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Abstract

We use the connection of Hausdorff dimension and Kolmogorov complexity to
describe a geometry on the Cantor set - including concepts of angle, projections
and scalar multiplication. A question related to compressibility is addressed using
these geometrical ideas.

1 Introduction

The aim of this paper is to investigate the role of geometric ideas in the study of Kol-
mogorov complexity. The basic concept is that of the effective dimension of reals -
elements of the Cantor space 2N. If σ is a finite binary string, C(σ) will be the plain
Kolmogorov complexity of σ and the effective Hausdorff dimension of X is defined here
to be

dimH X = lim inf
n

C(X �n)

n
.

The dual notion

dimpX = lim sup
n

C(X �n)

n

is the effective packing dimension of X. We will be concerned primarily with those
X ∈ 2N where these two quantities are equal - the so-called regular reals [6] - and for
these we define the effective dimension of X to be

dimX = lim
n

C(X �n)

n
.

The foundation for the geometrical ideas is formed by the function d : 2N × 2N → [0, 1]
defined by

d(X → Y ) = lim sup
n

C(Y �n|X �n)

n
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where C(Y �n|X �n) is the Kolmogorov complexity of Y �n given X �n. The function d
obeys the triangle inequality in the direction of the arrow, that is

d(X → Y ) + d(Y → Z) > d(X → Z)

and which we refer to as a directed pseudometric. A metric can be easily formed from d
by defining

d(X, Y ) = max{d(X → Y, Y → X)}
and by identifying reals that are distance 0 from one another. We write X 'd Y if
d(X, Y ) = 0.

The paper is about transforming and combining regular reals and analysing the results
using this metric.

In the Section 2 we look at the effect on a regular real X of diluting X with 0s. That
is for a given r ∈ [0, 1] we construct a real rX that consists of bits of X interspersed with
0s. The proportion of bits of X to these padding 0s is r/(1− r).

We show that for any r1, r2 ∈ [0, 1]

d(r1X → r2X) = max{0, r2 − r1} · dimX

and that for any two regular reals X1, X2 there is a continuous function ϕ from [0, 1] to
the set of regular reals such that ϕ(0) = X1 and ϕ(1) = X2. That is we show that the
set of regular reals forms a path connected topological space under d.

In section 3 we generalise the procedure introduced in the previous section by defining
r[AB] to be the result of interspersing bits of A with bits of B in the proportion r to

1− r. The requirement for the coherence of this operation is that limn
C(αA,βB)

n
exists for

all α, β ∈ [0, 1]. This we refer to as A and B’s being mutually regular. For example, any
two mutually random reals are mutually regular.

The set of all elements of the form r[(αA)(αB)] we call the hull of A and B (denoted
HAB) and the geometry of this set induced by the directed pseudometric d is the subject
of the rest of the paper, and we begin this in section 4. First we describe a directed metric
space we call T with directed metric δ. T is similar to the taxicab metric but defined on a
unit equilateral triangle with a triangular coordinate system and a distinguished element
O at one vertex as in Figure 2. The distance between two points is the (Euclidean) length
of the shortest piecewise linear path between the two points if the components of the path
are restricted to being parallel to the sides of the triangle (See Figure 3). Furthermore,
the directed metric on T requires that linear paths in the direction of the origin parallel to
a side have length 0. We also introduce an operation of scalar multiplication on elements
of T where for any r ∈ [0, 1] and X ∈ T , rX is the point on OX at distance rδ(O → X)
from the origin.

The geometry of HAB is studied by attempting to find linear isometries from HAB

into T - where ϕ : HAB ↪→ T is a linear isometry if it preserves the metric on HAB and
for all X ∈ HAB and r ∈ [0, 1], ϕ(rX) = rϕ(X).
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The most basic example is when A and B are mutually random reals, in which case
there is a linear isomorphism (bijective linear isometry) from HAB onto T . We also give
an example of two mutually regular reals A and B (both randoms) for which, not only
is HAB not linearly isomorphic to T but for which there exists no linear isometry at all
of HAB into T .

To make this argument we define notions of angle and projection in T and HAB and
show that these notions are preserved by linear isometries. The definitions are made
in analogy to those in Euclidean space and we hope are natural enough to the reader.
The angle between mutually random reals is maximal (equal to 1) and we take this
concept to be a generalisation of ‘mutually random” just as having maximal dimension
is a generalisation of randomness. In T the definitions of ∠XOY , ProjXY , and ProjYX
(angles and projections respectively) are related by Equation 4.6 which we interpret as
being the statement that the space T is flat. As a final result we show that given two
mutually regular reals A,B, Equation 4.6 is a necessary and sufficient condition for there
to be a linear isometry from HAB into T .

We want to think of the existence of linear isometries as a framework for answering
compression/dilution type questions. For example, in [5] Reimann asks the question if
every real of positive Hausdorff dimension is created by “diluting” a random real :

If A has positive effective Hausdorff dimension, is there a random real B 6T
A?

The question is answered negatively in [1] for positive effective packing dimension.
Here we might ask a similar question thus:

For any regular real Y of dimension r, does there exist a regular real X of
dimension 1 such that Y 'd rX.

We can also ask a two-dimensional version of this question:

Given X, Y mutually regular, does there exist mutually regular A,B such
that ∠AB = 1 and dimA = dimB = 1 and X ′, Y ′ ∈ HAB such that X 'd X ′
and Y 'd Y ′?

A related question is:

Given X, Y mutually regular, does there exist mutually regular A,B such
that ∠AB = 1 and dimA = dimB = 1 and a linear isometry from HXY into
HAB (equivalently into T )?

We answer this last question in the negative by describing such an X and Y for which
no such isometry exists and using very simple geometric arguments to establish this.
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2 Basic Definitions and Notation

Undefined terminology regarding Kolmogorov complexity follows [4].

Definition 2.1. Let A,B ∈ 2N, define

d(A→ B) = lim sup
n

C(B �n |A�n)

n
.

Theorem 2.2. d(A→ B) is a directed pseudometric on 2N. That is, for all A,B,C ∈ 2N,

1. d(A→ B) > 0,

2. d(A→ A) = 0,

3. d(A→ C) 6 d(A→ B) + d(B → C).

Proof. 1 and 2 are immediate. To prove 3, notice that in order to describe C � n given
A �n it is sufficient to be given a description of B �n given A �n, a description of C �n
given B �n, and enough extra bits to distinguish these two descriptions from each other.
That is, for all n

C(B �n |A�n) + C(C �n |B �n) +O
(
logC(C �n |B �n)

)
> C(C �n |A�n).

So

d(A→ B) + d(B → C) = lim sup
n

C(B �n |A�n)

n
+ lim sup

n

C(C �n |B �n)

n

> lim sup
n

C(B �n |A�n) + C(C �n |B �n)

n

> lim sup
n

C(C �n |A�n)−O
(
logC(C �n |B �n)

)
n

= d(A→ C)

We now can create a metric from d in the standard way:

Definition 2.3. Let

d(A,B) = max{d(A→ B), d(B → A)}.

We write A 'd B if d(A,B) = 0, and denote {X : X 'd A} by [A]d - the d-equivalence
class of A. A metric is induced by d on these equivalence classes.
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Definition 2.4.

The quantity lim supnC(A �n)/n is referred to as the effective packing dimension of
A. The dual quantity,

lim inf
n

C(A�n)

n
,

is the effective Hausdorff dimension of A. For a detailed discussion of the packing and
Hausdorff dimension, see for example [3]. If these two dimensions are equal then we will
simply refer to the dimension of A, and denote this dimA.

