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Abstract

This thesis contains four chapters including the Introduction. It is an analysis

of the structure of the Medvedev and Muchnik lattices of non-empty Π0
1 classes of 2ω.

These two structures are denoted PM and Pw respectively. PM and Pw are countable,

distributive lattices each with a maximum and minimum element.

Chapter 2 has been accepted for publication in Mathematical Logic Quarterly

[4]. Its main result is a proof that every finite distributive lattice can be embedded into

PM and Pw. Further, given any special Π0
1 subset P ⊆ 2ω , any finite distributive lattice

can be embedded into PM and Pw with its maximal element going to P . As a corollary,

any non-zero Muchnik or Medvedev degree is the least upper bound of two strictly lower

degrees. The result can be extended further for PM . We show that given any P >M Q,

any finite distributive lattice can be embedded between P and Q with its top element

going to P .

The second part of Chapter 2 deals with a model theoretic consequence of these

theorems. Here it is shown that both PM and Pw have decidable ∃-theories.

Chapter 3 also deals with lattice embeddings, but this time of countable lattices.

We use similar techniques to those used in [17]. The two main countable lattices that

we deal with are FD(ω) and FB(ω) - the free distributive lattice on ℵ0 generators and

the free Boolean algebra on ℵ0 generators respectively. It is shown that, in PM , FD(ω)

can be embedded below any non-zero element of the lattice. Similarly, we show that in

the Muchnik lattice, FB(ω) can be embedded below any non-zero element.
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The second result is stronger as any countable distributive lattice can be embed-

ded into FB(ω), and this is not the case for FD(ω). We do, however, show that the

distributive lattice of finite (co-finite) subsets of ω can be embedded into PM below any

non-zero element.

Chapter 4 examines the relationship between certain structural properties of Π0
1

classes and their Muchnik and Medvedev degrees. Two structural properties - smallness

and very smallness - are defined and examined. We show that the class of Π0
1 classes

that contain a small (very small) subset forms a non-trivial proper prime ideal in Pw

and PM . We also look at the relationship between smallness, very smallness and the

well-studied property of thinness. We show there are thin sets that are not very small

and vice-versa as well as other results of this sort.

My advisor for this dissertation was Stephen G. Simpson of The Pennsylvania

State University.



v

Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1. Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basic Theory and Notation . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2. Splittings and Finite Embeddings . . . . . . . . . . . . . . . . . . . . 8

2.1 Splitting Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Dense Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The ∃-theories of Pw and PM . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3. Embeddings of Countable Lattices . . . . . . . . . . . . . . . . . . . 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Two Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 FD(ω) ↪→ PM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 FB(ω) ↪→ Pw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 4. Small Π0
1 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Small Π0
1 classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Very Small Π0
1 classes . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Small Π0
1 classes, Measure, and Thinness . . . . . . . . . . . . . . . . 74



vi

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



vii

Acknowledgments

My advisor Stephen Simpson was the prime source of the idea to apply Muchnik

and Medvedev reducibilities to Π0
1 classes. I thank him for his enthusiasm and effort

he has put in to develop this subject. Without his guidance and encouragement this

thesis would never have been finished. Above all I thank him for his dedication to the

Logic program at Penn State and his work to ensure that it remains a stimulating and

productive place to study logic.

I would also like to thank Carl Mummert, Natasha Dobrinen and the rest of the

logic group at Penn State for helping to create a dynamic intellectual atmosphere.

Thanks must also go to my friends in State College. Abhi and Chandra for being

outstanding flatmates, Cathy, Karen, Bull, Johannes and Paloma for helping to keep

my sanity and to my friends and colleagues in the math department for creating a great

place to work and study. And to the kids at Room to Grow for perspective, thanks and

don’t eat playdough.



1

Chapter 1

Introduction and Preliminaries

1.1 Introduction

Let ω denote the set of natural numbers. ωω and 2ω are, respectively, the set of

functions from ω to ω and the set of functions from ω to {0, 1} endowed with the product

topology. 2<ω is the set of finite binary strings.

Definition 1.1.1. A subset, P , of ωω is a Π0
1 class if and only if it can be defined in

the following way:

f ∈ P ⇔ ∀n ∈ ω R(f, n),

where R(f, n) is some recursive predicate.

This dissertation is a contribution to the study of Π0
1 subsets of 2ω. These sets

are an important field of study in recursion theory and have applications to recursive

algebra, analysis, model theory and reverse mathematics, as well as the general areas of

logic and the foundations of mathematics.

Part of their attractiveness is their ubiquitousness. They have characterisations as

prime ideals of recursively enumerable (r.e. ) commutative rings with unity, k-colourings

of recursive graphs, graphs of recursively continuous functions, completions of logical

theories and more (see [6]).



2

Other, useful and enlightening definitions are posssible. For example:

Theorem 1.1.2. P ⊆ ωω is a Π0
1 class if and only if it is the set of infinite paths through

some recursive tree.

A recursive tree is a recursive set of strings of natural numbers, closed under

taking initial segments. Another possible definition of Π0
1 subsets of 2ω is:

Theorem 1.1.3. P ⊆ 2ω is a non-empty Π0
1 class if and only if it is the Stone space of

some recursively presented, countably generated Boolean Algebra.

Here a recursively presented Boolean algebra is a presentation of a Boolean algebra

with a recursively enumerated set of relations - the quotient by an r.e. ideal, of the free

Boolean algebra on countably many generators.

All of these characterisations will be used in the chapters that follow, but the

main conception will be that of viewing Π0
1 classes as paths through infinite trees. We

can also characterise a Π0
1 class a slightly different way. If ω<ω is the full tree of finite

sequences of natural numbers, and σ0, σ1, σ2, . . . is a (usually infinite) recursive sequence

of strings of natural numbers, then the subset of ωω,

ωω r
⋃
i

{f : f ⊃ σi},

is a Π0
1 class.

The basic notions that we will use to study Π0
1 classes will be those of Muchnik

and Medvedev reducibility. These are ideas that apply to subsets of ωω in general, not

just Π0
1 classes, and they seek to generalise the well-studied idea of Turing reducibility.
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X ⊆ ω is Turing reducible to Y ⊆ ω if there is a Turing machine which, given Y as an

oracle, computes X. This idea can be naturally extended to subsets of ωω in at least

two different ways:

• A ⊆ ωω is Medvedev reducible to B ⊆ ωω (A 6M B) if there is a recursive functional

Φ : B → A. That is there is an oracle Turing machine, Φ, which, given an element of B

as an oracle, computes an element of A.

• A ⊆ ωω is Muchnik reducible to B ⊆ ωω (A 6w B) if, for every f ∈ B, there is some

oracle Turing machine that can use f to compute an element of A.

It is apparent from the definition that Medvedev reducibility is stronger than

Muchnik reducibility, and in fact it is strictly stronger. The w subscript for Muchnik

reducibility stands for “weak”.

We write P ≡w Q if and only if P >w Q and Q >w P and similarly for ≡M .

In [24] § 13.7, Rogers discusses Medvedev reduciblity in terms of mass problems.

The idea is that a subset of ωω is the solution set of some mathematical problem.

If problem A is Medvedev reducible to problem B, it means there is some uniform

computable way to convert solutions of B to solutions of A. A would be Muchnik

reducible to B in this context, if each solution of B contained enough information to

compute a solution of A.

Rogers also suggests (§15.1 pg 343 [24]) that Medvedev reducibility be used to

analyse the analytic heirarchy (of which the Π0
1 classes form a subset) in much the same

way that Turing reducibility has been used to investigate the arithmetical heirarchy. The

idea has just recently resurfaced with Simpson suggesting in [13] (Aug. 13 1999) that
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Medvedev and Muchnik reducibility be used to investigate the recursion theoretic nature

of Π0
1 classes -the analogy being made between the upper semi-lattice of r.e. degrees and

the Muchnik degrees of Π0
1 classes. Since then the subject has grown with work having

been done by Simpson [27], [28]; Cenzer and Hinman; [5]; and Slaman [29]. This thesis

is a continuation of the project.

Applying these ideas to Π0
1 classes, a Medvedev reduction is a recursive (and

necessarily continuous) transformation of one Π0
1 class into another. This is essentially

an algebraic concept. Just as every non-empty Π0
1 subclass of 2ω is the Stone space

of a Boolean algebra, each Medvedev reduction is a recursive Boolean homomorphism

of their duals. More precisely, there is a contravariant bijective functor between the

categories of recursively presented Boolean algebras and recursive homomorphisms and

the category of non-empty Π0
1 classes and Medvedev reductions. The entire part of this

thesis that deals with Medvedev reducibility can be regarded as a contribution to the

study of recursively presented Boolean algebras and their homomorphisms.

Muchnik reducibility has a much different flavour. We are concerned here only

with the Turing degrees of the elements of the Π0
1 class. In this, it is more like traditional

recursion theory. It may be thought that nothing is to be gained by restricting ourselves

to Π0
1 subsets of 2ω as opposed to arbitrary subsets of ωω. However, earlier work by

Jockusch and Soare [17] [16] and others, has shown that indeed significant things can

be said about the Turing degrees of elements of Π0
1 classes. Furthermore, Simpson’s

lemma 4.2.13 in Chapter 4 provides an interesting connection between the two types of

reducibility and I predict that it will evolve into a significant linchpin of the subject.
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1.2 Basic Theory and Notation

This is a summary of basis results in the field, contained in [27]. Both 6M and

6w are pre-orders on the class of subsets of ωω. Degree structures are induced in the

same way as for the Turing degrees, viz.,

degw(X) = {Y : Y ≡w X}

and similarly for degM (X). A canonical partial order on the degrees is then defined by

degw(X) > degw(Y ) if and only if X >w Y

and likewise for the Medvedev degrees.

Let PM and Pw denote the degree structures of the non-empty Π0
1 subsets of 2ω

under Medvedev and Muchnik reducibility respectively. PM and Pw form distributive

lattices with maximum and minimum elements. If P and Q are non-empty Π0
1 subsets of

2ω, the join and meet of their degrees in both of these lattices are the respective degrees

of:

P ∨Q = {f ⊕ g : f ∈ P and g ∈ Q},

and,

P ∧Q = {0af : f ∈ P} ∪ {1af : f ∈ Q},
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where,

iaf(n) =


i if n = 0,

f(n− 1) otherwise,

and f, g ∈ ωω, then f ⊕ g is defined by:

f ⊕ g(n) =


f(n/2) if n is even

g((n − 1)/2) if n is odd

If A and B are any two subsets of ω, then the separating class of A and B,

denoted S(A,B), is the set {X : X ⊇ A, and X ∩ B = ∅}. If A and B are r.e. then

S(A,B) is a Π0
1 class.

In both lattices, the separating class of {n : {n}(n) ↓= 0} and {n : {n}(n) ↓= 1}

has maximum degree [27]. The class of all completions of Peano arithmetic also has

maximum degree. Any subset of 2ω with a recursive element is a representative of the

minimum degree. A special Π0
1 class is one that is non-empty and has no recursive

element. Any recursively bounded Π0
1 subset of ωω is recursively homeomorphic to (and

therefore Medvedev and Muchnik equivalent to) a Π0
1 subset of 2ω , so everything that

follows can be generalised to recursively bounded Π0
1 subsets of ωω.

The Turing degrees of elements of Π0
1 sets have been investigated in [17] and [16]

where the term special Π0
1 set is used. Special Π0

1 sets are defined as being non-empty

and having no recursive members. They will play an important role in this paper.
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If f ∈ ωω, then f− denotes the function, n 7→ f(n+ 1)

For standard recursion-theoretic notation see [30] or [24] or [21].

DNRk is the Π0
1 class,

{f : ∀n ∈ ω f(n) < k and f(n) 6= {n}(n)}

The first important important theorem in the subject is Friedberg and Jockusch’s

proof [15] that DNRk+1 ≡w DNRk, for all k > 2, but that DNR2 >M DNR3 >M

DNR4 . . . . This work was done before Pw and PM were explicitly defined.

Simpson proves in [27] that any two Medvedev complete degrees are recursively

homeomorphic. This result will be used in Chapter 4. Since then, Cenzer and Hinman

have shown that the Medvedev lattice is dense, a result that I improve upon in Chapter

2 by using different methods. In an as yet unpublished paper [29], Simpson and Slaman

show that every non-zero Muchnik degree contains more than one Medvedev degree and

that there is no 6M -maximum in the class of Π0
1 classes of positive measure.
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Chapter 2

Splittings and Finite Embeddings

2.1 Splitting Theorems

Theorem 2.1.1. Let R and T be any special Π0
1 subsets of 2ω. Then there exist two

other (necessarily special) Π0
1 subsets of 2ω, R0 and R1, such that:

i. R0, R1 <w R,

ii. R0 ∨R1 ≡w R,

iii. R0, R1 6>w T.

The above also holds for the same R0 and R1 with <M and ≡M replacing <w and ≡w.

The essence of the theorem is contained in the following lemma. The proof of

Theorem 2.1.1 will come after the proof of the lemma.

Lemma 2.1.2. Let P be any special Π0
1 subset of 2ω and A be any r.e. set. Then there

exist r.e. sets, A0 and A1, such that:

i. A0 ∪A1 = A, A0 ∩A1 = ∅,

ii. for each i ∈ {0, 1} and f ∈ P, Ai 6>T f.

Letting 〈., .〉 : ω2 → ω be a recursive bijection, we will explicitly construct each

Ai to satisfy all of the following requirements:

R〈e,i〉 ≡ {e}
Ai 6∈ P.
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Notation and Conventions

• If P ⊆ 2ω is a given non-empty Π0
1 class, 〈Ps〉s∈ω will be a recursive sequence of

nested clopen subsets of 2ω such that P =
⋂
s Ps.

• If P is a Π0
1 class, let TP be a fixed recursive binary tree such that P is exactly the

set of paths through TP . TP,s will be a uniformly recursive sequence of nested trees such

that, for each s, the set of paths through TP,s is Ps.

• u(A; i,m, s) is the maximum use made of A ⊆ ω in the computation {i}A
s

(m). If

f ∈ 2ω then u(A;A ⊕ f, i,m, s) is the maximum use made of A in the computation

{i}A⊕f
s

(m).

• [n] is the set {0, 1, 2, . . . n− 1} and {i}[n] is a partial sequence of length n. That is,

{i}[n](m) =


{i}(m) if m < n and {i}(m)↓,

↑ otherwise.

