces	
		5.7	The Sobolev embedding theorem	
		6.1	Classical, strong and weak solutions	
		6.2	Weak solution of Poisson's equation	
		6.3	Higher regularity for the Laplacian	
2		7.1	Banach spaces valued function spaces	
		8.1	Nonlinear Reaction-Diffusion Equation	
	Feb. 2-6	8.2	The Basis for the Galerkin Expansion	
		8.3	Weak solutions	
		8.4	Strong solutions	
3		9.1	The Stokes operator	
		9.2	The weak form of the Navier Stokes equation	
	Feb. 9-13	9.3	Properties of the Trilinear form	
	160. 9-13	9.4	Existence of weak solutions	
		9.5	Unique solution in 2d	
		9.6	Existence of strong solutions in 2d	
4	Feb. 16-20	10.1	Semigroups	
		10.2	Dissipation	
		10.3	Limits sets and attractors	
		10.4	A theorem for the existence of global attractors	
		10.5	An example- The Lorenz attractor	

		10.6	Structure of the attractor				
5		11.1	Reaction-Diffusion Equation- Absorbing sets and				
			the attractor				
	Feb. 23.27	11.2	Regularity results				
		11.4	A Lyapunov functional				
		11.5	The Chaffee-Infante equation				
			First Exam				
6	Mar. 2-6	12.1	Attractors for 2d Navier-Stokes equation				
7	Mar. 9-13	12.2	Attractors for The 3d Navier-Stokes equation				
8	Mar. 16-		Upper semicontinuity of the global attractor				
	20	10.8.2	Lower semicontinuity of the global attractor				
			Midterm Vacation				
9	Mar. 30-	13.1 F	ractal and Hausdorff dimensions				
	Apr. 3	13.2 E	Bounding the attractor dimension				
10	Apr. 6-10	13.3 E	Example 1: The Reaction-Diffusion Equation				
		13.4 E	Example 2: The 2d Navier-Stokes Equation				
			Second Exam				
11	Apr. 13-17	14.1	The squeezing property				
		14.4	The squeezing property for Reaction-Diffusion				
			Equations				
12	Apr. 20-24	14.5	The 2d Navier Stokes equations				
		14.6	Finite-dimensional Exponential attractors				
13	Apr. 27-	15.2.1	The strong squeezing property				
	May 1	15.2.2	Inertial manifolds				
14	May. 4-8	15.4	Inertial manifolds for Reaction-Diffusion				
			Equation				
15	May 11-	15.5.1	Inertial manifolds and the 2d Navier-Stokes				
	15		equation				
	Final Exam						

Grading:	The distribution of grade is as follows:	
	Class test I, II	30%
	Class work (homework assignments)	30%
	Final Exam	40%
	Total	100%