Definition 2.5. A ∈ 2N is regular if

lim sup
n

C(A�n)

n
= lim inf

n

C(A�n)

n
.

That is, if limnC(A�n)/n exists.

If 0 is the infinite sequence of 0s (or equivalently any computable sequence) then it
is immediate that:

Observation 2.6. For all A ∈ 2N,

d(0→ A) = the effective packing dimension of A,

and if A is regular, then
d(0→ A) = dimA.

Definition 2.7. Let REG be the class of regular elements of 2N equipped with the
directed pseudometric d defined above.

The main result of this section is that REG is a path-connected topological space.
Given any A ∈ REG, we explicitly construct a continuous function ϕ : [0, 1] → REG
such that ϕ(1) = A and ϕ(0) = 0. Furthermore, the mapping ϕ will also have the
property that for all α, β ∈ [0, 1]

d(ϕ(α), ϕ(β)) = |α− β| dimA.

Concatenation of paths then allows us to connect any two A,B ∈ REG.

First we define ϕ and prove some lemmas.

Definition 2.8. Let α ∈ [0, 1] and n ∈ N. Then let pn(α) be the least natural number
x that minimises | αn− x | . We then have that

αn− 1/2 6 pn(α) 6 αn+ 1/2

and that limn pn(α)/n = α.
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Definition 2.9. Let A ∈ REG and let α ∈ [0, 1]. Let ϕ(α) be

σ10
a1σ20

a2σ30
a3 . . . σi0

ai . . .

where

1. A = σ1σ2σ3 . . .

2. |σi| = pi(α)

3. |σi0ai| = i.

Notation. Note that |σ10
a1σ20

a2 . . . σn0an| = n(n+1)/2. To make the calculations more
readable, we let

• N := n(n+ 1)/2,

• Pn(α) :=
∑n

i=1 pi(α) and

• αA := ϕ(α).

This notation will be used throughout the paper. We will also refer to the string
σ1σ2σ3 . . . σn above as the bits of A in αA � N , and to the added 0s as the padding
bits.

Lemma 2.10. If A ∈ REG, then αA ∈ REG for all α ∈ [0, 1]. Furthermore,
dim(αA) = α dim(A).

Proof. Let n ∈ N+ and consider αA�n. Let m = m(n) be the the largest positive integer
such that m(m+ 1)/2 6 n. Then αA�n is of the form

σ10
a1σ20

a2σ30
a3 . . . σm0amτ

where |τ | < m + 1. To describe αA � n it is sufficient to know A �Pm(α), the values of
pi(α) for all i 6 m, and the string τ . Each pi(α) is bounded by i, and there are m of
them so we need no more than O(m logm) bits to describe them. The length of τ is
bounded by m so we need at most O(m) bits to describe τ . Therefore

C(αA�n) 6 C(A�Pm(α)) +O(m logm).

Conversely, to describe A�Pm(α), it is sufficient to describe αA�n and to distinguish in
αA�n the padding bits from the bits of A. To do this it is sufficient to know the values
of pi(α) for all i 6 m. Thus

C(A�Pm(α)) 6 C(αA�n) +O(m logm),
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and consequently
C(A�Pm(α)) = C(αA�n)±O(m logm). (1)

But n > m(m+ 1)/2 so
√

2n > m, and therefore

lim sup
n

C(αA�n)

n
6 lim sup

n

C(A�Pm(α)) +O(m logm)

n

6 lim sup
n

C(A�Pm(α)) +O(
√
n log

√
n)

n

6 lim sup
n

Pm(α)

n
lim sup

n

C(A�Pm(α))

Pm(α)
(2)

= lim inf
n

Pm(α)

n
lim inf

n

C(A�Pm(α))

Pm(α)

(as lim
n

Pm(α)

n
exists and A is regular)

6 lim inf
n

C(A�Pm(α))

n

6 lim inf
n

C(αA�n) +O(m logm)

n

= lim inf
n

C(αA�n)

n

Thus αA is regular. From line (2) it is now straightforward to show dim(αA) =
α dim(A).

Lemma 2.11.
α(βA) 'd (αβ)A,

and we can thus write αβA with only marginal ambiguity.

Proof. (Sketch.) For large values of n, the number of bits of A in α(βA) is approximately
equal to the number of bits of A in (αβ)A (when compared to N). So to describe α(βA)
from (αβ)A one only needs to know the values of pi(α), pi(β), and pi(αβ). As before
this requires at most O(n log n) bits. This term disappears in the limit, so d((αβ)A →
α(βA)) = 0. A symmetrical argument shows d(α(βA)→ (αβ)A) = 0.

Lemma 2.12. Let f 6 g 6 h be functions from N+ to N+ with f(n) and g(n) nonde-
creasing, limn f(n) = limn g(n) =∞, and h strictly increasing. If A ∈ 2N is regular and

limn
g(n)
h(n)

and limn
f(n)
h(n)

both exist, then

lim
n

C(A�g(n) |A�f(n))

h(n)
= lim

n

g(n)− f(n)

h(n)
· dimA.
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Proof. It is well known (see for example [2]) that for all σ, τ ∈ 2<N,

C(σ|τ) + C(τ) = C(σ, τ) +O
(
logC(σ, τ)

)
.

This equality is usually referred to as the symmetry of information.

If τ � σ, then this implies

C(σ) 6 C(σ|τ) + C(τ) +O
(
logC(τ)

)
6 C(σ) +O

(
log |τ |

)
+O

(
logC(σ, τ)

)
.

Taking σ and τ to be A�g(n) and A�f(n) respectively gives the two inequalities

C(A�g(n))− C(A�f(n)) 6 C(A�g(n) |A�f(n)) +O
(
logC(A�f(n))

)
,

and

C(A�g(n) |A�f(n)) 6 C(A�g(n))−C(A�f(n))+O(log f(n))+O
(
logC(A�g(n), A�f(n))

)
.

Dividing by h(n) and taking limit suprema of both sides of the first inequality gives

lim sup
n

C(A�g(n) |A�f(n))

h(n)
> lim sup

n

C(A�g(n))− C(A�f(n))

h(n)

= lim sup
n

g(n)

h(n)

C(A�g(n))

g(n)
− f(n)

h(n)

C(A�f(n))

f(n)

As A is regular, the limit of the RHS exists, so

lim
n

C(A�g(n) |A�f(n))

h(n)
> lim

n

g(n)− f(n)

h(n)
· dimA.

The same calculation on the second inequality will give

lim
n

C(A�g(n) |A�f(n))

h(n)
6 lim

n

g(n)− f(n)

h(n)
· dimA,

when one observes that

lim
n

O(log f(n)) +O
(
logC(A�g(n), A�f(n))

)
h(n)

= 0.

Theorem 2.13. If α, β ∈ [0, 1], then

d(αA→ βA) = max{0, (β − α) dimA},

and thus d(αA, βB) = |β − α| dimA.
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Proof. If α > β, then C(βA | αA) 6 O(n log(n)) which approaches 0 after being divided
by N . So d(αA → βB) = 0. If α 6 β, then by an argument similar to that in Lemma
2.10, we show that

C(αA�N, βA�N) = C(A�Pn(α), A�Pn(β))±O(n log(n)),

and so

lim
n

C(βA�N | αA�N)

N
= lim

n

C(αA�N, βA�N)− C(αA�N)

N

= lim
n

C(A�Pn(α), A�Pn(β))− C(A�Pn(α))

N

= lim
n

C(A�Pn(β) |A�Pn(α))

N

= (β − α) dim(A) (by Lemma 2.12)

We have established the following with ϕ given in Definition 2.8.