To say {i}[n] ∈ TP is to say that for all m < n, {i}(m)↓ and

〈{i}(0), {i}(1), . . . {i}(n − 1)〉 ∈ TP .

• f |u = f restricted to [u]. A|u = χA|u.

• If τ ∈ 2<ω, then |τ | is the length of τ .
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The method we will use is very similar to that used to prove Sacks’ Splitting

Theorem for the r.e. degrees, and we will closely follow the exposition in Soare ([30]

Theorem VII.3.2). Lemma 2.1.2 may also be seen as a strengthening of Theorem 2 in

[16].

The Construction

Let P , A and i be as in Lemma 2.1.2 and we fix a recursive enumeration of A

such that As+1 r As has exactly one element for each s. For each i we will define a

recursive sequence of finite sets, 〈Ai
s
〉s∈ω, and Ai will then be

⋃
s A

i
s
.

Stage 0: Ai0 = ∅.

Stage s+1: Assume Ai
s

has been defined. We can then make the following defini-

tions:

Length-of-agreement functions:

ls(e, i) := max{y : {e}A
i
s

s
[y] ∈ TP }.

Restraint functions:

rs(e, i) := max{u(Ai
s
; e, x, s) : x 6 ls(e, i)}.

Injury sets:

I〈e,i〉 := {x : ∃s x ∈ Ai
s+1rA

i
s

and x 6 rs(e, i)}.

If x ∈Ai
s+1 rA

i
s

and x 6 rs(e, i), we say R〈e,i〉 is injured at stage s+ 1.

Let x be the unique element of As+1 r As. Choose the least 〈e, i〉 < s such that

x 6 rs(e, i) and enumerate x into A1−i
s+1. That is, let A1−i

s+1 = A1−i
s
∪{x}. Set Ai

s+1 = Ai
s

and say R〈e,i〉 receives attention at stage s+ 1.
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If there is no such 〈e, i〉, then enumerate x into A0
s+1 and leave A1

s
unchanged.

Lemma 2.1.3. If {e}A
i
∈ P , then lims ls(e, i) =∞.

Proof. Suppose {e}A
i
∈ P and let n ∈ ω be arbitrary. Then let u = max{u(Ai; e,m) :

m < n} and now take s′ so large that both the following hold:

i. Ai
s′ |u = Ai|u,

ii. ∀m < n {e}A
i

s′ (m)↓ .

Then {e}A
i
s

s
[n] = {e}A

i
[n] ∈ TP and ls(e, i) > n for all s > s′. As n was arbitrary,

the result follows.

Lemma 2.1.4. For all e ∈ ω and i ∈ {0, 1},

I. I〈e,i〉 is finite,

II. {e}A
i
6∈ P,

III. r(e, i) := lims rs(e, i) exists and is finite.

Proof. Take any e ∈ ω and i ∈ {0, 1}. As induction hypothesis assume I., II., and III.

hold for all 〈e′, i′〉 < 〈e, i〉.

I. By III. we can choose t and r such that for all 〈e′, i′〉 < 〈e, i〉 and s > t,

rs(e
′, i′) = r(e′, i′) and r > r(e′, i′). Now take v > t such that Av |r = A|r. So R〈e,i〉

cannot be injured after stage v and I. holds for 〈e, i〉.

II. Assume {e}A
i
∈ P . To get a contradiction we will construct a recursive path

f ∈P . Let s′ be such that R〈e,i〉 is never injured after stage s′. Fix any n ∈ ω and we will
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recursively compute f(n). Using I., lims ls(e, i) = ∞ so choose the least s = s(n) > s′

such that ls(e, i) > n. If x is enumerated into Ai after stage s, then it must be greater

than u(Ai
s
; e, n, s). So {e}A

i
s

s
(n) = {e}A

i
(n). Set f(n) equal to {e}A

i
s

s
(n) for all n ∈ ω.

s is clearly a recursive function of n, so f itself is recursive and an element of P .

III. Let n be maximum such that {e}A
i
[n] ∈ TP . Choose s′ so large that for all

s > s′,

i. {e}A
i
s

s
[n] = {e}A

i
[n],

ii. Ai
s
|u = Ai|u where u = max{u(Ai; e,m) : m < n},

iii. R〈e,i〉 is not injured at stage s.

If {e}A
i
s

s
(n) ↑ for all s > s′, then u(Ai

s
; e, n, s) = 0 and rs(e, i) = rs′(e, i) for all

s > s′. So lims rs(e, i) exists. On the other hand, suppose {e}
Ai
t

t (n) ↓ for some t > s′.

If x ∈ Ai r Ai
t

then x ∈ Ai
v+1 r Ai

v
for some v > t. As R〈e,i〉 is not injured at any

stage s > t, x > rv+1(e, i). But rv+1(e, i) = rt(e, i) by conditions i. and ii. above. So

x > u(Ai
t
; e, n, t) and the computation {e}

Ai
t

t (n) is preserved forever. Therefore, for all

s > t,

{e}A
i
s

s
[n+ 1] = {e}A

i
[n+ 1] 6∈ TP .

So ls(e, i) = lt(e, i) = n and u(Ai
s
; e, x, s) = u(Ai

t
; e, x, t) for all x 6 n and s > t. r(e, i)

then exists by the definition of rs(e, i).

The construction makes it clear that A = A0 ∪ A1 and A0 ∩ A1 = ∅, so Lemma

2.1.2 follows immediately from Lemma 2.1.4. Now we are in a position to prove Theorem

2.1.1. We will prove the Medvedev and Muchnik cases simultaneously.
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Proof of Theorem 2.1.1. Let R and T be given. Suppose A and B be r.e. sets such that

S = S(A,B) is Medvedev (and therefore Muchnik) complete.

Take the P in Lemma 2.1.2 to be R∧T and A0 and A1 be as in the same lemma.

Let Si = S(Ai,B) for each i ∈ {0, 1}. Note that if A0 ⊆ X ⊆ B and A1 ⊆ Y ⊆ B, then

A ⊆ X ∪ Y ⊆ B, so it is clear that S 6M S0 ∨ S1 and therefore that S ≡M S0 ∨ S1

and S ≡w S0 ∨ S1.

Set Ri = R ∧ Si. It is immediate that Ri 6M R and Ri 6w R and because

Ai ∈ Si, item ii. of Lemma 2.1.2 implies Si 6>w R ∧ T (and Si 6>M R ∧ T ). Therefore,

Si 6>w R (Si 6>M R). So in fact, Ri <w R (Ri <M R) for each i ∈ {0, 1}. Now we can

make the following calculation:

R0 ∨R1 = (R ∧ S0) ∨ (R ∧ S1)

≡M R ∧ (R ∨ S0) ∧ (R ∨ S1) ∧ S

≡M R ∧ (R ∨ S0) ∧ (R ∨ S1).

But,

R >M R ∧ (R ∨ S0) ∧ (R ∨ S1) ≡M R ∨ (R ∧ S0 ∧ S1) >M R,

so R0 ∨ R1 ≡M R and R0 ∨ R1 ≡w R. This gives us the required splitting. Finally,

Ri 6>w R ∧ T so Ri 6>w T (Ri 6>M T ) for each i.

Lemma 2.1.2 is true even when P is taken to be a Π0
1 subset of ωω. This can be

seen in two ways. First, the assumption of recursive boundedness is never used in the

proof, so the generalisation follows immediately from the proof of the lemma. Second, via
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a theorem of Jockusch and Soare (Corollary 1.3, [16]) which states that for any special

Π0
2 class, P , there is a special, recursively bounded Π0

1 class, Q, such that

{degT (f) : f ∈ Q} ⊇ {degT (f) : f ∈ P}.

In this more general form, the lemma implies Sacks’ Splitting Theorem. Let C be any

non-recursive ∆0
2 set. Then {C} is a special Π0

2 class. Take Q as above and then Lemma

2.1.2 easily implies Sacks’ theorem.

2.2 Dense Splitting

In the Medvedev case, we can improve Theorem 2.1.1 considerably by proving the

following refinement of Lemma 2.1.2:

Lemma 2.2.1. Let P and Q be non-empty Π0
1 subsets of 2ω such that P >M Q, and

let A be any r.e. set. Then there exist r.e. sets, A0 and A1, such that:

i. A0 ∪A1 = A, A0 ∩A1 = ∅,

ii. for each i ∈ {0, 1}, {Ai} ∨Q 6>M P.

We will use this lemma as we used Lemma 2.1.2 - this time to prove that P can be split

above Q. This is in contrast to the r.e. degrees, where Lachlan’s “monster” theorem [18]

states that such dense splitting fails.

The requirements for the construction will be:

R∗〈e,i〉 ≡ {e} : {Ai} ∨Q9 P.
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We will make similar definitions to before. The compactness of Π0
1 subsets of 2ω ensures

that the following are well defined:

Length-of-agreement functions:

l∗
s
(e, i) := max{y : for all f ∈ Qs, {e}

Ai
s
⊕f

s
[y] ∈ TP }.

Restraint functions:

r∗
s
(e, i) := max{u(Ai

s
;Ai
s
⊕ f, e, x, s) : x 6 l∗

s
(e, i), f ∈ Qs}.

Injury sets:

I∗〈e,i〉 := {x : ∃s x ∈ Ai
s+1rA

i
s

and x 6 r∗
s
(e, i)}.

If x ∈Ai
s+1 rA

i
s

and x 6 r∗
s
(e, i), we say R∗〈e,i〉 is injured at stage s+ 1.

Note that l∗
s
(e, i) and r∗

s
(e, i) are recursive in e, i and s.

Let x be the unique element of As+1 r As. Choose the least 〈e, i〉 < s such that

x 6 r∗
s
(e, i) and enumerate x into A1−i

s+1.

If there is no such 〈e, i〉, then enumerate x into A0
s+1.

Lemma 2.2.2. If {e} : {Ai} ∨Q→ P , then lims l
∗
s
(e, i) =∞.

Proof. Suppose {e} : {Ai} ∨Q→ P and let n∈ω be arbitrary. Then let:

u = max{u(f ;Ai ⊕ f, e,m) : m < n, f ∈ Q},

(again this exists by compactness)

v = max{u(Ai;Ai ⊕ f |u+1, e,m) : m < n, f ∈ Q},

w = least k, Ai
k
|v+1 = Ai|v+1,

t = least k, {τ ∈ TQ,k : |τ | = u+ 1} = {τ ∈ TQ : |τ | = u+ 1}.
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Then for all s > max{w, t} such that {e}A
i
s
⊕f

s
(m) ↓ for all m < n, we have, {e}A

i
s
⊕f

s
[n] =

{e}A
i⊕f [n] ∈ TP for all f ∈Qs. That is l∗

s
(e, i) > n and, as nwas arbitrary, lims ls(e, i) =

∞.

Lemma 2.2.3. For all e ∈ ω and i ∈ {0, 1},

I. I∗〈e,i〉 is finite,

II. {e} : {Ai} ∨Q9 P,

III. r∗(e, i) := lims r
∗
s
(e, i) exists and is finite.

Proof. Take any e ∈ ω and i ∈ {0, 1}. As induction hypothesis assume I., II., and III.

hold for all 〈e′, i′〉 < 〈e, i〉.

I. By III. we can choose t and r such that for all 〈e′, i′〉 < 〈e, i〉 and s > t,

rs(e
′, i′) = r(e′, i′) and r > r(e′, i′). Now take v > t such that Av |r = A|r. So R∗〈e,i〉

cannot be injured after stage v and I. holds for 〈e, i〉.

II. Assume {e}A
i⊕f ∈ P for all f ∈ Q. Fix any n ∈ ω. Using I., let s′ be such that

R∗〈e,i〉 is never injured after stage s′. lims l
∗
s
(e, i) =∞, so choose the least s = s(n) > s′

such that l∗
s
(e, i) > n. If x is enumerated into Ai after stage s, then it must be greater

than u(Ai
s
;Ai
s
⊕ f, e, n, s) for all f ∈ Q. So {e}A

i
s
⊕f

s
(n) = {e}A

i⊕f (n) for all f ∈ Q.

s is a recursive function of n, so f 7→ {e}A
i
s
⊕f

s
describes a recursive functional from Q

into P , contradicting the fact that P >M Q.

III. Let n be maximum such that for all f ∈ Q, {e}A
i⊕f [n] ∈ TP . Using the

compactness of Q, choose s′ so large that for all s > s′,
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i. {e}A
i
s
⊕f

s
[n] = {e}A

i⊕f [n], for all f ∈ Q,

ii.Ai
s
|u = Ai|u where u = max{u(Ai;Ai ⊕ f, e,m) : m < n, f ∈ Q}

iii. R∗〈e,i〉 is not injured at stage s.

If {e}A
i
s
⊕f

s
(n) ↑ for all s > s′ and f ∈ Q, then u(Ai

s
;Ai
s
⊕ f, e, n, s) = 0 and

r∗
s
(e, i) = r∗

s′(e, i) for all s > s′. So lims r
∗
s
(e, i) exists. On the other hand, suppose

{e}
Ai
t
⊕f

t (n) ↓ for some t > s′ and f ∈ Q. As before, R∗〈e,i〉 is not injured at any stage

> s′, so the computation is preserved forever. Therefore l∗
s
(e, i) = n for all s > t also as

before.

By compactness, there is a v such that for all f ∈ Q, x 6 n and s > t,

{e}A
i
s
⊕f

s
(x) ' {e}

Ai
t
⊕f

t (x)

' {e}
Ai
t
⊕f |v

t (x).

Let k > t be a stage when {f |v : f ∈ Qk} = {f |v : f ∈ Q} and then for all s > k, f ∈ Qs

and x 6 n, u(Ai
s
;Ai
s
⊕ f, e, x, s) = u(Ai

k
;Ai
k
⊕ f, e, x, k) and l∗

s
(e, i) = n. Finally we

have, for all s > k,

r∗
s
(e, i) = max{u(Ai

s
;Ai
s
⊕ f, e, x, s) : x 6 l∗

s
(e, i), f ∈ Qs}

= max{u(Ai
k

;Ai
k
⊕ τ, e, x, k) : x 6 n, τ ∈ TQ, |τ | = v}

which is the maximum of a fixed finite set. Therefore lims r
∗
s
(e, i) exists and is finite.
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This also concludes the proof of Lemma 2.2.1, the main purpose of which is to

prove the following “dense splitting” theorem.