Theorem 2.14. REG is a path connected topological space. That is, for any A,B ∈
REG, there is a continuous mapping ϕ from [0, 1] into REG with ϕ(0) = A and ϕ(1) =
B.

Proof. The continuous map ϕ defined above connects any regular X to 0. Concatenation
of paths gives the result.

3 Mutually Regular Reals

Definition 3.1. We call any pair of reals, A and B, mutually regular if for all α, β ∈ [0, 1],

lim
n

C(αA�n, βB �n)

n

exists.

By taking α = 0 and β = 1 (or vice versa) we see immediately that mutually regular
reals are regular.

Lemma 3.2. Mutually regular reals exist.
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Proof. If R1 and R2 are such that R1⊕R2 is random, then we claim that R1 and R2 are
mutually regular. Let α, β ∈ [0, 1]. By the symmetry of information, it is sufficient to

show that lim
n

C(βR2 �n|αR1 �n)

n
exists, which is what we do.

β = lim sup
n

C(βR2 �n)

n
cf. (1) and (2)

> lim sup
n

C(βR2 �n | αR1 �n)

n

> lim inf
n

C(βR2 �n | αR1 �n)

n

= lim inf
n

C(R2 �Pn(β) |R1 �Pn(α))

N
cf. (1)

> lim inf
n

CR1(R2 �Pn(β))

N
(3)

= lim inf
n

C(R2 �Pn(β))

N
(4)

= β

Line 4 follows from the fact that R2 is random relative to R1 and hence has R2-
effective Hausdorff dimension 1. Line 3 follows from the previous line because if f ∈ 2N

and σ, τ ∈ 2<N such that f � τ , then

C(σ|τ) +O(C(|τ |)) > Cf (σ).

Lemma 3.3. If A and B are mutually regular and dimA = dimB, then d(A → B) =
d(B → A) = d(A,B)

Proof. Using again the symmetry of information:

d(B → A) = lim
n

C(A�n |B �n)

n

= lim
n

C(A�n,B �n)− C(B �n)

n

= lim
n

C(A�n,B �n)− C(A�n)

n
as dimA = dimB

= lim
n

C(B �n |A�n)

n

= d(A→ B)

10



The expression limn
C(A�n,B�n)

n
is used so often in the following that we introduce the

following notation:

Definition 3.4. Let A and B be mutually regular reals. Then

C∗(A,B) := lim
n

C(A�n,B �n)

n
.

We will also find use for the generalisation:

C∗(A1, A2 . . . , Ak) := lim
n

C(A1 �n,A2 �n . . . , Ak �n)

n
,

if this limit exists.

Lemma 3.5. If A and B are mutually regular and α ∈ [0, 1], then

C∗(αA, αB
)

= αC∗
(
A,B

)
,

and hence d
(
αA→ αB

)
= αd

(
A→ B

)
.

Proof.

C∗
(
αA, αB

)
= lim

n

C
(
αA�N,αB �N

)
N

= lim
n

Pn(α)

N
·
C
(
A�Pn(α), B �Pn(α)

)
Pn(α)

= αC∗
(
A,B

)
.

Then d
(
αA→ αB) = C∗

(
αA, αB

)
− α dim(A) = αd(A→ B).

Definition 3.6. If γ ∈ [0, 1] and A and B are mutually regular reals, then let γ[AB] ∈ 2N

be defined as follows.
γ[AB] = α1β1α2β2 . . .

where

1. |αiβi| = i

2. |αi| = pi(γ)

3. A = α1α2α3 . . .

4. B = β1β2β3 . . .

Notice that γ[AB] is a generalisation of γA in the sense that γA = γ[A0], but also
notice that it is not in general true that α(γ[AB]) 'd (αγ)[AB].

11



Figure 1: r[(αA)(αB)]

Definition 3.7. Let HAB be the space consisting of the set of reals

{r[(αA)(αB)] : r, α ∈ [0, 1]}

together with the directed pseudometric d. We refer to HAB as the hull of A and B, and
note that A = 1[(1A)(1B)], B = 0[(1A)(1B)], and 0 = 0[(1A)(1B)] are all elements of
HAB. See Figure 1.

We will need to extend this to the space of all reals that are distance 0 from elements
of HAB. Thus we define:

Definition 3.8. Let A and B be mutually regular reals. Then the extended hull of A
and B is

ĤAB = {Y ∈ 2N : ∃X ∈ HAB X 'd Y },
together with the directed pseudometric d.

Lemma 3.9. If A and B are mutually regular, then any two elements of HAB (and hence

any two elements of ĤAB) are mutually regular.

Proof. Sketch Let r1[(α1A)(α1B)], r2[(α2A)(α2B)] ∈ HAB. By keeping a track of the
number of bits of A and B in r1[(α1A)(α1B)]�n and r2[(α2A)(α2B)]�n we can see that

C
(
r1[(α1A)(α1B)]�n, r2[(α2A)(α2B)]�n

)
= C

(
r1α1A�n, (1− r1)α1B �n, r2α2A�n, (1− r2)α2B �n

)
±O(n log n)

= C
(
max{r1α1, r2α2}A�n,max{(1− r1)α1, (1− r2)α2}B �n)±O(n log n)
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Figure 2: Coordinate System for TPQ

and then use the fact that A and B are mutually regular to show that the relevant
limit exists. Taking β, γ ∈ [0, 1] and repeating the argument on β

(
r1[(α1A)(α1B)]

)
and

γ
(
r2[(α2A)(α2B)]

)
gives the result.

4 The geometry of ĤAB

4.1 The metric space T
We wish to investigate the space ĤAB geometrically. To do this we first describe a
geometrical space we call T .

Let O, P and Q be the vertices of an equilateral triangle with unit sides. O is called
the origin. We will define a directed metric δ (and hence an induced metric) on the
triangular region bounded by 4OPQ. T will be this triangular region along with δ. To
define δ we first coordinatise the points in the region as shown in Figure 2. We write
simply X = 〈x, y〉 to mean X has coordinates 〈x, y〉. If S = 〈x, y〉 ∈ T and r ∈ [0, 1],
then by rS we mean 〈rx, ry〉. The directed metric δ is given by

δ(〈x1, y1〉 → 〈x2, y2〉) = max{0, x2 − x1}+ max{0, y2 − y1}.

This gives rise to the metric

δ(〈x1, y1〉, 〈x2, y2〉) = max{|x2 − x1|, |y2 − y1|, |(x2 − x1) + (y2 − y1)|},
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and is the Euclidean length of a path from 〈x1, y1〉 and 〈x2, y2〉 if one is restricted to
moving along lines parallel to the sides of the triangle (compare the New York metric
in rectangular coordinates) The directed metric is similar, with distances calculated by
moving parallel to the sides of the triangle. However if one moves towards the origin
parallel to a side, the distance is 0 - see Figure 3. The reader may confirm that δ(rX →
rY ) = rδ(X → Y ).

We also note that with this coordinate system we have the convenient fact that if
X = 〈x, y〉, then |OX| = δ(O → X) = x+y. We can thus extend the definition of r〈x, y〉
to the case where r > 1 as long as rx+ ry 6 1.

Angles in T will be defined in analogy to Euclidean angles - the length of arc of a
sector. Given R and S in T with |OR| = r and |OS| = s, both nonzero,

∠ROS := δ(
1

r
R→ 1

s
S).

See Figure 4. The reader may confirm that the expected properties of angles hold.
For example

1. ∠ROS = ∠SOR,

2. If OS is between OR and OT , then

∠ROS + ∠SOT = ∠ROT,

3. If α, β ∈ (0, 1], then
∠(αR)O(βS) = ∠ROS.

When we say we wish to determine the geometry of ĤAB we mean we wish to find a
map ϕ̂ from ĤAB into T with the following properties:

1. For all X ∈ ĤAB and r ∈ [0, 1],

ϕ̂(rX) = rϕ̂(X).

2. For all X, Y ∈ ĤAB,
δ(ϕ̂(X)→ ϕ̂(Y )) = d(X → Y ).

We will refer to such a ϕ̂ as a linear isometry. If such a linear isometry is found
for some extended hull ĤAB, we can pull back geometric properties from T and apply
them to ĤAB. To show the usefulness of such techniques we will use them to answer the
following question in the negative:

Question 4.1. Given any pair A,B of mutually regular reals, does there exist a pair
R1, R2 of mutually random reals such that A,B ∈ ĤR1R2?
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Figure 3:
Two points where δ(〈x1, y1〉 → 〈x2, y2〉) = y2 − y1 and δ(〈x1, y1〉, 〈x2, y2〉) = x1 − x2

We can define a concept of angle in REG as well:

Definition 4.2. Suppose A, B ∈ REG with dimA = a and dimB = b. Then let

∠AB :=
1

ab
d(bA→ aB).

As dim aB = dim bA, ∠AB = ∠BA = d(bA, aB). It may be thought clearer to
define ∠AB := d( 1

a
A → 1

b
B) as in T but 1

a
A and 1

b
B are not defined when a, b < 1.

The maximum angle between two regular reals is 1 and this is achieved by two mutually
random reals. We intend ∠AB = 1 to be seen as a generalisation of A and B’s being
mutually random, and ∠AB to be a measure of how independent A and B are. It is
straightforward to show that linear isometries preserve angles.

We will now establish some results for mutually regular reals at maximum angle.

Lemma 4.3. Let A,B be mutually regular with dim(A) = a > dim(B) = b > 0 and such
that ∠AB = 1. If α, β ∈ [0, 1], then

1. d(α b
a
A→ αB) = bα = d(αB → α b

a
A)

2. d(αA→ βB) = bβ.

3. C∗
(
αA, βB

)
= aα + bβ

15



Figure 4: ∠AB = δ( 1
a
A→ 1

b
B)

4. dim γ[(αA)(βB)] = C∗
(
γαA, (1− γ)βB

)
.

5. Given any element Y ∈ ĤAB, there is a unique element X ∈ HAB such that
Y 'd X.

Proof. 1.
d(α b

a
A→ αB) = α

a
d(bA→ aB)

= bα∠AB

= bα

2. If αa
b
6 β, then

d(αA→ βB) 6 d(αa
b
· b
a
A→ αa

b
B) + d(αa

b
B → βB)

= αa
b
· b+ (β − αa

b
)b (using Part 1.)

= bβ.

But
bβ = d(β b

a
A→ βB) (using Part 1.)

6 d(β b
a
A→ αA) + d(αA→ βB)

= 0 + d(αA→ βB) (as β b
a
> α)

16



So d(αA→ βB) = bβ. If αa
b
> β, then

d(αA→ βB) 6 d(αA→ β b
a
A) + d(β b

a
A→ βB)

= 0 + bβ

And
aα = d(αA→ αa

b
B)

6 d(αA→ βB) + d(βB → αa
b
B)

= d(αA→ βB) + (αa
b
− β)b

So in this case too, d(αA→ βB) = bβ.

3.

lim
n

C
(
αA�n, βB �n

)
n

= lim
n

C
(
βB �n | αA�n)

n
+ lim

n

C
(
αA�n

)
n

= d(αA→ βB) + dimαA

= bβ + aα

4.

lim
n

C
(
γ[(αA)(βB)]�n

)
n

= lim
n

C
(
αA�Pn(γ), βB �Pn(1− γ)

)
N

= lim
n

C
(
γαA�n, (1− γ)βB �n

)
n

and Part 3 completes the proof.

5. Suppose X1 = r1[(α1A)(α1B)] 'd Y 'd r2[(α2A)(α2B)] = X2. We prove that
r1 = r2 and α1 = α2. The dimensions of X1 and X2 must be the same and so by 4,

dim(Xi) = r1α1a+ (1− r1)α1b = r2α2a+ (1− r2)α2b. (5)

Let γ = dim(Xi). Then if γ 6 a,

d(γ
a
A→ Xi) = C∗(max{γ

a
, riαi}A, (1− ri)αiB)− γ

= max{γ, riαia}+ (1− ri)αib− γ (by 3)
= (1− ri)αib (as γ > riαia by (5))

Therefore (1− r1)α1 = (1− r2)α2 and with Equation (5) gives r1 = r2 and α1 = α2.

Otherwise, if a 6 γ, we have

d(A→ a
γ
Xi) = C∗(A, a

γ
(1− ri)αiB)− a

= a+ a
γ
(1− ri)αib− a

= a
γ
(1− ri)αib

17



and so again (1− r1)α1 = (1− r2)α2, which gives the result with Equation (5).

Theorem 4.4. Let A,B ∈ 2N be mutually regular and such that ∠AB = 1 and let
dimA = a, dimB = b > 0. If ĤAB and T are defined as above, then there is a linear
isometry ϕ̂ : ĤAB → T . Furthermore, this isometry is unique up to the interchange of
the x and y coordinates in T .

Consequently, if A′, B′ ∈ 2N are mutually regular and have the same respective di-
mensions as A and B, and if ∠A′B′ = 1, then ĤA′B′ is linearly isometrically isomorphic
to ĤAB.

We can express this by saying that if ∠AB = 1, then the geometry of ĤAB is deter-
mined completely by the respective dimensions of A and B.

Proof. We define ϕ̂ by first defining

ϕ(r[(αA)(αB)]) = 〈αar, αb(1− r)〉.

Then we let ϕ̂(Y ) = ϕ(X) where X is the unique element of HAB such that X 'd Y (see

Lemma 4.3 Part 5). That this is a bijection on the d-equivalence classes of ĤAB is easy
to confirm as ϕ−1(〈x, y〉) = r[(αA)(αB)] where

r =

{
0 if x = y = 0
bx

ay+bx
otherwise

and α =
ay + bx

ab
.

That it is linear follows from the fact that s
(
r[(αA)(αB)]

)
'd r[(sαA)(sαB)] and

Lemma 4.3 Part 5.

We now show that ϕ preserves the directed metric. That is, that

δ
(
〈α1ar1, α1b(1− r1)〉 → 〈α2ar2, α2b(1− r2)〉

)
= d
(
r1[(α1A)(α1B)]→ r2[(α2A)(α2B)]

)
.

The left hand side of this equation is just

LHS = max{0, α2ar2 − α1ar1}+ max{0, α2b(1− r2)− α1b(1− r1)}
= amax{0, α2r2 − α1r1}+ bmax{0, α2(1− r2)− α1(1− r1)}

And the right hand side we calculate using Lemma 4.3 Part 3:

18



RHS = lim
n

C
(
r2[(α2A)(α2B)]�n | r1[(α1A)(α1B)]�n

)
n

= C∗
(
r2α2A, (1− r2)α2B, r1α1A, (1− r1)α1B

)
− C∗

(
r1α1A, (1− r1)α1B

)
= amax{α2r2, α1r1}+ bmax{α2(1− r2), α1(1− r1)} − aα1r1 − bα1(1− r1)

= amax{0, α2r2 − α1r1}+ bmax{0, α2(1− r2)− α1(1− r1)}

= LHS.

To see that ϕ̂ is unique up to swapping x and y coordinates, notice that for any map
ψ that preserves angles and dimensions ψ(A) = aP and ψ(B) = bQ, or ψ(A) = aQ and

ψ(B) = bP . If X ∈ ĤAB, then ∠AX and dim(X) are preserved by ψ and the result
follows.