Theorem 2.2.4. For any three non-empty Π0
1 subsets of 2ω, R, Q and T such that

R >M Q, and R ∧ T >M Q, there exist two other Π0
1 subsets of 2ω, R0 and R1 such

that:

i. R0, R1 <M R,

ii. R0 ∨R1 ≡M R,

iii. R0, R1 >M Q,

iv. R0, R1 6>M T

Proof. As in Theorem 2.1.1, let S = S(A,B) be Medvedev complete. Take R ∧ T to be

the P of Lemma 2.2.1. Let A0 and A1 be as in Lemma 2.2.1, and Si = S(Ai,B) for

i ∈ {0, 1}. Set Ri = R ∧ (Si ∨ Q). Ri 6M R, and as Ai ∈ Si, Lemma 2.2.1 implies

Si ∨Q 6>M R. So Ri <M R. Also,

R0 ∨R1 = (R ∧ (Q ∨ S0)) ∨ (R ∧ (Q ∨ S1))

≡M R ∧ (Q ∨ S0 ∨ S1)

≡M R

As R0 and R1 must be Medvedev incomparable, and Ri 6>M T for each i, the

theorem follows.

Theorem 2.2.4 implies immediately the density of PM . The proof given here,

however, is significantly different from the ones given in [5] and [3].
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Theorems 2.1.1 and 2.2.4 can be extended even further to a “generalised splitting”

theorem and a “generalised dense splitting” theorem respectively:

Theorem 2.2.5. Let P be any special Π0
1 subset of 2ω and L be any finite distributive

lattice. Then there is a lattice embedding of L into Pw sending the maximum element of

L to the Muchnik degree of P .

Theorem 2.2.6. Given Π0
1 subsets of 2ω, P >M Q, and any finite distributive lattice,

L, there is a lattice embedding of L into PM between P and Q taking the maximum

element of L to the Medvedev degree of P .

Theorems 2.2.5 and 2.2.6 can be easily extended to include a condition on T

similar to the ones in Theorems 2.1.1 and 2.2.4. These extended theorems then have

Theorems 2.1.1 and 2.2.4 as corollaries if L is taken to be the four element diamond

lattice. The proofs of Theorems 2.2.5 and 2.2.6 will use the following lattice-theoretic

lemma.

Lemma 2.2.7. Every finite distributive lattice can be lattice-embedded into a free finite

distributive lattice, in a way that preserves the maximum element.

Proof. Let FD(m) be the free distributive lattice with m generators and let Bn denote

the lattice of subsets of N = {0, 1, 2, . . . , n− 1} under ∪ and ∩. Let L be a distributive

lattice with operations ∨ and ∧.

First observe that, using a representation theorem for finite distributive lattices

(Theorem II.1.9 [14]), L can be represented as a sublattice of Bn for some n (in fact n

is the number of join-irreducible elements of L) and that the maximum element of L is



20

represented by N - the maximum element of Bn . So it is enough to embed Bn into FD(n)

preserving the maximum element. We will constuct an embedding, ε : Bn ↪→ FD(n),

which preserves the least element of Bn. As both Bn and FD(n) are self dual, it is easy

to convert this to an embedding that preserves the maximum.

Let FD(n) be freely generated by Y = {y0, y1, . . . yn−1} and let ŷi denote∧
j 6=i yj . If Z ⊆ N , we define,

ε(Z) =



∨
i∈Z

ŷi if Z 6= ∅

∧
i∈N

yi if Z = ∅

∧
i∈N yi is the minimum of FD(n) so ε preserves the minimum. It is also clear

that ε(Z1∪Z2) = ε(Z1)∨ε(Z2). To see that ε preserves meets, note that ŷi∧ŷj =
∧
i∈N yi

if i 6= j and that the distributive laws then give,

∨
i∈Z1

ŷi ∧
∨
i∈Z2

ŷi =
∨

i∈Z1∩Z2

ŷi.

The proof that ε is one-to-one is also straightforward - if ε(X) = ε(Y ) and k ∈

X r Y then,

ŷk 6
∨
i∈X

ŷi =
∨
i∈Y

ŷi 6 yk,

contradicting freeness (see Theorem II.2.3 in [14]).
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The proofs of Theorems 2.2.5 and 2.2.6 now proceed as before. First, analogues

of Lemmas 2.1.2 and 2.2.1 are established (Lemmas 2.2.8 and 2.2.9) and then Theorems

2.2.5 and 2.2.6 follow.

Lemma 2.2.8. Let P be any special Π0
1 subset of 2ω and A be any r.e. set. Then there

exist r.e. sets, Ai, 0 6 i 6 n− 1, such that:

i. {Ai : 0 6 i 6 n− 1} forms a partition of A,

ii. for each i ∈ {0, 1, . . . n− 1} and f ∈ P ,
⊕
j 6=i

Aj 6>T f.

Proof. (sketch)

The proof will be virtually the same as Lemma 2.1.2. The requirements will be:

R〈e,i〉 ≡ {e} :
{⊕
j 6=i

Aj
}
9 P,

and corresponding changes are made to the definitions of the length-of-agreement func-

tion, restraint function and injury set. To construct the partition, one takes the least

〈e, i〉 < s such that x 6 rs(e, i) and enumerates x into Ai
s+1 (or A0

s+1 if no such 〈e, i〉

exists).

Now Theorem 2.2.5 can be proved.

Proof. (Theorem 2.2.5) The lemma is sufficient to prove that FD(n) can be embedded

into Lw below P with the top element going to P . In fact we show that {P ∧ Si : 0 6

i 6 n − 1} freely generates FD(n) where, as before, Si = S(Ai,B). To do this, it is

sufficient to show that for all non-empty I ( {0, 1, 2 . . . n− 1},
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P ∧
∨
i∈I

S
i 6>w P ∧

∧
i 6∈I

S
i
,

(again use Theorem II.2.3 in [14]). Fix I as above. The requirements imply that{⊕
i∈I A

i} 6>w P as I is a proper subset of {0, 1, 2 . . . n − 1}. But if
{⊕

i∈I A
i} >w∧

i 6∈I S
i, then

{⊕
i∈I A

i} >w Sj for some j 6∈ I. This implies

{⊕
i 6=j

Ai
}
>w

∨
i<n

Si ≡w S(A,B) >w P,

contradicting R〈e,j〉. Therefore
{⊕

i∈I A
i} 6>w P ∧

∧
i 6∈I S

i and so P ∧
∨
i∈I S

i 6>w

P ∧
∧
i 6∈I S

i, as required. The top element of FD(n) is P ∧
∨
i<n S

i ≡w P . Lemma

2.2.7 then completes the proof.

To prove Theorem 2.2.6 we need the following slightly more complex lemma.

Lemma 2.2.9. Let P and Q be non-empty Π0
1 subsets of 2ω such that P >M Q, and

let A be any r.e. set. Then there exist r.e. sets, Ai, 0 6 i 6 n− 1, such that:

i. {Ai : 0 6 i 6 n− 1} forms a partition of A,

ii. for each non-empty J ( {0, 1, . . . n− 1},

{
⊕
i∈J

Ai} ∨Q 6>M P ∧
∧
i 6∈J

Si.
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Proof. (sketch) Let AJ =
⊕
i∈J A

i and AJ
s

=
⊕
i∈J A

i
s
. Let TJ be a recursive tree

whose set of paths is P ∧
∧
i 6∈J S

i and TJ
s

be a recursive tree whose set of paths is

Ps ∧
∧
i 6∈J S

i
s
. The requirements for the construction are:

R〈e,J〉 ≡ {e} :
{
AJ
}
∨Q9 P ∧

∧
i 6∈J

Si.

The length-of-agreement function, restraint function and injury sets are:

ls(e, J) := max{y : for all f ∈ Qs, {e}
AJ
s
⊕f

s
[y] ∈ TJ

s
},

rs(e, J) := max{u(Ai
s
;AJ
s
⊕ f, e, x, s) : i ∈ J, x 6 ls(e, J), f ∈ Qs},

I〈e,J〉 := {x : ∃s ∃i ∈J x ∈ Ai
s+1rA

i
s

and x 6 rs(e, J)}.

As before, to construct the partition, at stage s, one takes the least 〈e, J〉 < s such that

x 6 rs(e, J) and the least i 6∈ J and enumerates x into Ai
s+1 (or into A0

s+1 if no such

〈e, J〉 exists). The equivalents of Lemmas 2.2.2 and 2.2.3 are then proved in the same

way.

Proof. (Theorem 2.2.6.) It will be shown that {(P ∧ Si) ∨Q : 0 6 i 6 n− 1} generates

FD(n) above Q. Straightforward manipulations show that P is the top element of this

copy of FD(n). Let J be a non-empty, proper subset of {0, 1, 2, . . . n− 1}. Then,

Q ∨
{
AJ
}
6>M P ∧

∧
i 6∈J S

i

⇒ Q ∨
∨
i∈J S

i 6>M P ∧
∧
i 6∈J S

i

⇒
∨
i∈J Q ∨ S

i 6>M
∧
i 6∈J P ∧ S

i

⇒
∨
i∈J (P ∧ Si) ∨Q 6>M

∧
i 6∈J (P ∧ Si) ∨Q.
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Applying Theorem II.2.3 in [14] again is then enough to finish the proof.

2.3 The ∃-theories of Pw and PM

Definition 2.3.1. If L′ is a first-order language in the predicate calculus and M is an

L′-structure, then the ∃-theory of M in L′ is the set of all L′-sentences of the form

∃x1x2 . . . xnφ (where φ is a quantifier-free formula) that are true in M. If M |=

∃x1x2 . . . xnφ, then φ is said to be satisfiable in M. An ∃-theory is decidable if the

set of Gödel numbers of its elements is recursive.

The main theorem to be proved in this section is:

Theorem 2.3.2. The ∃-theories of Pw and PM in the language 〈∧,∨,6,=,0,1〉 are

identical and decidable.

What follows is a proof only that the ∃-theory of Pw in the language 〈∧,∨,=,0,1〉

is decidable. The proof of the PM case will be the same and it will be clear that the

decision procedure for the ∃-theory of PM is identical to the decision procedure for the

∃-theory of Pw - implying that their ∃-theories are the same. 6 can be defined in terms

of ∧ and = so Theorem 2.3.2 will follow.

In order to avoid confusion between propositional connectives and lattice opera-

tions we will use · and + for the lattice operations ∧ and ∨.
∏

and
∑

will be used to

denote general products and sums.

Let L01 be the language 〈·,+,=,0,1〉 with intended interpretation in Pw as ∧,

∨, = and the minimum and maximum elements of Pw respectively. The languages

L = 〈·,+,=〉 and L1 = 〈·,+,=,1〉 will be restrictions of L01. Two L01-terms, σ and
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τ , with free variables among x1, x2 . . . xn are said to be equivalent (over Pw) if Pw |=

∀x1x2 . . . xn(τ = σ). Two formulas, ψ and φ, with free variables among x1, x2, . . . xn are

equivalent (over Pw) if Pw |= ∀x1x2 . . . xn(φ↔ ψ).

Lemma 2.3.3. The ∃-theory of Pw in L is decidable.

Proof. One can argue from Theorem 2.2.5 that a quantifier-free L-formula, ψ, is satis-

fiable in Pw if and only if it is satisfiable in some finite distributive lattice. As there

are only finitely many distributive lattices of any given finite size, determining if ψ is

satisfiable in a distibutive lattice of size m ∈ N is a finite task. To decide, then, if ψ

is satisfiable in Pw it is enough to compute, uniformly in ψ, an m such that if ψ is

satisfiable in some distributive lattice, it is satisfiable in a distributive lattice of size at

most m. We do this now. m will depend only on the number of free variables in ψ.

Suppose ψ is as above with free variables x1, x2, . . . xn. Then ψ is equivalent to

a formula of the form:

∨
i∈I

[ ∧
j∈Ji

(τij = σij) ∧
∧
j∈Ji

(τij 6= σij)
]
,

where τij, σij, τij and σij are L-terms and I, Ji and Ji are finite sets. If it is decidable

whether or not each disjunct of ψ is satisfiable in Pw, then it is decidable if ψ is satisfiable.

So without losing generality, we can assume ψ is of the form:

∧
j∈J

(τj = σj) ∧
∧
j∈J

(τj 6= σj),
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As before, let FD(n) denote the free distributive lattice on n generators. If {τk =

σk : k 6 m} is a finite set of lattice relations on FD(n), then we can form the quotient

lattice, {[σ] : σ ∈ FD(n)}, where [σ] = [τ ] if and only if σ can be transformed formally

into τ by applications of the axioms of distributive lattices and substitutions described

by the relations. The lattice operations on the quotient lattice are then canonically

induced. The claim is that if ψ is satisfiable in some lattice, then it is satifiable in the

quotient of FD(n) by {τj = σj : j ∈ J}.

To see this, note that
∧
j∈J (τj = σj) is satisfiable in this quotient lattice, and if

some subformula of ψ of the form τj 6= σj were not satisfied in the quotient lattice, then

τj could be transformed into σj by applications of distributive laws and the relations

{τj = σj : j ∈ J}. But this could be done in any distributive lattice satisfying {τj =

σj : j ∈ J} and so ψ would not be satisfiable in any distributive lattice. Therefore, if

ψ is satisfiable in some distributive lattice, it is satisfiable in the quotient of FD(n) by

{τj = σj : j ∈ J}.

The cardinality of the quotient lattice is less than the cardinality of FD(n) which

is bounded by 22n−2 (Theorem II.2.1(iii) [14]). So this is the required m.

Lemma 2.3.4. The ∃-theory of Pw in L1 is decidable.

Proof. Let ψ be a quantifier-free L1-formula with x1, x2, . . . xn its free variables. As

above, we can assume ψ is of the form:

∧
j∈J

(τj = σj) ∧
∧
j∈J

(τj 6= σj).
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Every such L1-formula can be transformed using standard manipulations into an

equivalent one of the form:

∧
k∈K

(νk = 1) ∧
∧
k∈K

(ν
k
6= 1) ∧ φ

where φ is a quantifier-free L-formula, νk and ν
k

are L-terms, and K and K are finite

index sets. Let ψ∗ be an L-formula formed from ψ by replacing every occurrence of 1

by
∑
i6n xi. The claim is that ψ is satisfiable in Pw if and only if ψ∗ is. Lemma 2.3.3

then gives the required result.