4.2 The General Case.

We now address the more general situation where C and D are mutually regular reals and
∠CD < 1.We will be guided by the question - what properties of C and D determine the
geometry of ĤCD? If, as in the previous section, ∠CD = 1, then only the dimensions of C
and D would be relevant, and these determined an essentially unique linear isometry into
T . In contrast, however, if ∠CD < 1, one would suspect intuitively that the dimensions
of C and D alone would not be sufficient to determine the geometry of ĤCD because
there are many distinct ways to embed C and D into T preserving their dimensions and
the angle between them.

In a first attempt to answer the question, we make use of a notion of projection. If
R and S are two points in T such that ∠POR 6 ∠POS and a line drawn through R

parallel to the side |OP | that intersects the ray
−→
OS at T , then we define the projection

of R onto S to be
ProjS(R) := |OT |/|OS|.

See Figure 5. A similar definition gives the projection of S onto R. It is more useful to
formally define projections in terms of the coordinates of R and S.

Definition 4.5. If R, S ∈ T with R = 〈xR, yR〉 and Y = 〈xS, yS〉 and such that (without
losing generality) yR

xR
6 yS

xS
(equivalently ∠POR 6 ∠POS), then

ProjR(S) =
xS
xR
,
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Figure 5: ProjS(R) := |OT |/|OS|

and
ProjS(R) =

yR
yS
,

Theorem 4.6. For any two points R,S ∈ T , the angle ∠ROS is completely determined
by the numbers ProjR(S), ProjS(R), |OR|, and |OS|, and given by the formula:

∠ROS =
(s− τr)(r − σs)
rs(1− στ)

,

where r = |OR|, s = |OS|, σ = ProjS(R), and τ = ProjR(S).

Proof. This is a straightforward geometric calculation in T .

We can define a corresponding projection notion for any pair of mutually regular
reals.

Definition 4.7. Let C,D be mutually regular such that dimC = c and dimD = d.
Then the projection of C onto D is defined to be

ProjD(C) = max{r : d
(
dC → rdD

)
= 0},

which exists by an elementary topological argument using the continuity of d.

At first it may seem preferable to define the projection of C onto D as max{r : d
(
C →

rD
)

= 0}. This amounts to almost the same thing as d(C → rD) = 0 if and only if
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d(dC → rdD) = 0. If this were the definition however, we would have to restrict the
projection to having a value at most 1, which is not a restriction on the text definition (in
which it may be arbitrarily large depending on the values of c and d and ∠CD). Similar
comments of course apply to the projection of D onto C.

We have used the same notation and terminology for projections in T and ĤCD. This
is justified by the next lemma.

Lemma 4.8. Linear isometries preserve projections, that is for every pair of mutually
regular reals C and D, and any linear isometry ψ : ĤCD → T ,

ProjC(D) = Projψ(C)(ψ(D)).

Proof. This is just a straightforward application of the definitions.

The following fact is the essential point in answering question 4.1

Theorem 4.9. The angle between two mutually regular reals C and D is not determined
by the four numbers ProjC(D),ProjD(C), dimC, and dimD. In particular, there are
pairs of mutually regular reals X and Y for which the formula in Theorem 4.6 does not
hold. As distances, angles and projections are preserved by linear isometries, this means
there can be no linear isometry from ĤXY into T .

Proof. Let R = r0r1r2 . . . rn . . . be a random real and let

X = r0r2r4 . . . r2n . . .

Y = r0r3r6 . . . r3n . . . .

Then the reader can confirm that

1. X and Y are mutually regular

2. dimX = dimY = 1

3. ∠XY = d(Y → X) = 2/3

4. ProjX(Y ) = ProjY (X) = 0

and that these values violate the formula in Theorem 4.6.

These two reals now give an answer to Question 4.1.

Corollary 4.10. There is a pair of mutually regular reals X, Y for which there does not
exist a pair of mutually random reals R1, R2 with X, Y ∈ ĤR1R2 .
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The fact that all linear isometries preserve angles and projections means that if there
is a linear isometry from an extended hull ĤCD into T , then the formula in Theorem
4.6 is necessarily respected in ĤCD. We now show that this is also sufficient that this
formula be respected for there to be a linear isometry from ĤCD into T .

Theorem 4.11. If C and D are mutually regular and with nonzero dimensions and
∠CD > 0, then there is a linear isometry from ĤCD into T if and only if

∠CD =
(d− τc)(c− σd)

cd(1− στ)
, (6)

where c = dimC, d = dimD, σ = ProjD(C), and τ = ProjC(D).

Proof. The only if direction is immediate as linear isometries preserve angles and pro-
jections. For the if direction we define a linear isometry Φ : ĤCD → T directly. First
let Φ(C) = 〈xC , yC〉 and Φ(D) = 〈xD, yD〉 where

xC =
σ(d− cτ)

1− στ
yC =

c− dσ
1− στ

xD =
d− cτ
1− στ

yD =
τ(c− dσ)

1− στ
All angles distances and projections must be preserved by Φ and these are the only

possible values for the images of C and D except for transposing the x and y coordinates.
To eliminate this symmetry we assume, without losing generality, that xD/d > xC/c and
that consequently

yCxD > xCyD, yC > 0, xD > 0 and
xD

xC + xD
>

yD
yC + yD

. (7)

We now extend Φ to HCD and from there to ĤCD. If X = r[(aC)(aD)], we define

Φ(X) =
〈
amax{rxC , (1− r)xD}, amax{ryC , (1− r)yD}

〉
(8)

=



〈
a(1− r)xD, a(1− r)yD

〉
if r 6 yD

yC+yD〈
a(1− r)xD, aryC

〉
if yD

yC+yD
6 r 6 xD

xC+xD〈
arxC , aryC

〉
if r > xD

xC+xD

(9)

One can confirm that, as expected, this agrees with the values of Φ(C) and Φ(D)

when a = 1 and r takes the values 1 and 0 respectively. If Y ∈ ĤCD then we define
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Φ(Y ) = Φ(X) where X is any element of HCD with Y 'd X. For the definition of Φ(Y )
to be coherent, we have to show that Φ is well-defined on the d-equivalence classes of
HCD. This is not as straightforward as the earlier situation in Section 4.1 where we had
∠CD = 1, and in fact Lemma 4.3 Part 5 doesn’t hold when ∠CD < 1.

Lemma 4.12. Φ is well-defined on the equivalence classes of HCD.

Proof. Let Xi = ri[(aiC)(aiD)] for i ∈ {1, 2}, and suppose X1 'd X2. We will break the
proof into cases.

Case 1. r1 6
yD

yC+yD
and r2 >

xD

xC+xD
(or vice-versa). This contradicts the fact that

∠CD > 0 by the following calculation. Let γ = dimX2.

∠CX2 = 1
cγ
d(γC → cX2)

= 1
cγ
C∗(γC, cX2)− 1

= 1
cγ
C∗(max{γ, ca2r2}C, ca2(1− r2)D)− 1

But γ > a2r2c as

γ = dim(X2) = C∗(a2r2C, a2(1− r2)D) > C∗(a2r2C) = a2r2c.

Therefore
∠CX2 = 1

cγ
C∗(γC, ca2(1− r2)D)− 1

= 1
cγ
d(γC → ca2(1− r2)D).

But γ > a2r2c and r2 >
xD

xC+xD
together imply

ca2(1− r2) 6 γ
1− r2
r2

6 γσ

and so ∠CX2 = 0 by the definition of σ. A similar argument shows that ∠DX1 = 0 and
as

∠CD 6 ∠CX2 + ∠X2X1 + ∠DX1 = 0

we get the required contradiction.

Case 2. r1, r2 6
yD

yC+yD
or r1, r2 >

xD

xC+xD
. We show only the former as the latter is

symmetrical. We have

dimXi = C∗(airiC, ai(1− ri)D)
= ai(1− ri)d(D → ri

1−riC) + ai(1− ri)d.

But as ri 6
yD

yC+yD
, we have ri

1−ri 6
yD

yD
= τ . Thus d(D → ri

1−riC) = 0 by the definition

of τ . Therefore dimXi = ai(1 − ri)d. As X1 'd X2 and thus dimX1 = dimX2, we get
a1(1− r1) = a2(1− r2). Therefore Φ(X1) = Φ(X2).

Case 3. r1, r2 ∈ ( yD

yC+yD
, xD

xC+xD
). Without losing generality suppose a1(1−r1) > a2(1−r2).

Consider the distance d(a2(1− r2)C → σa1(1− r1)D):
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d(a2(1− r2)C → σa1(1− r1)D) 6 d(a2(1− r2)C → σX2) + d(σX2 → σX1)+
d(σX1 → σa1(1− r1)D)

But the last two terms on the RHS are 0 as X1 'd X2 and

d(X1 → a1(1− r1)D) = C∗(a1r1C, a1(1− r1)D)− dimX1 = 0.

Therefore

d(a2(1− r2)C → σa1(1− r1)D) 6 C∗(a2 max{1− r2, σr2}C, σa2(1− r2)D)− a2(1− r2)c.

But r2 6
xD

xC+xD
implies that r2σ 6 1− r2, and so

d(a2(1− r2)C → σa1(1− r1)D) 6 a2(1− r2)C∗(C, σD)− a2(1− r2)c

= a2(1− r2)d(C → σD)

= 0.

But d(a2(1− r2)C → σa1(1− r1)D) = 0 if and only if d(C → σ a1(1−r1)
a2(1−r2)

D) = 0 if and

only if a1(1−r1) 6 a2(1−r2) by the definition of σ. Hence from our original assumption,
a1(1 − r1) = a2(1 − r2). An entirely symmetrical argument can be used to show that
a1r1 = a2r2. First it is shown that d(a2r2D → τa1r1C) = 0 and then using the definition
of τ that a1r1 = a2r2. Therefore X1 = X2 and ϕ(X1) = Φ(X2).

It is now left to prove that Φ is a linear isometry.

Lemma 4.13. Let X1, X2 ∈ ĤCD. If Φ(X1) = Φ(X2), then X1 'd X2.

Proof. It is enough to prove this for X1, X2 ∈ HCD. We first deal with the situation
where Φ(Xi) = O with Xi = ri[(aiC)(aiD)] and i ∈ {1, 2}. We look at all three possible
values for Φ(Xi) according to (9). If ri 6

yD

yC+yD
, then

〈
ai(1−ri)xD, ai(1−ri)yD

〉
= 〈0, 0〉.

But ri < 1 as by (7) above yC > 0. Thus ai = 0 and Xi = 0. If yD

yC+yD
6 ri 6

xD

xC+xD
,

then
〈
ai(1 − ri)xD, airiyC

〉
= 〈0, 0〉 and thus ai = 0 and Xi = 0. If ri >

xD

xC+xD
, then〈

airixC , airiyC
〉

= 〈0, 0〉. But ri 6= 0 as xD 6= 0 and so ai = 0 and Xi = 0.

Now we deal the general situation. Let Xi = ri[(aiC)(aiD)] and Φ
(
X1

)
= Φ

(
X2

)
with i ∈ {1, 2}. We divide into four cases. Every possible situation falls into one of these
cases or is symmetrical to one of them.
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Case 1. yD

yC+yD
6 r1, r2 6

xD

xC+xD
. As above xD 6= 0 and yC 6= 0. Thus

Φ
(
X1

)
= 〈a1(1− r1)xD, a1r1yC〉 = 〈a2(1− r2)xD, a2r2yC〉 = Φ

(
X2

)
which implies a1 = a2 and r1 = r2 and X1 = X2.

Case 2. r1, r2 6
yD

yC+yD
. Then

Φ
(
X1

)
= 〈a1(1− r1)xD, a1(1− r1)yC〉 = 〈a2(1− r2)xD, a2(1− r2)yC〉 = Φ

(
X2

)
.

so we can conclude only that a1(1− r1) = a2(1− r2). Without losing generality assume
that a1r1 6 a2r2. Now

d
(
X2 → X1

)
= C∗

(
X1, X2

)
− dim

(
X2

)
= C∗

(
a1r1C, a1(1− r1)D, a2r2C, a2(1− r2)D

)
− C∗

(
a2r2C, a2(1− r2)D

)
= C∗

(
a2r2C, a2(1− r2)D

)
− C∗

(
a2r2C, a2(1− r2)D

)
(as a1r1 6 a2r2)

= 0

To calculate d
(
X1 → X2

)
first note that for each Xi

dim(Xi) = C∗
(
airiC, ai(1− ri)D

)
= d

(
ai(1− ri)D → airiC

)
+ ai(1− ri)d

= ai(1− ri)d
(
D → ri

(1− ri)
C
)

+ ai(1− ri)d

But as ri 6
yD

yC+yD
< 1,

ri
(1− ri)

6
yD

yC + yD
· yC + yD

yC
=
yD
yC

= τ.

Thus by the definition of τ , d
(
D → ri

(1−ri)C
)

= 0. So for each i, dim
(
Xi

)
= ai(1−ri)d and

therefore dim
(
X1

)
= dim

(
X2

)
. As d

(
X1 → X2

)
= d
(
X2 → X1

)
+ dim

(
X2

)
− dim

(
X1

)
and d

(
X2 → X1

)
= 0, the result follows.

Case 3. r1 6
yD

yC+yD
6 r2 6

xD

xC+xD
. In this case

Φ
(
X1

)
= 〈a1(1− r1)xD, a1(1− r1)yD〉 = 〈a2(1− r2)xD, a2r2yC〉 = Φ

(
X2).

So that a1(1− r1) = a2(1− r2) and a1(1− r1)yD = a2r2yC . But from these equations we
deduce that r2 = yD

yC+yD
and we are actually in the previous case.
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Case 4. r1 6
yD

yC+yD
6 xD

xC+xD
6 r2. Then

Φ
(
X1

)
= 〈a1(1− r1)xD, a1(1− r1)yD〉 = 〈a2r2xC , a2r2yC〉 = Φ

(
X2

)
.

But this implies that yCxD = xCyD, contradicting (7).

The rest of the cases can be dealt with by exchanging r with 1− r.

Lemma 4.14. Φ is linear.

Proof. Let X = r[(aC)(aD)]. If α ∈ [0, 1], then αX 'd r[(αaC)(αaD)]. By inspection
of the definition of Φ(αX) and Lemma 4.13, this now follows.

Lemma 4.15. There is a positive number γ 6 1 such that for all µ 6 γ and all x ∈
[µxC

c
, µxD

d
],

〈x, µ− x〉 ∈ range Φ.

That is, the triangular region bordered by the line segments 0D, 0C and the horizontal
line γ

d
D γ

c
C lies completely within the range of Φ.

Proof. Let γ = min{ cxD

xC+xD
, dyC

yC+yD
} and µ 6 γ. Given x ∈ [µxC

c
, µxD

d
], let

r =
(µ− x)xD

xyC + (µ− x)xD
a =

xyC + (µ− x)xD
xDyC

.