Suppose ψ∗ is satisfiable in Pw. Then it is satisfiable in some quotient, L, of

FD(n). The element
∑
i6n[xi] is the maximum of L and by Theorem 2.2.5 we can

embed L into Pw with
∑
i6n[xi] mapping to 1. So ψ∗ ∧

∑
i6n xi = 1 is satisfiable in

Pw and therefore so is ψ.

Conversely, suppose ψ is satisfied in Pw by a given assignment of variables. There

are two cases based on the form of ψ.

Case 1. K = ∅. Let φ be satisfiable in some finite distributive lattice, L, and let p be

an intermediate element of Pw. Then L can be embedded into Pw below p (Theorem

2.2.5). Under the induced assignment of variables, ν
k
6= 1 is satisfied for all k ∈ K. So

ψ∗ is satisfiable.

Case 2. K 6= ∅. νk = 1 formally implies
∑
i6n xi = 1. So any assignment of variables

that satisfies νk = 1 will satisfy
∑
i6n xi = 1. This also means that for all k ∈ K,

ν
k
6=
∑
i6n xi under the given assignment. So ψ∗ is satisfiable in Pw.
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Theorem 2.3.5. The ∃-theory of Pw in L01 is decidable.

Proof. An effective procedure will be described that, given a quantifier-free formula, ψ,

of L01, will produce a quantifier-free formula, ψ1, of L1 which is satisfiable in Pw if and

only if ψ is. Lemma 2.3.4 will then complete the proof.

Suppose ψ is as above with free variables x1, x2, . . . xn. As before, we can assume

ψ is of the form:

∧
j∈J

(τj = σj) ∧
∧
j∈J

(τj 6= σj), (2.1)

for some finite sets, J and J . ψ is then equivalent to a formula of the form

∧
k∈K

(νk = 0) ∧
∧
k∈K

(ν
k
6= 0) ∧ φ, (2.2)

where K and K and are finite sets, φ is a quantifier-free L1-formula and νk and ν
k

are

L-terms.

Case 1. K = ∅. Suppose φ is satisfiable in the finite lattice, L. The proof of Lemma

2.2.5 describes an embedding of L into Pw strictly above 0. So ν
k
6= 0 will be satisfied

for all k ∈ K by such an embedding. So ψ is satisfiable in Pw if and only if φ is.

Case 2. K 6= ∅. For each k ∈ K, νk is equivalent to
∑
s∈S

∏
t∈Ts yst where yst ∈

{x1, x2, . . . xn} and Ts and S are some finite index sets. Using the fact that Pw |=

∀x, y[x · y = 0 ↔ (x = 0 ∨ y = 0)], we can calculate that νk = 0 is equivalent to∧
s∈S

∨
t∈Ts(yst = 0). So ψ is equivalent to a formula of the form
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∧
m∈M

∨
p∈Pm

(ymp = 0) ∧
∧
k∈K

(ν
k
6= 0) ∧ φ. (2.3)

Putting this in disjunctive normal form, and re-indexing appropriately, we get

something of the form

∨
u∈U

[ ∧
v∈Vu

(yuv = 0) ∧
∧
k∈K

(ν
k
6= 0) ∧ φ]. (2.4)

Again it is enough to decide the satisfiablity of each disjunct, so we assume ψ is

equivalent to a formula of the form

∧
v∈V

(yv = 0) ∧
∧
k∈K

(ν
k
6= 0) ∧ φ. (2.5)

Let ψ∗ be the formula obtained by replacing, for all v ∈ V , each occurrence of yv

with 0. ψ∗ is satisfiable if and only if ψ is, and ψ∗ is equivalent to a formula of the same

form as Equation (2.1) but with strictly fewer variables.

By iterating the above process we get, finally, either 0 = 0 or a formula to which

Case 1 applies.
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Chapter 3

Embeddings of Countable Lattices

3.1 Introduction

In this chapter we prove that certain countable lattices can be embedded into Pw

and PM . The results are as follows:

1. The free distributive lattice on ω many generators, FD(ω), can be embedded

into PM below any special Π0
1 class. This is proved in Section 3.3

2. The free Boolean algebra on ω generators, FB(ω), can be embedded into Pw

below any special Π0
1 class.

3. If L1 is the lattice of cofinite subsets of ω and L2 is the lattice of finite subsets

of ω, then L1×L2 can be embedded into PM below any special Π0
1 class. Results 2 and

3 are proved in Section 3.4

Result 2 is as good as possible, as every countable distributive lattice embeds into

FB(ω). Result 1 is not as general as there are countable distributive lattices that do not

embed into FD(ω), in fact L1×L2 is one such lattice. This is an immediate consequence

of Theorem 4.6 in [2]. In this paper, Balbes proves that in any free distributive lattice

there does not exist an infinite sequence of elements, 〈ai〉 such that ai ∧ aj = 0 for all

i 6= j. In L2, however, the sequence {{n} : n ∈ ω} clearly has this property. So L2

can not be embedded into FD(ω). Despite this, we conjecture that FB(ω) is in fact

embeddable into PM below any special Π0
1 class.
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This chapter is in four sections. Section 3.2 consists of two priority arguments.

These construct Π0
1 sets that have certain useful independence properties. Both build

on the constructions in [17], and use a Sacks preservation argument (see [30], Chapter

VII.3). The second argument is only sketched. If, at first, the reader wishes only to skim

this section and accept Theorems 3.2.1 and 3.2.7, he or she should still find Sections 3.3

and 3.4 completely accessible.

Notation and Preliminaries

We will first establish some notation. As before, σ, τ, ρ and λ will be used to

represent binary strings and the length of σ will be written |σ|. {e}σ
s

will denote the

longest binary string, τ , such that |τ | 6 s and {e}σ
s

(n) ↓= τ(n) for all n < |τ |. The

empty string is denoted by 〈〉 and {e}σ is short for {e}σ|σ|. The restriction of σ to

{0, 1, 2, . . . , n − 1} is denoted σ
∣∣
n .

Let S be the class of finite sequences of finite strings. The uppercase Greek letters,

Σ, Γ and Λ will be used to represent elements of S. For ease of notation sometimes a

sequence of strings will be indentified with its range, so that σ ∈ Σ means σ ∈ rng(Σ);

Σ ⊆ Γ means Σ is a subsequence of Γ and σ ∈ Σ r Γ that σ ∈ rng(Σ) r rng(Γ). We

will reserve the symbol Σm to mean the sequence of all binary strings of length m in

lexicographical order.

If Σ = 〈σi〉ni=1 and Γ = 〈γi〉mi=1, we will say Σ extends Γ if m = n and σi ⊇ γi

for all i 6 n. Σ properly extends Γ if, in addition, σk ) γk for at least one k 6 n. If

f1, f2, . . . fn are elements of 2ω , then 〈f1, f2, . . . fn〉 extends Σ is defined similarly.

If Σ = 〈σi〉
n
i=1 ⊆ Σm and σ ∈ 2<ω, we will make the following definitions:



32

• σ− ∈ 2<ω such that, for all n, σ−(n) = σ(n + 1).

•
⊕

Σ ∈ 2<ω such that, [⊕
Σ
]
(i) = σk(q),

where i = nq + k − 1, for some (necesarily unique) k 6 n and q.

• If 〈fi〉ni=1 is a sequence of elements of 2ω. Then
⊕n
i=1 fi ∈ 2ω is defined to be such

that, for all i, [ n⊕
i=1

fi
]
(i) = fk(q),

where, as before, i = nq + k − 1.

• For an arbitrary Γ = 〈γi〉ni=1 ∈ S (with the γi of possibly different lengths), we define,

⊕
Γ =

n⊕
i=1

γi
∣∣
l,

where l = min{|γi| : 1 6 i 6 n}.⊕
is not associative but it does have the useful property that if 〈f1, f2, . . . fn〉

extends Σ ⊆ Σm, then
⊕n
i=1 fi ⊃

⊕
Σ. If no confusion can result, we will write

⊕
fi

for
⊕n
i=1 fi.

3.2 Two Constructions

Theorem 3.2.1. For any special Π0
1 set, P , there is a Π0

1 set, Q, with the properties,

for all sequences, 〈fi〉
n
i=1 ⊂ Q,

I. ∀f ∈ Qr 〈fi〉ni=1, f 66T
⊕
fi,
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II. ∀f ∈ P, f 66T
⊕
fi

Proof. The proof will closely follow the proof of Theorem 4.7 in [17]. A recursive se-

quence, 〈ψs〉s∈ω , of recursive functions from 2<ω to 2<ω will be constructed with the

properties that, for all σ ∈ 2<ω and s ∈ ω,

1. ψs(σ
a
〈0〉) and ψs(σ

a
〈1〉) are incompatible extensions of ψs(σ),

2. range(ψs+1) ⊆ range(ψs),

3. ψ(σ) = limt ψt(σ) exists.

Each ψs determines a recursive tree, namely,

Ts = {τ : for some σ, ψs(σ) ⊇ τ}.

The required Q will then be
⋂
s∈ω[Ts]. Q will be non-empty as 〈[Ts]〉s∈ω is a nested

sequence of closed subsets of 2ω. It will be a Π0
1 set because,

f ∈ Q ≡ ∀sf ∈ [Ts] ≡ ∀s∀n∃σ[|σ| 6 n ∧ ψs(σ) ⊂ f ],

and ∃σ[|σ| 6 n ∧ ψs(σ) ( f ] is a recursive predicate.

Each ψs will induce a mapping, Ψs : S → S, defined by

Ψs(Γ) = 〈ψs(γi)〉
n
i=1,

where Γ = 〈γi〉ni=1. When it is proved that ψ(σ) exists for all σ, it will be clear that

Ψ(Σ) = limsΨs(Σ) exists for all Σ ∈ S.
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We will define 〈ψs〉s∈ω so that, for every m ∈ ω, Γ ⊆ Σm and e 6 m, Q satisfies

the requirements:

PmΓ,e ≡ for all 〈fi〉
n
i=1 extending Ψ(Γ), {e}

⊕
fi 6∈ P,

RmΓ,e ≡ for all 〈fi〉
n
i=1 extending Ψ(Γ), and for all σ ∈ Σm r Γ, {e}

⊕
fi 6⊃ ψ(σ).

The P requirements guarantees that Q has property II. of the theorem, and theR require-

ments guarantee property I. The set of requirements can be ordered lexicographically,

first on m, then on e and finally with the conventions that, for all m, and Γ,Γ′ ∈ Σm,

i. PmΓ,e precedes RmΓ′,e and,

ii. PmΓ,e precedes PmΓ′,e and RmΓ,e precedes RmΓ′,e whenever Γ precedes Γ′ in the

lexicographical ordering on Σm.

Priority is given to the requirements in reverse lexicographical order.

PmΓ,e is said to be satisfied at stage s if,

{e}
⊕

Ψs(Γ) 6∈ TP ,

and RmΓ,e is satisfied at stage s if, for all σ ∈ Σm r Γ,

{e}
⊕

Ψs(Γ) 6⊇ ψs(σ).

We now define ψs as follows:

Stage s = 0: ψ0(σ) = σ for all σ ∈ 2ω .
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Stage s+1:

We say PmΓ,e requires attention at stage s+ 1 if PmΓ,e is not satisfied at stage s+ 1

and there is a Λ = 〈λi〉ni=1 properly extending Γ such that max{|λj | : λj ∈ Λ} 6 s + 1

and,

i. {e}
⊕

Ψs(Λ) ∈ TP ,

ii. {e}
⊕

Ψs(Λ) ) {e}
⊕

Ψs(Γ).

We say RmΓ,e requires attention at stage s+ 1 if RmΓ,e is not satisfied at stage s+ 1

and there is a Λ = 〈λi〉
n
i=1, properly extending Γ, such that max{|λj | : λj ∈ Λ} 6 s+ 1

and,

{e}
⊕

Ψs(Γ) ⊇ ψs(σ
a
〈x〉), for some x ∈ {0, 1} and σ ∈ Σm r Γ.

If PmΓ,e has priority greater than the priority of PsΣs,s and is the highest priority require-

ment requiring attention at stage s+ 1, let Λ witness this fact and define,

ψs+1(ν) =


ψs(λ

a
i ν
′) if ν = γ

a
i ν
′ for some γi ∈ Γ

ψs(ν) if ν 6⊇ γi for any γi ∈ Γ.

If RX
m,e

has priority greater than the priority of PsΣs,s and is the highest priority require-

ment requiring attention at stage s+ 1, let Λ, σ and x witness this and define,
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ψs+1(ν) =



ψs(λ
a
i ν
′) if ν = γ

a
i ν
′ for some γi ∈ Γ,

ψs(σ
a〈1− x〉aν′) if ν = σaν′,

ψs(ν) if ν 6⊇ τ for any τ ∈ Γ ∪ {σ} .

If no requirement of priority > the priority of PsΣs,s requires attention at stage s + 1,

then let ψs+1 = ψs.

The following lemmas establish the theorem.

Lemma 3.2.2. For any requirement, S, there is a stage, s0, such that S does not require

attention at any stage t > s0.

Proof. Assume not and let S be the highest priority requirement requiring attention

infinitely often. If S = PmΓ,e, then let t be a stage such that PmΓ,e has priority greater

than PtΣt,t and such that all higher priority requirements are satisfied for all stages > t.

Let s1, s2, s3, . . . be an infinite increasing sequence of stages greater than t at which S

requires attention. At each of these stages S will be the highest priority requirement

requiring attention and so s1, s2, s3, . . . will generate a recursive sequence,

{e}
⊕

Ψs1(Γ) ( {e}
⊕

Ψs2(Γ) ( {e}
⊕

Ψs3(Γ)
. . . ,

of elements of TP . But then
⋃
i{e}

⊕
Ψsi(Γ)

is a recursive path through TP , contradicting

the original assumption that P is special.