We will now show, using the bounds on x and µ, that

a ∈ [0, 1] r ∈
[

yD
yC + yD

,
xD

xC + xD

]
and that

〈x, µ− x〉 =
〈
a(1− r)xD, aryC

〉
,

so that we are in the second case of (9) and 〈x, µ − x〉 = Φ
(
r[(aC)(aD)]

)
as required.

The calculations are quite straightforward and we present here only the proof that a 6 1.

a =
xyC + (µ− x)xD

xDyC

=
x(yC − xD) + µxD

xDyC
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If yC > xD then, as x 6 µxD

d
,

a 6
µxD

d
(yC − xD) + µxD

xDyC

=
µ(yC − xD + d)

dyC

= µ · yC + yD
dyC

(as xD + yD = d)

6 1.

If however yC 6 xD, then as x > µxC

c

a 6
µxC

c
(yC − xD) + µxD

xDyC

= µ · xC(yC − xD) + cxD
cxDyC

= µ · xC + xD
cxD

(as xC + yC = c)

6 1.

Corollary 4.16 (Procrustean Principle). For any 〈x, y〉 ∈ [0,∞)2 such that xC

c
6 x

x+y
6

xD

d
, there is an α ∈ R+ such that 〈αx, αy〉 ∈ range Φ.

Proof. Take α = γ
x+y

, where γ is as in Lemma 4.15. Then γx
x+y
∈ [γxC

c
, γxD

d
] and 〈αx, αy〉 =

〈 γx
x+y

, γ − γx
x+y
〉 as required to apply the lemma.

We will use the Procrustean Principle to simplify calculations of distances of elements
in ĤCD. Suppose X, Y ∈ ĤCD, and we want to work out d(X → Y ). To do this we take
Φ(X) and Φ(Y ) and construct using their coordinates a third point Z ∈ T . We want

to consider Φ−1(Z) but have no guarantee that such an element of ĤCD exists. So we
take using the Procrustean principle a γ such that Φ−1(γZ) exists and instead compute
the distance from γX to γY . The corresponding construction point will be γZ and then
we use the fact that d(X → Y ) = 1

γ
d(γX → γY ). The γ factor will not affect the

calculations and will be ommitted, and Φ−1(Z) will simply be assumed to exist.

The next lemma allows us to eliminate many of the cases when using the definition
of Φ in calculations. It also involves introducing a constant γ that scales down the
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calculations to a point that provides us convenient shortcuts. In this case we show
that we can usually assume without losing generality that if r[(aC)(aD)] ∈ ĤCD, then
r ∈

[
yD

yC+yD
, xD

xC+xD

]
.

Lemma 4.17. For all X 'd r[(aC)(aD)] ∈ ĤCD and for any γ 6 min{ yC

yC+yD
, xD

xC+xD
},

there is some r′ ∈
[

yD

yC+yD
, xD

xC+xD

]
and some a′ ∈ [0, 1], such that γX 'd r′[(a′C)(a′D)].

Proof. Let X and γ be as given. If r ∈
[

yD

yC+yD
, xD

xC+xD

]
, then

γX 'd r[(γaC)(γaD)].

If r < yD

yC+yD
, then let r′ = yD

yC+yD
, and a′ = γa(1−r)(yC+yD)

yC
. Then

Φ(γX) = 〈γa(1− r)xD, γa(1− r)yD〉

= 〈 yC

yC+yD
a′xD,

yC

yC+yD
a′yD〉

= Φ(r′[(a′C)(a′D)]).

So γx 'd r′[(a′C)(a′D)] by Lemma 4.13. If r > xD

xC+xD
, then let r′ = xD

xC+xD)
and

a′ = γar(xC+xD)
xD

and argue similarly. In both cases the bound on γ guarantees that
a′ 6 1.

The next lemma shows that in order to establish that Φ preserves the directed pseu-
dometric on ĤCD, it is enough to show that it preserves the distance from the origin.

Lemma 4.18. If Φ has the property that for all X ∈ ĤCD with Φ
(
X
)

= 〈x, y〉

dim
(
X
)

= x+ y,

then for all X1, X2 ∈ ĤCD with Φ
(
X1

)
= 〈x1, y1〉 and Φ

(
X2

)
= 〈x2, y2〉,

d(X1 → X2) = max{0, x2 − x1}+ max{0, y2 − y1}.

Proof. Let i range over {1, 2} and let Z be such that Φ
(
Z
)

= 〈maxi{xi},maxi{yi}〉. The
Procrustean Principle allows us to assume that such a Z exists (it is straightforward to

show that for all 〈x, y〉 ∈ range Φ, xC

c
6 x

x+y
6 xD

d
and hence that xC

c
6 maxi{xi}

maxi{xi}+maxi{yi} 6
xD

d
and that the principle can be applied to Z. The proof is omitted here). Let Xi 'd

ri[(aiC)(aiD)]. We can use Lemma 4.17 to assume without losing generality that yD

yC+yD
6

ri 6
xD

xC+xD
and so Φ(Xi) = 〈ai(1− ri)xD, airiyC〉. Now let

a := max
i
{airi}+ max

i
{ai(1− ri)}

28



and

r :=
maxi{airi}

maxi{airi}+ maxi{ai(1− ri)}
.

Then yD

yC+yD
6 r 6 xD

xC+xD
(we omit the straightforward proof that, in fact, yD

yC+yD
6

min{ri} 6 r 6 maxi{ri} 6 xD

xC+xD
) and so

Φ
(
r[a(C)(aD)]

)
= 〈a(1− r)xD, aryC〉
= 〈maxi{ai(1− ri)}xD,maxi{airi}yC〉
= 〈maxi{xi},maxi{yi}〉
= Φ(Z).

Thus Z 'd a[(rC)(rD)] and

dim
(
Z
)

= C∗
(

max
i
{airi}C,max

i
{ai(1− ri)}D

)
.

Finally

d
(
X1 → X2

)
= C∗

(
X1, X2

)
− dim

(
X1

)
= C∗

(
maxi{airi}C,maxi{ai(1− ri)}D

)
− dim

(
X1

)
= dim

(
Z
)
− dim

(
X1

)
= maxi{xi}+ maxi{yi} − x1 − y1 (by our original assumption)
= max{0, x2 − x1}+ max{0, y2 − y1}.

Lemma 4.19. If Xi 'd ri[(aiC)(aiD)] for i ∈ {1, 2}, then if x1 = x2 or y1 = y2,

d(X1 → X2) = max{0, dim(X2)− dim(X1)}.

Proof. We can assume without losing generality that x1 = x2 and y1 > y2. It is enough
then to prove that d

(
X1 → X2

)
= 0 as then d

(
X2 → X1

)
= d

(
X1 → X2

)
+ dimX1 −

dimX2 = dimX1 − dimX2.

We can use Lemma 4.17 to assume that r1, r2 ∈ [ yD

yC+yD
, xD

xC+xD
], and therefore that

Φ
(
Xi

)
= 〈ai(1− ri)xD, airiyC〉. Now

a1(1− r1) = a2(1− r2) and a1r1 > a2r2.

Thus

d(X1 → X2) = C∗(a1r1C, a1(1− r1)D, a2r2C, a2(1− r2)D)− C∗(a1r1C, a1(1− r1)D)
= C∗(a1r1C, a1(1− r1)D)− C∗(a1r1C, a1(1− r1)D)
= 0
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Lemma 4.20. For any α 6 1, the function x 7→ dim Φ−1〈x, α− x〉 is continuous at any
〈x, α− x〉 ∈ range Φ.

Proof. It is sufficient to prove this for α = γ as defined in Lemma 4.15, and x ∈ [γxC

c
, γxD

d
].

Let i ∈ {1, 2} and Φ(Xi) = 〈xi, γ − xi〉. We show that dimX1 → dimX2 as x1 → x2.

Suppose ai and ri ∈
[

yD

yC+yD
, xD

xC+xD

]
are such that Xi 'd ri[(aiC)(aiD)] for i ∈ {1, 2}.

As ri ∈
[

yD

yC+yD
, xD

xC+xD

]
and the sum of the coordinates of Φ(Xi) is γ,

a1r1 > a2r2 ⇐⇒ a1(1− r1) 6 a2(1− r2).

We assume without losing generality that a1r1 > a2r2.

Now

dimX1 − dimX2 6 d(X2 → X1)
= C∗(a1r1C, a2(1− r2)D)− C∗(a2r2C, a2(1− r2)D)
= d(a2(1− r2)D → a1r1C)− d(a2(1− r2)D → a2r2C)
6 d(a2r2C → a1r1C)
= (a1r1 − a2r2)c.

But a1r1 − a2r2 → 0 as x1 → x2.

Now we are able to provide the final proof for Theorem 4.11

Theorem 4.21. If C,D satisfy Equation (6), then for all X1, X2 ∈ ĤCD with Φ
(
Xi

)
=

〈xi, yi〉
d
(
X1 → X2

)
= max{0, x2 − x1}+ max{0, y2 − y1}.

Proof. By Lemma 4.18 it is enough to show that the dimension of any X ∈ ĤCD is the
sum of the coordinates of Φ(X). By the Procrustean Principle it is enough to show that
this is true for any real X = Φ−1

(
〈x, γ − x〉

)
where γ is sufficiently small (but positive)

and x ∈ [γxC

c
, γxD

d
]. How small we need to choose γ will be determined during the proof.

We begin by assuming γ 6 min{ cxD

xC+xD
, dyD

yC+yD
} as in Lemma 4.15.

For convenience let a = γxC

c
and b = γxD

d
so that x ∈ [a, b]. We need to show that

dim Φ−1
(
〈x, γ − x〉

)
= γ for all x ∈ [a, b]. Now consider the sets

S = {x ∈ [a, b] : dim
(
Φ−1

(
〈x, γ − x〉

)
< γ}

Sc = {x ∈ [a, b] : dim
(
Φ−1

(
〈x, γ − x〉

)
> γ}.

S is open and Sc closed by Lemma 4.20 and so S is a countable union of pairwise
disjoint open intervals (ai, bi), and Sc is the union of an isolated set of points with a
countable union of pairwise disjoint non-degenerate closed intervals [ck, dk].
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Figure 6: A representation of the argument in Theorem 4.21. Letters represent their
images under Φ in T and X = γ

γ+bi−ai
Φ(Ei).

Consider an arbitrary (ai, bi) ⊆ S. Let Ai = Φ−1
(
〈ai, γ − ai〉

)
, Bi = Φ−1

(
〈bi, γ − bi〉

)
and Ei = Φ−1

(
〈bi, γ − ai〉

)
. We can take γ to be chosen small enough so that all the Ei

exist (in fact the sum of the coordinates of Φ(Ei), bi + γ − ai 6 γxD + γyC so we can
chose γ 6 1

xD+yC
min{ cxD

xC+xD
, dyD

yC+yD
} to ensure this).

Now
d
(
Ai → Bi

)
6 d
(
Ai → Ei

)
+ d
(
Ei → Bi

)
,

but by Lemma 4.19 and the fact that bi > ai, d
(
Ai → Ei

)
= dimEi − dimAi and

d
(
Ei → Bi

)
= 0. As ai is the endpoint of an interval in S, Lemma 4.20 implies that

dimAi = γ so we have that

d
(
Ai → Bi

)
6 dimEi − γ.

But now consider the point〈
γbi

γ + bi − ai
, γ − γbi

γ + bi − ai

〉
=

γ

γ + bi − ai
Φ
(
Ei
)

= Φ

(
γ

γ + bi − ai
Ei

)
,

which is the intersection of the line OΦ(Ei) with the line Φ(Ai)Φ(Bi). See Figure 6.

It is straightforward to show that γbi
γ+bi−ai

∈ (ai, bi) and so

dim Φ−1

〈
γbi

γ + bi − ai
, γ − γbi

γ + bi − ai

〉
< γ.
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Hence dim γ
γ+bi−ai

Ei < γ and
dimEi < γ + bi − ai.

So we have finally that d(Ai → Bi) < bi − ai.
There is also however a similar argument to show that if [ck, dk] is one of the above

closed intervals and

Ck := Φ−1
(
〈ck, γ − ck〉

)
and Dk := Φ−1

(
〈dk, γ − dk〉

)
,

then
d
(
Ck → Dk

)
6 dk − ck.

To see this consider the point Fk = Φ−1
(
〈ck, γ−dk〉

)
. Our choice of γ and Lemma 4.15

guarantees that Fk exists as ck+γ−dk < γ. Then d
(
Ck → Dk

)
6 d
(
Ck → Fk

)
+d
(
Fk →

Dk

)
. But d

(
Ck → Fk

)
= 0 and d(Fk → Dk

)
= dimDk − dimFk = γ − dimFk by the

previous argument. Therefore d
(
Ck → Dk

)
6 γ − dimFk. But now the point〈

γck
ck + γ − dk

, γ − γck
ck + γ − dk

〉
=

γ

ck + γ − dk
Φ
(
Fk
)

= Φ

(
γ

ck + γ − dk
Fk

)
lies between Φ

(
Ck
)

and Φ
(
Dk

)
as γck

ck+γ−dk
∈ [ck, dk]. Therefore

dim
γ

ck + γ − dk
Fk > γ,

and so
dimFk > ck + γ − dk.

Therefore d
(
Ck → Dk

)
6 dk − ck.

By the triangle inequality, the sum of all the distances d(Ai → Bi) and d(Ck → Dk)
must be at least the distance from γ

c
C to γ

d
D, and now using the original assumption on

the size of ∠CD from Theorem 4.11,∑
i

d(Ai → Bi) +
∑
k

d(Ck → Dk) > d
(γ
c
C → γ

d
D
)

= γ∠CD = γ

(
xD
d
− xC

c

)
.

However, ∑
i

(bi − ai) +
∑
k

(dk − ck) = γ

(
xD
d
− xC

c

)
,

and thus there can be no i with d(Ai → Bi) < bi − ai.
Therefore S = ∅ and dim Φ−1

(
〈x, γ − x

)
> γ for all x ∈ [a, b].

A completely symmetrical argument can be used to show that dim Φ−1
(
〈x, γ−x

)
6 γ

for all x ∈ [a, b]. We divide the interval [a, b] into the sets

T = {x ∈ [a, b] : dim
(
Φ−1

(
〈x, γ − x〉

)
> γ}

32



T c = {x ∈ [a, b] : dim
(
Φ−1

(
〈x, γ − x〉

)
6 γ},

and then show T = ∅.

Which completes the proof of Theorem 4.11.

References

[1] Rod Downey and Noam Greenberg. Turing degrees of reals of positive effective pack-
ing dimension. Information Processing Letters, 108:198–203, 2008.

[2] Rod G. Downey and Denis Hirschfeldt. Algorithmic Randomness and Complexity.
Springer, 2010. 588 pages.

[3] Jack H. Lutz Krishna B. Athreya, John M. Hitchcock and Elvira Mayordomo. Effec-
tive strong dimension, algorithmic information, and computational complexity. SIAM
Journal on Computing, 37(3):671–705, 2007.
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