Next suppose S = RmΓ,e. If t is such that the priority of RmΓ,e is greater than

PtΣt,t; all higher priority requirements are permanently satisfied at stage t; and S requires
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attention at stage t, then S will be satisfied at stage t+ 1. Suppose, at some stage u > t,

a lower priority requirement, T , requires attention. If T = Pm
′

Λ,e′ or T = Rm
′

Λ,e′ with

m′ > m, and any Λ and e′, then Ψu+1(Γ) = Ψu(Γ) and S will remain satisfied at stage

u+ 1. If T = RmΛ,e′ or T = PmΛ,e′ , then Ψu+1(Γ) ⊇ Ψu(Γ) and so S will remain satisfied

at stage u+ 1. We then argue by induction that S will remain satisfied, and hence not

require attention, at all stages u > t, contradicting the assumption.

Lemma 3.2.3. ψ(σ) = lims ψs(σ) exists for all σ.

Proof. Let σ ∈ 2<ω be arbitrary. By Lemma 3.2.2, there exists a stage, t, such that for

all m 6 |σ|, and all Γ ⊆ Σm, the requirements RmΓ,e and PmΓ,e do not require attention

after stage t. Then ψt1
(σ) = ψt2

(σ) for all t1, t2 > t.

Lemma 3.2.4. If m ∈ ω, e 6 m and Γ ⊆ Σm are such that {e}
⊕

Ψ(Γ) ∈ TP , then there

does not exist a Λ properly extending Γ such that {e}
⊕

Ψ(Λ) ∈ TP and {e}
⊕

Ψ(Λ) )

{e}
⊕

Ψ(Γ).

Proof. Suppose such a Λ existed for m, e and Γ. Take t so large that Ψt(Γ) = Ψ(Γ) and

Ψt(Λ) = Ψ(Λ). Then,

{e}
⊕

Ψt(Λ) = {e}
⊕

Ψ(Λ) ) {e}
⊕

Ψ(Γ) = {e}
⊕

Ψt(Γ),
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and so, at some stage u > t, PmΓ,e would be the highest priority requirement requiring

attention, implying,

{e}
⊕

Ψu+1(Γ) ) {e}
⊕

Ψu(Γ) = {e}
⊕

Ψt(Γ) = {e}
⊕

Ψ(Γ),

contradicting the fact that Ψu+1(Γ) = Ψ(Γ).

Lemma 3.2.5. If 〈fi〉
n
i=1 ⊆ Q then, for all f ∈ P , f 66T

⊕
fi.

Proof. We can assume without losing generality that 〈fi〉ni=1 is in lexicographic order.

Suppose the lemma is false and let {e}
⊕
fi ∈ P . Let m ∈ ω and Γ ⊆ Σm be such that,

i. m > e,

ii. 〈fi〉
n
i=1 extends ψ(Γ)

Such a Γ can be found because 〈fi〉
n
i=1 is in lexicographic order. But {e}Ψ(Γ) ∈ TP , so

there must be a Λ ) Γ such that {e}
⊕

Ψ(Λ) ) {e}
⊕

Ψ(Γ), contradicting Lemma 3.2.4.

Lemma 3.2.6. For all 〈fi〉
n
i=1 ⊆ Q and all f ∈ Qr 〈fi〉

n
i=1,

f 66T
⊕

fi

Proof. Suppose not and let {e}
⊕
fi = f ∈ Q. Let m ∈ ω, Γ ⊆ Σm and σ ∈ Σm r Γ be

such that,

i. m > e,

ii. 〈fi〉ni=1 extends ψ(Γ),
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iii. f ⊃ ψ(σ),

(again we are assuming 〈fi〉ni=1 is in lexicographic order). Let t be such that Ψu(Γ) =

Ψ(Γ) and ψu(σa〈x〉) = ψ(σa〈x〉) for all u > t and x ∈ {0, 1}. By the supposition, there

must be a stage, s > t and a Λ extending Γ such that

{e}Ψs(Λ) ⊇ ψs(σ
a〈x〉) for some x ∈ {0, 1}.

So there will be a stage, v > s, at which RmΓ,e requires attention and is, in fact, the

highest priority requirement requiring attention. But then,

Ψv+1(Γ) 6= Ψv(Γ) = Ψ(Γ),

contradicting the fact that v > u.

Theorem 3.2.1 Lemmas 3.2.5 and 3.2.6 prove that Q has properties I. and II. as

required.

Theorem 3.2.7. Given any special Π0
1 set, P , there is an infinite recursive sequence of

Π0
1 sets, 〈Qi : i ∈ ω〉, with the properties, for all i, j ∈ ω such that i 6= j,

I. ∀f ∈ Qi ∀g ∈ Qj f 66T g,

II. ∀f ∈ Qi ∀g ∈ P g 66T f.

Proof. (sketch)

A recursive sequence of recursive functions, ψi : 2<ω → 2<ω, is constructed, the

range of each function is the tree Ti and then Qi will be [Ti]. Each ψi is constructed as
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the limit of a recursive sequence of recursive functions, 〈ψi
s
〉s<ω and will be defined so

that, for every m ∈ ω, ψi satisfies the requirements:

for all e 6 m; j 6 m; σ ∈ Σm and for all f extending ψi(σ),

Pm ≡ {e}f 6∈ P,

Rm ≡ j 6= i⇒ {e}f 6⊇ ψj(σ).

These requirements are then further specified by indexing them according to i, j, σ

and e (bounded as above), and an exhaustive priority ordering is given to them. The

same method as in Theorem 3.2 is then used to ensure all are satisfied. If at any stage of

construction an Rm requirement is the highest priority requirement requiring attention

then the requirement is satisfied (permanently) at the next stage.

If at some stage of construction a Pm requirement will be the highest priority

requirement requiring attention and then the function being constructed is adapted to

keep the requirement unsatisfied (as per Sacks’ preservation strategy, see [30] Chapter

VII.3). An (non-constructive) argument is then made to show that this strategy will

eventually fail (because P has no recursive elements) and Pm will eventually be satisfied.

These are essentially the arguments of Lemmas 3.2.5 and 3.2.6.

3.3 FD(ω) ↪→ PM

Theorem 3.3.1. Given any special Π0
1 class, P , FD(ω) can be embedded into PM below

P .
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Proof. Let P be any special Π0
1 class and suppose Q and ψ are as in Theorem 3.2.1. Let

{σi : i ∈ ω} be a set of binary strings defined by:

i. |σi| = i+ 1,

ii. σi(n) =


1 if n = i,

0 otherwise.

Then {σi : i ∈ ω} is a pairwise incomparable set of strings and hence so is {ψ(σi) : i ∈ ω}.

Denote by Qi the set of elements of Q extending ψ(σi), and let Pi = P ∧ Qi. The set

{Pi : i ∈ ω} then generates a sublattice of PM strictly below P . To see this note that if

X is a non-empty finite subset of ω,

∨
i∈X

Pi <M P,

because
∨
i∈X Pi 6M P , and if

∨
i∈X Pi >M P then P ∧

∨
i∈X Qi >M P and some

element of
∨
i∈X Qi would compute an element of P , contradicting property II. of The-

orem 3.2.1. This is enough to show that all elements of the generated sublattice are

strictly below P .

As in Chapter One, we will use Theorem II.2.3 in [14] to show that the lattice

generated by the P ′
i
s is free. If X and X′ are finite subsets of ω, then,

∧
i∈X Pi 6M

∨
j∈X ′ Pj,

⇒ P ∧
∧
i∈X Qi 6M P ∧

∨
j∈X ′ Qj,

⇒ P ∧
∧
i∈X Qi 6M

∨
j∈X ′ Qj,
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so if
⊕
j∈X ′ fj ∈

∨
j∈X ′ Qj , then there is a g ∈ P ∨

∧
i∈X Qi such that g 6T

⊕
j∈X ′ fj .

Therefore, g− 6T
⊕
j∈X ′ fj where g− ∈ P or g− ∈

∧
i∈X Qi. But g− 6∈ P by property

II. of Theorem 3.2.1. And if j 6∈ X then g− 6∈
∧
i∈X Qi by property I. of Theorem 3.2.1.

Therefore, j ∈ X and X ∩X′ 6= ∅ as required by Theorem II.2.3 in [14].

3.4 FB(ω) ↪→ Pw

In the section we give the second principal embedding theorem - that the free

Boolean algebra on ω generators, FB(ω), is embeddable into Pw, the lattice of Muchnik

degrees. We represent FB(ω) as an algebra of recursive sets and then give an explicit

embedding into Pw. As before, the argument will use Π0
1 sets constucted using a priority

argument. This time on those Π0
1 sets of Theorem 3.2.7. Then we show that all countable

distributive lattices embed into FB(ω). Finally we establish result 3.

We will require two constructions given by the following definitions. Let ∅ 6= A ⊆

ω be recursive and let 〈Pi : i ∈ ω〉 be a recursive sequence of Π0
1 sets. Let (·, ·) : ω×ω → ω

be a recursive coding bijection.

Definition 3.4.1. If f ∈ 2ω, we define
(
f
)
i ∈ 2ω by,

(
f
)
i(n) = f((i, n)),

and then the recursive product of 〈Pi : i ∈ A〉, denoted
∧
i∈A Pi, is given by,

f ∈
∨
i∈A

Pi ⇔
(
f
)
i ∈ Pi for all i ∈ A.
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Notice that
∧
i∈A Pi is a Π0

1 set as,

x ∈
∨
i∈A

Pi ≡ ∀i∀n( i ∈ A⇒ Ri(n, x)),

where 〈Ri : i ∈ ω〉 is the recursive sequence of recursive predicates that defines 〈Pi : i ∈

ω〉.

We will now define a recursive sum. Let A and 〈Pi : i ∈ ω〉 be as above and, for

each i ∈ ω, let Ti be a recursive tree such that [Ti] = Pi. If T is a recursive tree such

that [T ] = DNR2 (or any Medvedev complete Π0
1 class), then let 〈σj : j ∈ ω〉 be the

sequence, in lexicographical order, of all binary strings such that σj ∈ T but σaj 〈x〉 6∈ T

for any x ∈ {0, 1}. The sequence will be infinite as [T ] has no recursive element. Define,

T ∗ = T ∪ {σa
i
τ : i ∈ A, τ ∈ Ti}.

Definition 3.4.2. The recursive sum of 〈Pi : i ∈ A〉, denoted
∧
i∈A Pi, is [T ∗], the set

of paths through T ∗.

Note that if A is finite, the recursive sum and product are Medvedev equivalent to

the standard, lattice-theoretic sum and product respectively, allowing us some ambiguity

of notation. However, it is not to be assumed that these constructions are necessarily

the greatest lower or least upper bounds when A is infinite. Indeed, this may not even

be the case if A is recursive.
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Now let 〈Qi : i ∈ ω〉 be as in Theorem 3.2.7 (with P arbitrary). Define,

Q̂i =
∧
j 6=i

Qj,

and, for any recursive, non-empty set, A, let,

Q̂(A) =
∨
i∈A

Q̂i.

Lemma 3.4.3. If A,B 6= ∅ and A 6= B, then Q̂(A) 6≡w Q̂(B) (and therefore Q̂(A) 6≡M

Q̂(B)).

Proof. Suppose that A and B are as above and that, without losing generality, j ∈ BrA.

Choose any x ∈ Qj and define x by,

(
x
)
i = σa

j
x for all i ∈ ω.

Then x ∈ Q̂(A) as σaj x ∈ Q̂i for all i 6= j and, in particular, for all i ∈ A. Now

let y ∈ Q̂j be arbitrary. There are two cases.

Case 1. y = σ
a
i z for some i 6= j and z ∈ Qi. Then,

y ≡T z 66T x ≡T x,

(z 66T x as z ∈ Qi and x ∈ Qj , with i 6= j).

Case 2. y ∈ [T ], where [T ] is the Medvedev complete Π0
1 class used in the construction

of the recursive sum. Then for any i ∈ ω, there is a z ∈ Qi such that y >T z. We choose
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some i 6= j, and then fix z. If x >T y, we would have,

Qj 3 x ≡T x >T y >T z ∈ Qi, with i 6= j,

contrary to construction of 〈Qi : i ∈ ω〉.

Therefore, in both cases we have y 66T x. As y was arbitrary, Q̂j 66w Q̂(A). But

Q̂j 6w Q̂(B) via the map x 7→
(
x
)
j so it must be that Q̂(B) 66w Q̂(A) and therefore

that Q̂(B) 6≡w Q̂(A), as required.

Lemma 3.4.4. If A and B are non-empty and recursive, then,

Q̂(A ∪B) ≡M Q̂(A) ∨ Q̂(B).

Proof.

Q̂(A ∪B) = {x : ∀i ∈ A ∪B,
(
x
)
i ∈ Q̂i},

= {x : ∀i ∈ A,
(
x
)
i ∈ Q̂i} ∩ {x : ∀i ∈ B,

(
x
)
i ∈ Q̂i},

= Q̂(A) ∩ Q̂(B).

So, x 7→ x⊕ x, is a map from Q̂(A ∪B) to Q̂(A) ∨ Q̂(B), and therefore, Q̂(A ∪B) >M

Q̂(A) ∨ Q̂(B) . Conversely, let x⊕ y ∈ Q̂(A) ∨ Q̂(B). Define, z ∈ 2ω by,
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(
z
)
i =


(
x
)
i if i ∈ A

(
y
)
i if i ∈ ω rA.

Then z 6T x ⊕ y and for all i ∈ A ∪ B,
(
z
)
i ∈ Q̂i, so z ∈ Q̂(A ∪ B). Therefore,

Q̂(A ∪B) 6M Q̂(A) ∨ Q̂(B) as required.

Lemma 3.4.5. If A and B are recursive and A ∩B 6= ∅, then,

Q̂(A ∩B) ≡w Q̂(A) ∧ Q̂(B).

Proof. First, Q̂(A ∩ B) 6w Q̂(A) ∧ Q̂(B) (in fact, 6M ). If x ∈ Q̂(A) ∧ Q̂(B), then

define z ∈ Q̂(A ∩B) by, (
z
)
i =

(
x−
)
i for all i ∈ ω.

If
(
x
)
i(0) = 0, then, for all i ∈ A,

(
z
)
i ∈ Q̂i, and, a fortiori, for all i ∈ A∩B,

(
z
)
i ∈ Q̂i.

So z ∈ Q̂(A ∩B). There is a similar argument if
(
x
)
i(0) = 1.

Next, Q̂(A∩B) >w Q̂(A)∧Q̂(B). Modulo the following two claims, the argument

will be:
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Q̂(A ∩B) =
∨
i∈A∩B Q̂i,

>w
∨
i∈A

∨
j∈B Q̂i ∧ Q̂j (in fact, >M ) Claim 1,

>w
∨
i∈A Q̂i ∧

∨
j∈B Q̂j Claim 2,

= Q̂(A) ∧ Q̂(B).

Proving the Claims :

Claim 1. Let x ∈
∨
i∈A∩B Q̂i and take any k ∈ A ∩B. So

(
x
)
k ∈ Q̂k. We define

(recursively in x) z ∈
∨
i∈A

∨
j∈B Q̂i ∧ Q̂j by defining

((
z
)
i

)
j for all i, j ∈ ω, such that,

((
z
)
i

)
j ∈ Q̂i ∧ Q̂j for all i ∈ A and j ∈ B.

To this end, let,

((
z
)
i

)
j =



〈0〉a
(
x
)
i if i = j,

〈0〉a
(
x
)
k if i 6= j and

(
x
)
k 6⊇ σi,

〈1〉a
(
x
)
k if i 6= j and

(
x
)
k ⊇ σi.

So, suppose that i ∈ A and j ∈ B. If i = j, then i ∈ A ∩ B and
((
z
)
i

)
j = 〈0〉a

(
x
)
i ∈

Q̂i ∧ Q̂j. If i 6= j and
(
x
)
k 6⊇ σi, then

(
x
)
k ∈ Q̂i, and

((
z
)
i

)
j = 〈0〉a

(
x
)
k ∈ Q̂i ∧ Q̂j.

If i 6= j and
(
x
)
k ⊇ σi, then

(
x
)
k ∈ Q̂j and

((
z
)
i

)
j = 〈1〉a

(
x
)
k ∈ Q̂i ∧ Q̂j. These

three cases are exhaustive and so Claim 1 is established. Note that the above is a
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uniform procedure for computing z from an arbitrary x, and so the stronger, Medvedev

reducibility has been shown.

Claim 2. Let x ∈
∨
i∈A

∨
j∈B Q̂i ∧ Q̂j . We will construct z 6T x such that

z ∈
∨
i∈A Q̂i ∧

∨
j∈B Q̂j . There are two cases.

Case 1. ∃i ∈ ArB ∀j ∈ B rA
((
x
)
i

)
j(0) = 1.

Fix such an i, set z(0) = 1 and let,

(
z−
)
k =


((
x
)
i

)−
k

if k 6∈ A ∩B,

((
x
)
k

)−
k

if k ∈ A ∩B.

Then, if k ∈ B rA,
(
z−
)
k =

((
x
)
i

)−
k
∈ Q̂k and if k ∈ B ∩A,

(
z−
)
k =

((
x
)
k

)−
k
∈ Q̂k.

So, for all k ∈ B,
(
z−
)
k ∈ Q̂k, giving z− ∈

∨
j∈B Q̂j and z ∈

∨
i∈A Q̂i ∧

∨
j∈B Q̂j.

Case 2. ∀i ∈ ArB ∃j ∈ B rA
((
x
)
i

)
j(0) = 0.

Let z(0) = 0 and define,

f(i) =


the least such j if i ∈ ArB,

0 otherwise.

Then f 6T x, and
((
x
)
i

)−
f(i) ∈ Q̂i for all i ∈ ArB. We can then define,

(
z−
)
k =


((
x
)
k

)−
f(k) if k 6∈ A ∩B,

((
x
)
k

)−
k

if k ∈ A ∩B.
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As above we have
(
z−
)
k ∈ Q̂k, if k ∈ A∩B and if k ∈ ArB then

(
z−
)
k =

((
x
)
k

)−
f(k) ∈

Q̂k. So z− ∈
∨
i∈A Q̂i, and z ∈

∨
i∈A Q̂i ∧

∨
j∈B Q̂j, as required.

We would like to improve Lemma 3.4.5 by showing that Q̂(A ∩ B) ≡M Q̂(A) ∧

Q̂(B), but the division into cases in the proof of Claim 2 is non-effective and we have

only been able to show the weaker result. However, we can improve the result under the

stricter conditions of the following lemma.

Lemma 3.4.6. If the symmetric difference of two recursive sets,

A4B = ArB ∪B rA,

is finite, then,

Q̂(A ∩B) ≡M Q̂(A) ∧ Q̂(B).

Proof. The proof is identical with the proof of 3.4.5 noting that in the proof of Lemma

Claim 2 the division into two cases is now effective as both ArB and BrA are finite.

We are now in a position to prove the theorem in the title of the section.

Theorem 3.4.7. The free Boolean algebra on countably many generators, FB(ω), is

embeddable into Pw.

Proof. Consider the mapping A 7→ Q̂(A). Lemmas 3.4.3, 3.4.4 and 3.4.5 prove that this

is an embedding of the lattice of non-empty, recursive subsets of ω under ∩ and ∪ into
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Pw. So to prove the theorem it is sufficient to show that FB(ω) can be represented by

a collection of non-empty, recursive subsets of ω.

To this end let pj be the jth prime number and let Bj = {pj · n : n ∈ ω}.

Define B̃j = (ω rBj) ∪ {0}. The set {Bj : j ∈ ω} generates a distributive lattice under

operations of intersection and union. Further, this lattice can be extended to a Boolean

algebra with 1 represented by ω, 0 represented by {0} and B̃j the Boolean complement

of Bj . It would, perhaps, seem more natural to have ∅ as the minimum element and

ωrBj as the Boolean complement, however the text definition ensures that each element

of the Boolean algebra is non-empty. This Boolean algebra is in fact free and therefore

a representation of FB(ω). To show this it is sufficient to show (Exercise II.3.43 [14])

that for all finite X,Y ⊆ ω,

⋂
i∈X

Bi ⊆
⋃
j∈Y

Bj ⇒ X ∩ Y 6= ∅.

But this is easily seen as
∏
i∈X pi ∈

⋂
i∈X Bi and so, if the antecedent holds,

∏
i∈X pi ∈

Bj for some j ∈ Y . By primality, this means pj = pi for some i ∈ X, giving X ∩ Y 6=

∅.

Corollary 3.4.8. FB(ω) can be embedded into Pw below any given special Π0
1 set, P .

Proof. Let such a P be given and let 〈Qi : i ∈ ω〉 be as in Theorem 3.2.7. The required

embedding will be,

A 7→ P ∧ Q̂(A).
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The fact that this is a homomorphism follows from the lattice theoretic identities:

(
P ∧

∧
i∈A

Q̂i
)
∧
(
P ∧

∧
i∈B

Q̂i
)

= P ∧
( ∧
i∈A

Q̂i ∧
∧
i∈B

Q̂i
)
,

and, (
P ×

∧
i∈A

Q̂i
)
∧
(
P ×

∧
i∈B

Q̂i
)

= P ×
( ∧
i∈A

Q̂i ∧
∧
i∈B

Q̂i
)
,

and the fact that A 7→ Q̂(A) describes a homomorphism. To see that it’s an embedding,

suppose that A 6= B and take j ∈ B r A, x ∈ Qj and x ∈ Q̂(A) as in the proof of

Lemma 3.4.3. Let x1 = 〈1〉ax ∈ P ∧ Q̂(A). Suppose that there is a y ∈ P ∧ Q̂(B)

such that y 6T x1. By the proof of Lemma 3.4.3 we know that y− 6∈ Q̂(B) (or else

x ≡T x1 >T y ≡T y− ∈ Q̂(B), contradiction). But, if y− ∈ P , then,

P 3 y− 6T x1 ≡T x ∈ Qj,

contrary to the construction of 〈Qi : i ∈ ω〉. So there is no y ∈ P ∧ Q̂(B), such that

y 6T x1. Therefore, P ∧ Q̂(B) 66M P ∧ Q̂(A), as required.

Theorem 3.4.9. Every countable distributive lattice can be embedded into Pw below any

given special Π0
1 set.

We show that every countable distributive lattice embeds into FB(ω) and then

apply Theorem 3.4.7. All the lattice theoretical background can be found in [14] or [20].

Every countable distributive lattice can be embedded into a countable Boolean algebra
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so it is sufficient to show that every countable Boolean algebra can be embedded into

FB(ω).

It is most convenient here to work with the dual space of FB(ω). Stone duality

gives a contravariant functor from the category of closed subspaces of 2ω and continuous

maps to the category of Boolean Algebras and Boolean homomorphisms. Such a functor

will take 2ω to FB(ω) and continuous surjections to Boolean injections. So it is enough

(in fact equivalent) to prove the following theorem (attributed to Sierpiński in [25] page

46):

Theorem 3.4.10. For every closed subset, T , of 2ω, there exists a continuous surjection,

ψ : 2ω −→ T.

Proof. Let Ext(T ) = {σ ∈ 2<ω : ∃f ∈ T f ⊃ σ}. We will define a continuous surjection,

φ : 2<ω −→ Ext(P ), which will then induce the required map on 2ω . Let

φ(〈〉) = 〈〉,

φ(σa〈i〉) =


φ(σ)a〈i〉 if φ(σ)a〈i〉 ∈ Ext(P )

φ(σ)a〈1− i〉 otherwise.

It is straightforward to see that this is a continuous surjection. It is in fact a

retract ([25] page 46) of 2ω.

The next theorem is result 3 of page 30.
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Theorem 3.4.11. Let L1 (L2) be the lattice of finite (co-finite) subsets of ω under ∩

and ∪. Then, for any special Π0
1 set, P , there is an embedding of L1×L2 into PM below

P .

Proof. Let E be any infinite, co-infinite recursive subset of ω (for example the even

numbers). Let K be the distributive lattice {X ⊆ ω : X4E is finite } with the operations

of ∩ and ∪. Then K ' L1 × L2 (represent L1 by finite subsets of odd numbers and

L2 by (relatively) co-finite sets of even numbers and the isomorphism is witnessed by

(X,Y ) 7→ X∪Y ). The symmetric difference of any two elements of K is finite so Lemmas

3.4.3, 3.4.4, 3.4.6 and the proof of Corollary 3.4.8 give the result.

Corollary 3.4.12. L1 and L2 are embeddable in PM below any special Π0
1 set.

Proof. Immediate, as L1 and L2 are sublattices of K, above.
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Chapter 4

Small Π0
1

Classes

4.1 Introduction

In this chapter we will investigate the relationship between structural properties

of special Π0
1 classes and their Muchnik and Medvedev degrees. An attempt is made to

define notions that will guarantee Muchnik and Medvedev incompleteness. A lot of what

is done is informed by Post’s effort [22] to construct a non-zero r.e. degree strictly below

0́ . Post’s attempt was ultimately unsuccessful and the construction of such a degree

needed more sophisticated methods. A discussion of these issues can be found in [30]

chapter V, or [24] §9.7.

Perhaps surprisingly, Post’s methods are more conducive to solving the corre-

sponding problem in the Medvedev and Muchnik lattices. This is already known, as the

notion of thinness of a special Π0
1 class is a structural property that guarantees both

Muchnik and Medvedev incompleteness. Here we define two new properties also guar-

anteeing incompleteness and having properties not shared by thin Π0
1 classes. Both of

these properties relate to the “size” of a Π0
1 class.

First we will introduce some notation that will be useful.

Notation:

‖X‖ = the cardinality of X
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If f ∈ 2ω , f [n] = 〈f(0), f(1), . . . f(n− 1)〉

If P ⊆ 2ω, P [n] = {f [n] : f ∈ P}

If X ⊆ 2<ω, X[n] = {σ ∈ X : |σ| = n}

If P ⊆ 2ω, P [< n] = {f [m] : m < n, f ∈ P}

Similarly for P [6 n], X[< n] and X[6 n].

{e}τ [n] is a partial sequence from {0, 1, . . . n − 1} to ω. {e}τ [n] ∈ T ⊆ 2<ω implies

{e}τ (m)↓ for all m < n.

|{e}τ | = max{k : ∀m < k, {e}τ (m)↓}.

4.2 Small Π0
1 classes

Definition 4.2.1. P ⊆ ωω is small if it is non-empty, closed and if there is no recursive

function, g, such that for all n, ‖P [g(n)]‖ > n.

Notice that any finite subset of ωω is small. In fact, one way to think of smallness

is to say that a closed subset of ωω is small exactly when there is no recursive function

witnessing its infinitude. It will be shown that the property of smallness is invariant

under recursive homeomorphisms, and therefore has a certain robustness. Rather than

arbitrary small subsets of ωω, we will primarily be concerned with small recursively

bounded Π0
1 subsets of ωω. In fact, as Corollary 4.2.11 will show, we can concentrate on

small Π0
1 subsets of 2ω .

Theorem 4.2.2. All Medvedev (and therefore Muchnik) degrees have a representative

that is not small.
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Proof. For any r.b. Π0
1 class P ⊆ ωω, P ∨ 2ω is never small because for all n,

‖P ∨ 2ω[2n]‖ = ‖P [n]‖ · ‖2ω [n]‖ > 2n > n.

Theorem 4.2.3. DNR2 is not small.

Proof. Let 〈ei〉i>0 be a recursive sequence of indices for the empty function. For all

σ ∈ DNR2[ei], σ
a〈0〉 and σa〈1〉 are in DNR2[ei + 1]. Arguing by induction, and using

the fact that DNR2[n] is increasing in n we have ‖DNR2[ei]‖ > 2i for all i. If h(m) =

least k such that 2k > m, then

‖DNR2[eh(m)]‖ > 2h(m) > m

for all m ∈ ω. m 7→ eh(m) is clearly a recursive function, so DNR2 is not small.

Theorem 4.2.4. A small Π0
1 class with no recursive path exists.

Proof. If A is hypersimple and A0 and A1 are disjoint r.e. sets such that A0 ∪A1 = A,

then we claim that S = S(A0, A1) is small. Suppose S were not small, witnessed by the

recursive function, g. S branches at level n (that is, S[n + 1] > S[n]) precisely when

n ∈ A. For such an n, ‖S[n + 1]‖ = 2‖S[n]‖. So the principal function of X , p, has the

property that S[p(n)] = 2n. But ‖S[g(2n + 1)]‖ > 2n+1. So the function, n 7→ g(2n+1)

is a recursive function dominating p, contradicting the fact that A is hypersimple.

A0 and A1 can be constructed to ensure S(A0, A1) has no recursive element.
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Theorem 4.2.5. If P and Q are small Π0
1 subsets of ωω, then P ∧Q is small.

Proof. Suppose P ∧ Q were not small and let g be a recursive function such that

‖P ∧Q[g(n)]‖ > n for all n. We can take g to be strictly positive. By the definition of

∧, for all n > 0, ‖P ∧Q[n]‖ = ‖P [n − 1]‖+‖Q[n − 1]‖ so, for all n, ‖P [g(n)− 1]‖ > n/2

or ‖Q[g(n) − 1]‖ > n/2. The set {n : ‖P [g(n) − 1]‖ < n/2} is r.e. as P is a Π0
1 class and

it is infinite as P is small. So it has an infinite recursive subset, Y . Therefore, for all

y ∈ Y , ‖Q[g(y) − 1]‖ > y/2. If h(n) = least y ∈ Y y > 2n, then

∀n ‖Q[g(h(n)) − 1]‖ > h(n)
2
> n,

contradicting the smallness of Q.

Theorem 4.2.6. If P and Q are small, then so is P ∨Q.

Proof. The proof is very similar to the proof of Theorem 4.2.5. Assume not and let g be

such that ‖P ∨Q[g(n)]‖ > n for all n. The function n 7→ ‖P [n]‖ is increasing in n so we

also have ‖P ∨Q[2g(n)]‖ > n. Using the definition of ∨, ‖P ∨Q[2n]‖ = ‖P [n]‖ · ‖Q[n]‖

so, for all n, ‖P [g(n)]‖ > √n or ‖Q[g(n)]‖ > √n. Again, the set {n : ‖P [g(n)]‖ <
√
n }

is r.e. and infinite. The proof is then similar to Theorem 4.2.5

Theorem 4.2.7. For every small P , there exists a small Q, such that 2ω <M Q <M P .

This is also true with <w substituting for <M .

Proof. For this we will construct a small Π0
1 class, T , using a construction similar to

the one used in Theorem 3.2.7. T will have the property that for all f ∈ T and g ∈ P ,

f 6>T g. We can also ensure that T has no recursive element. The construction of
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Theorem 3.2.7 will clearly be sufficient for this. We only need to introduce requirements

that ensure S is small. These are as follows.

Se ≡ {e}(e)↓⇒ ‖S[{e}(e)]‖ < e.

Se will require attention at stage s if ‖Ts[{e}(e)]‖ > e and {e}s(e) ↓. To ensure

that each requirement gets satisfied, we wait for a stage, s, such that {e}s(e)↓ and such

that Se is the highest priority requirement requiring attention. To satisfy Se, we take

the least number, k, such that 2k < e, and i be the least number such that for all τ of

length k + i, |ψs(τ)| > {e}(e). If we let 0i denote the string of i zeroes, we define,

ψs+1(ν) =


ψs(σ

a0iaν′) if ν = σaν′ and |σ| = k

ψs(ν) if |ν| < k

As before, T will be
⋂
e Te. Each requirement will be satisfied for all time after

receiving attention, so this construction will result in a small Π0
1 class with the required

properties. Also T ∧ P will be small and,

P >M T ∧ P >M>M 2ω,

as required.

Theorem 4.2.8. Let P and Q be Π0
1 subsets of ωω. If P is r.b. and small, and if

{e} :P → Q is a recursive surjection, then Q is small.
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Proof. Suppose P , Q and {e} are as stated. Let 〈Ts〉s be a recursive sequence of recursive

trees such that
⋂
s Ts = Ext(P ). Let s and l be recursive functions such that for all n

∀τ ∈ Ts(n)[l(n)], |{e}τ
s(n)| > n.

To see that such an l and s exist, notice that there is a k such that ∀τ ∈P [k], |{e}τ | > n,

and a t such that Tt[k] = P [k]. As P is recursively bounded, given any n, a search will

eventually find two numbers with the required property.

Now suppose Q isn’t small, witnessed by the recursive function, g. For all n,

∀τ ∈ Ts(g(n))[l(g(n))], |{e}τ | > g(n).

As {e} is onto,

∀σ ∈ Q[g(n)] ∃τ ∈ P [l(g(n))] {e}τ ⊇ σ.

Therefore,

‖P [l(g(n))]‖ > ‖Q[g(n)]‖ > n.

l(g(n)) is recursive so this contradicticts the smallness of P .

Corollary 4.2.9. If P >M Q are Π0
1 subsets of ωω, and if P is r.b. and contains a

small Π0
1 subset, then Q contains a small Π0

1 subset.

Proof. If {e} : P → Q, and S ⊆ P is Π0
1 and small, then the theorem implies that the

image of S under {e} is a small Π0
1 subset of Q.

Corollary 4.2.10. Smallness is preserved by recursive homeomorphisms.
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Corollary 4.2.11. Any small r.b. Π0
1 subset of ωω is recursively homeomorphic to a

small Π0
1 subset of 2ω.

Corollary 4.2.11 allows us to move from small r.b. Π0
1 subsets of ωω to small Π0

1

subsets of 2ω without losing generality (up to recursive homeomorphism).

Corollary 4.2.12. No Medvedev complete Π0
1 subset of 2ω has a small Π0

1 subset.

Proof. If some such Medvedev complete Π0
1 class contained a small Π0

1 subset, S, then

S would also be Medvedev complete. But all Medvedev complete Π0
1 subsets of 2ω

are recursively homeomorphic [27]. Therefore S would be recursively homeomorphic to

DNR2, which would then be small. But we have seen that DNR2 is not small.

The following observation by Simpson allows us to transfer a lot of these theorems

to the Muchnik lattice. In this respect it is a central lemma in the subject.

Lemma 4.2.13. (Simpson) If P,Q ⊆ 2ω are Π0
1, and if P >w Q, then there exists a

Π0
1 class, P ′ ⊆ P , such that P ′ >M Q.

Proof. Let f ∈ P be of hyperimmune-free degree. Such an f exists by the hyperimmune-

free basis theorem, [17]. Then for some g ∈ Q, f >T g. But the proof of Theorem

VI.5.5 [21] (attributed to D.A. Martin) then implies f >tt g. Proposition III.3.2 [21]

(Trakhtenbrot, Nerode) then states we can find a total recursive functional, Φ, taking f

to g. Then Φ−1(Q) ∩ P is a non-empty Π0
1 subclass of P . This is the required P ′, as

Φ(Φ−1(Q) ∩ P ) ⊆ Q.

Corollary 4.2.14. No Muchnik complete Π0
1 subset of 2ω has a small Π0

1 subset
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Proof. Suppose S ⊆ 2ω is small, Π0
1 and Muchnik complete. Then S >w DNR2. By

Lemma 4.2.13, there must be a Π0
1, S′ ⊆ S, such that S′ >M DNR2. As S′ is necessarily

small, its image under any recursive functional is also small, and so DNR2 must have a

small Π0
1 subclass - contradicting Corollary 4.2.12.

Lemma 4.2.13 also has corollaries for the study of R - the upper semi-lattice of

r.e. Turing degrees:

Corollary 4.2.15. For any hypersimple set, X, and any r.e. partition, X0 ∪X1 = X,

there exists a separating set of X0 and X1 that is not of PA degree.

Proof. If X is hypersimple then S(X0,X1) is small. By Corollary 4.2.14, it can not be

Muchnik complete and so must contain an element not of PA degree.

The following is a somewhat more general consequence of Lemma 4.2.13.

Corollary 4.2.16. If S ⊆ 2ω is a small Π0
1 class and P ⊆ 2ω is Π0

1 with no small Π0
1

subclass, then no hyperimmune-free element of S computes an element of P .

Theorem 4.2.17. The set of Medvedev degrees:

I = {degM (P ) : P has a small Π0
1 subset}

forms a (proper, nontrivial) prime ideal in PM .

Proof. First note that if P ≡M Q and P has a small Π0
1 subset then so does Q by

Corollary 4.2.9, so in what follows we are free to choose arbitrary representatives of

Medvedev degrees.
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i. Suppose degM (P ) ∈ I and Q ⊆ 2ω is a Π0
1 class such that P >M Q. Corollary

4.2.9 then implies degM (Q) ∈ I.

ii. If degM (P ), degM (Q) ∈ I and S1 ⊆ P and S2 ⊆ Q are small, then S1 ∨S2 ⊆

P ∨Q and by Theorem 4.2.6, S1 ∨ S2 is small. So degM (P ∨Q) ∈ I.

iii. No Medvedev complete Π0
1 class has a small Π0

1 subset by Corollary 4.2.12,

so I is proper.

iv. I is non-trivial by Theorem 4.2.4

v. Suppose P ⊆ 2ω and Q ⊆ 2ω are Π0
1 and such that degM (P ∧ Q) ∈ I. If

S ⊆ P ∧ Q were small, then either {f : 〈0〉af ∈ S} ∩ P or {f : 〈1〉af ∈ S} ∩ P would

be non-empty and consequently, small. So I is prime.

Using an argument similar to that used in Corollary 4.2.14, we can show that

Theorem 4.2.17 is true in Pw as well.

Theorem 4.2.18. The set of Muchnik degrees:

J = {degw(P ) : P has a small Π0
1 subset}

forms a (proper, nontrivial) prime ideal in Pw.

Proof. ii, iv and v are proved exactly as in Theorem 4.2.17. iii follows from Corollary

4.2.14. For i, suppose degw(P ) ∈ J and Q 6w P . Let S ⊆ P be Π0
1 and small and let

f ∈ S be hyperimmune-free. As in Corollary 4.2.14, there is a total recursive functional,
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Φ, such that Φ(f) ∈ Q. Thus Φ[S] ∩ Q is non-empty and therefore a small subset of

Q.

We will now consider alternative characterisations of smallness for recursively

bounded Π0
1 classes.

Definition 4.2.19. If P ⊆ 2ω is Π0
1, then let Br(P ), the branching nodes of P , be the

set

{σ ∈ Ext(P ) : σa〈0〉 ∈ Ext(P ) and σa〈1〉 ∈ Ext(P )}.

Observation 4.2.20. ‖Br(P )[< n]‖+ 1 = ‖P [n]‖.

Proof. This is just a matter of counting. Each branching node below a given level of

Ext(P ) increases the number of extendible nodes at that level by one.

Theorem 4.2.21. For any Π0
1 class, P ⊆ 2ω, P is small if and only if Br(P ) is h-

immune.

Proof. ⇒) Assume Br(P ) is not h-immune. Let f(n) be a total recursive function and

let 〈Df(n)〉n>0 be a strong array such that Df(n) ∩ Br(P ) 6= ∅ for all n ∈ ω. For all

n ∈ ω, define a total recursive function, g, by:

g(n) = max{|σ| : σ ∈
n⋃
i=0

Df(i)}.

Then for all n ∈ ω, ‖Br(P )[6 g(n)]‖ > n+ 1. Therefore, by observation 4.2.20, for all n,

‖P [g(n) + 1]‖ = ‖Br(P )[6 g(n)]‖+ 1 > n+ 2 > n. So P is not small.
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⇐) Assume P is not small and the fact is witnessed by a strictly increasing, recursive

function, h. We now construct the required strong array as follows: first define the

recursive function:

ĥ(n) =


h(0) if n = 0

h(2ĥ(n−1)) + 1 if n 6= 0.

.

The point of this definition is that, for all n,

‖P [ĥ(n+ 1)]‖ > 2ĥ(n) + 1 > ‖P [ĥ(n)]‖,

and so there must be a σ ∈ Br(P ) such that ĥ(n) 6 |σ| < ĥ(n+ 1). Now define:

Df(n) = {σ : ĥ(n) 6 |σ| < ĥ(n + 1)}.

So 〈Df(n)〉n>0 is a strong array and for each n, Df(n) ∩ Br(P ) 6= ∅.

Notice that Br(P ) is a co-r.e. set so that P is small if and only if Br(P ) is

hypersimple. This observation allows us to apply knowledge of the algebraic structure

of r.e. sets to the Medvedev and Muchnik lattices via the idea of branching sets.

Definition 4.2.22. n ∈ ω is said to be a branching level of P if there exists a σ ∈ Br(P )

such that |σ| = n. We denote the set of branching levels of P by Brl(P )

Theorem 4.2.23. P ⊆ 2ω is small if and only if Brl(P ) is hypersimple.
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Proof. Assume Brl(P ) is not hypersimple. Let 〈Df(n)〉 be a disjoint strong array such

that for all n, Df(n) ∩Brl(P ) 6= ∅. Let Dg(n) = {σ ∈ 2<ω : |σ| ∈ Df(n)}. Then 〈Dg(n)〉

forms a disjoint strong array and for all n, Dg(n) ∩ Br(P ) 6= ∅.

Conversely, suppose 〈Df(n)〉 is a disjoint strong array such that for all n, Df(n)∩

Br(P ) 6= ∅. Let Dg(n) = {|σ| : σ ∈ Df(n)}. 〈Dg(n)〉 is not a disjoint array but it can

easily be made so. Let

h(n) = least k {|σ| : σ ∈ Df(k)} ∩
n−1⋃
i=0

Dg(i) = ∅.

Then 〈Df(h(n))〉 is the required disjoint strong array.

4.3 Very Small Π0
1 classes

The definition of smallness can be strengthened to define a proper subset of the

set of small Π0
1 classes. This new property will have much in common with smallness.

Definition 4.3.1. P ⊆ ωω is very small if it is non-empty, closed and the function n 7→

least k such that ‖P [k]‖ > n dominates every recursive function.

The similarity to smallness can be made more explicit by the observation that P

is small if and only if the function n 7→ least k such that ‖P [k]‖ > n is not dominated

by any recursive function. This also proves that every very small class is small.

Now theorems analogous to Theorems 4.2.4 - 4.2.21 can be established.

Theorem 4.3.2. A very small Π0
1 class with no recursive path exists.
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Proof. Recall that an r.e. set, X, is dense simple if the principal function of its comple-

ment dominates every recursive function. Now, if A is dense simple and A0 and A1 are

disjoint r.e. sets such that A0 ∪ A1 = A, then S(A0, A1) is very small by an argument

similar to 4.2.4. A0 and A1 can be constructed to ensure S(A0, A1) has no recursive

element.

Theorem 4.3.3. If P and Q are very small Π0
1 subsets of ωω, then P ∧Q is very small.

Proof. Suppose P ∧ Q is not very small. Let g be a recursive function such that

‖P ∧Q[g(n)]‖ > n for infinitely many n. Then, for infinitely many n, either ‖P [g(n)− 1]‖ >

n/2 or ‖Q[g(n) − 1]‖ > n/2 (using the definition of ∧). Therefore, either {n : ‖P [g(n)− 1]‖ >

n/2} or {n : ‖Q[g(n) − 1]‖ > n/2} is infinite. Assume, without losing generality, that

{n : ‖Q[g(n) − 1]‖ > n/2} is infinite. Then either {2n : n ∈ ω} ∩ {n : ‖Q[g(n) − 1]‖ >

n/2} is infinite or {2n + 1 : n ∈ ω} ∩ {n : ‖Q[g(n)− 1]‖ > n/2} is infinite. If the first

case holds then, for infinitely many n, ‖Q[g(2n) − 1]‖ > n. If the second case holds

then, for infinitely many n, ‖Q[g(2n + 1)− 1]‖ > n + 1/2 > n. In either case Q is not

very small.

Theorem 4.3.4. If P and Q are very small, then so is P ∨Q.

Proof. The proof imitates Theorem 4.3.3. Assume not and let g be such that ‖P ∨Q[g(n)]‖ >

n for infinitely many n. The function n 7→ ‖P [n]‖ is increasing in n so we also

have ‖P ∨Q[2g(n)]‖ > n. Using the definition of ∨, for infinitely many n, either

‖Q[g(n)]‖ > √n or ‖P [g(n)]‖ > √n. Assume as before, that X = {n : ‖Q[g(n)]‖ > √n}

is infinite. Let {n0, n1, n2 . . . } be an infinite subset of ω such that for all i, there exists
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a k ∈ X such that n2
i
6 k < (ni + 1)2. Then for all i,

‖Q[g((ni + 1)2)]‖ > ‖Q[g(k)]‖ for some k ∈ X

>
√
k

> ni.

So there are infinitely many n such that ‖Q[g((n + 1)2)]‖ > n andQ is not very small.

Theorem 4.3.5. For every very small P ⊆ 2ω, there exists a very small Q, such that

2ω <M Q <M P . This is also true with <w substituting for <M .

Proof. We will use the same kind of construction as in Theorem 4.2.7. We will construct

a Π0
1 class, V ⊆ 2ω and require that it has no recursive path and that no element of

V computes an element of P . We then combine these requirements with the following

to ensure that it’s very small. This time the requirements will be indexed by a pair of

numbers:

R〈e,n〉 ≡ {e}(n)↓⇒ ‖V [{e}(n)]‖ < n

R〈e,n〉 requires attention at stage s if {e}s(n)↓ and ‖Vs[{e}s(n)]‖ > n. Suppose

R〈e,n〉 is the highest priority requirement requiring attention at stage s. Let l be the

least natural number such that,

|ψs(τ)| > {e}(n)
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for all τ of length l. Let k be the greatest natural number strictly less that log2(n). Now

define,

ψs+1(ν) =


ψs(σ

a0l−kaν′) if ν = σaν and |σ| = k,

ψs(ν) if |ν| < k

Then at stage s = 1, R〈e,n〉 will be satisfied as the number of strings of length k is

2k < n. So if |σ| = k, |ψs+1(σ)| > {e}(n) and so ‖V [{e}(n]‖ < n.

Each requirement is satisfied for all time after receiving attention once. lims(σ)

exists for all σ as, for all k, there comes a stage, s, when k + 1 < log2(n) for all R〈e,n〉

that are not satisfied at stage s. By this stage, ψ(σ) = ψs(σ) for all σ of length k.

Theorem 4.3.6. Let P and Q be Π0
1 subsets of ωω. If P is r.b. and very small, and if

{e} :P → Q is a recursive surjection, then Q is very small.

Proof. The proof is virtually identical to Theorem 4.2.8

Corollary 4.3.7. If P >M Q are Π0
1 subsets of ωω, and if P is r.b. and contains a

very small Π0
1 subset, then Q contains a very small Π0

1 subset.

Proof. See the proof of Corollary 4.2.9

Corollary 4.3.8. Very smallness is preserved by recursive homeomorphisms.

Corollary 4.3.9. Any very small r.b. Π0
1 subset of ωω is recursively homeomorphic to

a very small Π0
1 subset of 2ω.
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Theorem 4.3.10. The set of Medvedev degrees:

K = {degM (P ) : P has a very small Π0
1 subset}

forms a (proper, nontrivial) prime ideal in PM .

Proof. The proof of this is essentially the same as Theorem 4.2.17.

Theorem 4.3.11. The set of Muchnik degrees:

L = {degw(P ) : P has a very small Π0
1 subset}

forms a (proper, nontrivial) prime ideal in Pw.

Proof. See the proof of Theorem 4.2.18.

Theorem 4.3.12. For any Π0
1 class, P ⊆ 2ω, P is very small if and only if Br(P ) is

dense simple.

Proof. It is convenient here to provide an alternative characterisation of dense simplicity.

Lemma 4.3.13. An r.e. set is dense simple if and only if for all strong arrays, 〈Df(n)〉,

{n : ‖X ∩
n⋃
i=0

Df(i)‖ > n} is finite.
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Proof. Suppose that for some recursive function, f , there are infinitely many n such that

‖X ∩
⋃n
i=0Df(i)‖ > n. Let m(n) = max(

⋃n
i=0Df(i)). Then for infinitely many n,

‖{x : x ∈ X and x 6 m(n)}‖ > n.

Therefore, if p
X

is the principal function of X , p
X

(n) 6 m(n) for infinitely many n.

But m is recursive, so X is not dense simple.

Conversely, suppose there is a recursive function, φ, such that p
X
6 φ(n) for

infinitely many n. Let

Df(n) =


[0, φ(0)] if n = 0

(φ(n − 1), φ(n)] otherwise,

(where the notation (a, b] represents the appropriate interval in ω). Then, whenever

p
X

(n) 6 φ(n), we have ‖X ∩
⋃n
i=0Df(i)‖ > n.

Now we complete the proof of the theorem. Suppose P is not very small and let

g be recursive such that for infinitely many n, ‖P [g(n)]‖ > n. Let g′(n) = g(n + 1), so

that, for all n,

‖P [g(n)]‖ > n⇒ ‖P [g′(n)]‖ > n+ 1.
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Therefore, for infinitely many n, ‖P [g′(n)]‖ > n + 1. By Observation 4.2.20, it follows

that ‖Br[< g′(n)]‖ > n for infinitely many n. Let

Df(n) =


{σ ∈ 2<ω : g′(n− 1) 6 |σ| < g′(n)} if n 6= 0

{σ ∈ 2<ω : |σ| < g′(0)} otherwise.

Then, for infinitely many n,

‖Br(P ) ∩
⋃n
i=0Df(i)‖ = ‖Br[< g′(n)]‖

= ‖P [g′(n)]‖ − 1

> n,

and Br(P ) is not dense simple.

For the other direction, suppose 〈Df(n)〉 is such that ‖Br(P ) ∩
⋃n
i=0Df(i)‖ > n

for infinitely many n. Let m(n) = max(
⋃n
i=0Df(i)). Then, for infinitely many n,

‖Br[6 m(n)]‖ > n, which implies, using Observation 4.2.20, that ‖P [m(n) + 1]‖ > n

and so P is not very small.

Theorem 4.3.14. P is very small if and only if Brl(P ) is dense simple.

Proof. Similar to the proof of Theorem 4.2.23. If 〈Df(n)〉 is a disjoint strong array such

that, for infinitely many n, ‖Brl(P ) ∩
⋃n
i=0Df(i)‖ > n then define 〈Dg(n)〉 as in the

first half of the proof of Theorem 4.2.23 and this disjoint strong array witnesses the fact

that Br(P ) is not dense simple.
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In the other direction, if 〈Df(n)〉 is a disjoint strong array witnessing the fact

that Br(P ) is not dense simple, then define h(n) as in Theorem 4.2.23 and let

Dg(n) =
n⋃
i=0

Df(h(i)) r
n−1⋃
i=0

Df(h(i)).

〈Dg(n)〉 then witnesses the fact that Brl(P ) is not dense simple.

Very smallness is a strictly stronger property than smallness as the next theorem

shows. First we will need the following lemma.

Lemma 4.3.15. (Lachlan [19] and Robinson [23]) There is a hypersimple set that has

no dense simple superset.

Robinson and Lachlan actually proved that there is an r-maximal set with no

dense-simple superset, but as all r-maximal sets are hypersimple (see, for example [30],

chapter X), the lemma follows.

Theorem 4.3.16. There exists a small Π0
1 subset of 2ω that has no very small subset.

Proof. Let X be hypersimple with no dense simple superset and let X0 ∪ X1 = X be

any r.e. partition of X. We claim that S = S(X0,X1) is small with no very small Π0
1

subclass.

We first observe that S is small as X is hypersimple. Suppose V ⊆ S is a very

small Π0
1 subclass. Then, by Theorem 4.3.12, Br(P ) is dense simple. But Br(V ) ⊆ Br(S),

so Br(V ) ⊇ Br(S). Therefore it is sufficient to show that Br(S) has no dense simple

superset.
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Suppose Y ⊇ Br(S) were dense simple. Define,

H = {n : ∀σ |σ| = n =⇒ σ ∈ Y }.

The claim is that H is a dense simple superset of X, contradicting our original assump-

tion. It is clear from its definition that it is r.e.. Also note that if m ∈ X then for all σ

of length m, σ ∈ Br(S) ⊆ Y so X ⊆ H. Also H is co-infinite as, if it were co-finite, Y

would also be co-finite and not dense simple.

Suppose now that there were a disjoint strong array, 〈Df(n)〉n, such that for

infinitely many n,

‖H ∩
n⋃
i=0

Df(i)‖ > n.

Define a recursive function g(n) such that,

Dg(n) = {σ : |σ| ∈ Df(n)}.

For any natural numbers, k and n, if k ∈ H ∩Df(n) then there exists a σ ∈ 2<ω

such that |σ| = k, σ ∈ Y and σ ∈ Dg(n). That is, σ ∈ Y ∩Dg(n). For any two distinct

k, k′ ∈ ω, the required σ and σ′ will have different lengths and therefore be distinct, so

we get, for all n,

‖H ∩Df(n)‖ 6 ‖Y ∩Dg(n)‖.
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Therefore, for infinitely many n,

‖Y ∩
n⋃
i=0

Dg(i)‖ > ‖H ∩
n⋃
i=0

Df(i)‖ > n,

contradicting the fact that Y is dense simple.

Corollary 4.3.17. If P and V are Π0
1 subsets of 2ω such that V is very small, P has

no small Π0
1 subclass, and P >w V , then there exists a Π0

1 class, Q ⊆ 2ω such that

V <w Q <w P .

Proof. Let S be small with no very small Π0
1 subclass. Then we claim V ∨ (P ∧S) is the

required Q. V ∧ S is small and so is not Muchnik reducible to P (using Lemma 4.2.13).

Therefore V ∨ (P ∧ S) ≡w P ∧ (V ∨ S) <w P. But also V 6>w (P ∧ S) as neither P nor

S has a very small Π0
1 subclass. Therefore V ∨ (P ∧ S) >w V .

4.4 Small Π0
1 classes, Measure, and Thinness

In this sections we compare smallness with the well-established concepts of mea-

sure and thinness.

µ will be the standard fair-coin measure on subsets of 2ω. If σ ∈ 2<ω then,

µσ is µ relativised to {f ∈ 2ω : f ⊃ σ}. If P is a closed subset of 2ω, the function,

n 7→ ‖P [n]‖/2n is decreasing and µ(P ) = limn ‖P [n]‖/2n.

Theorem 4.4.1. If P ⊆ 2ω is closed, and µ(P ) > 0, then P is not small.

Proof. Choose some recursive r ∈ R such that 0 < r 6 µ(P ). Then for all n, ‖P [n]‖ >

r · 2n and, if g(n) = least k, k > log2(n/r), then ‖P [g(n)]‖ > n.
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A Π0
1 class, P , is thin if every Π0

1 subclass of P is the intersection of P with some

clopen set. Equivalently, P is thin if and only if its lattice (under ∩,∪) of Π0
1 subclasses

forms a Boolean algebra. The notion has been studied by Downey, Coles, Cholak and

others in [7], [9], [10] and elsewhere. As both small and thin classes are “diminutive” in

some sense, it is natural to ask at this stage how the notions of thinness and smallness

relate to each other.

Theorem 4.4.2. There exists a very small (and hence small) Π0
1 class that is not thin.

Proof. If V is any very small Π0
1 class, then by Lemma 4.3.4, so is V ∨V . However V ∨V

is never thin as {f ⊕ f : f ∈ V } is a Π0
1 subclass of V ∨ V that is not the intersection of

V with any clopen set (it is easy to see its complement in V is not closed).

Theorem 4.4.3. There is a thin Π0
1 class that is not very small

Proof. We first show that for any perfect (hence special) Π0
1 ⊆ 2ω , Ext(P ) ≡T Br(P ).

One direction is clear because σ ∈ Br(P ) ⇔ σa〈0〉, σa〈1〉 ∈ Ext(P ). So Br(P ) 6T

Ext(P ). For the other direction, σ ∈ Ext(p) ⇔ ∃τ ∈ Br(P ) τ ⊇ σ. So Ext(P ) is

r.e. in Br(P ). But Ext(P ) is a co r.e. set, so it is in fact, recursive in Br(P ). That is,

Ext(P ) 6T Br(P ).

The rest of the proof follows from results in [9] about the Turing degree of the

extendible nodes of thin Π0
1 classes. In [9], Downey, Jockusch and Stob introduce a

class of r.e. degrees called the anr degrees (later called anc degrees). They prove that

there are thin separating classes whose extendible nodes are of anr degree (viz. the Π0
1

sets associated with Martin Pour-el theories), and indeed that every anr degree contains
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Ext(T ) for some thin separating class Π0
1 class, T . They also show in [9] that there are

low anr degrees.

Let T be a thin separating Π0
1 class such that Ext(T ) is of low degree. Suppose

T is very small. Then Br(T ) would be dense simple, and therefore of high degree. As

Br(T ) ≡T Br(T ) ≡T Ext(T ), this is a contradiction.

Theorem 4.4.4. There exists a thin, very small Π0
1 class

Proof. This is just a matter of combining the requirements from theorem 4.3.5 with the

requirements for thinness (see for example [7]).
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