Relative Kolmogorov Complexity and Geometry

Stephen Binns
Department of Mathematics and Statistics
King Fahd University of Petroleum and Minerals

Dhahran 31261
February 19, 2010

Abstract

We use the connection of Hausdorff dimension and Kolmogorov complexity to describe a geometry on the Cantor set - including concepts of angle, projections and scalar multiplication. A question related to compressibility is addressed using these geometrical ideas.

1 Introduction

The aim of this paper is to investigate the role of geometric ideas in the study of Kolmogorov complexity. The basic concept is that of the effective dimension of reals elements of the Cantor space $2^{\mathbb{N}}$. If σ is a finite binary string, $C(\sigma)$ will be the plain Kolmogorov complexity of σ and the effective Hausdorff dimension of X is defined here to be

$$
\operatorname{dim}_{H} X=\liminf _{n} \frac{C(X \upharpoonright n)}{n} .
$$

The dual notion

$$
\operatorname{dim}_{p} X=\underset{n}{\limsup } \frac{C(X \upharpoonright n)}{n}
$$

is the effective packing dimension of X. We will be concerned primarily with those $X \in 2^{\mathbb{N}}$ where these two quantities are equal - the so-called regular reals [6] - and for these we define the effective dimension of X to be

$$
\operatorname{dim} X=\lim _{n} \frac{C(X \upharpoonright n)}{n}
$$

The foundation for the geometrical ideas is formed by the function $d: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \rightarrow[0,1]$ defined by

$$
d(X \rightarrow Y)=\limsup _{n} \frac{C(Y \upharpoonright n \mid X \upharpoonright n)}{n}
$$

where $C(Y \upharpoonright n \mid X \upharpoonright n)$ is the Kolmogorov complexity of $Y \upharpoonright n$ given $X \upharpoonright n$. The function d obeys the triangle inequality in the direction of the arrow, that is

$$
d(X \rightarrow Y)+d(Y \rightarrow Z) \geqslant d(X \rightarrow Z)
$$

and which we refer to as a directed pseudometric. A metric can be easily formed from d by defining

$$
d(X, Y)=\max \{d(X \rightarrow Y, Y \rightarrow X)\}
$$

and by identifying reals that are distance 0 from one another. We write $X \simeq_{d} Y$ if $d(X, Y)=0$.

The paper is about transforming and combining regular reals and analysing the results using this metric.

In the Section 2 we look at the effect on a regular real X of diluting X with 0 s. That is for a given $r \in[0,1]$ we construct a real $r X$ that consists of bits of X interspersed with 0 s . The proportion of bits of X to these padding 0 s is $r /(1-r)$.

We show that for any $r_{1}, r_{2} \in[0,1]$

$$
d\left(r_{1} X \rightarrow r_{2} X\right)=\max \left\{0, r_{2}-r_{1}\right\} \cdot \operatorname{dim} X
$$

and that for any two regular reals X_{1}, X_{2} there is a continuous function φ from $[0,1]$ to the set of regular reals such that $\varphi(0)=X_{1}$ and $\varphi(1)=X_{2}$. That is we show that the set of regular reals forms a path connected topological space under d.

In section 3 we generalise the procedure introduced in the previous section by defining $r[A B]$ to be the result of interspersing bits of A with bits of B in the proportion r to $1-r$. The requirement for the coherence of this operation is that $\lim _{n} \frac{C(\alpha A, \beta B)}{n}$ exists for all $\alpha, \beta \in[0,1]$. This we refer to as A and B 's being mutually regular. For example, any two mutually random reals are mutually regular.

The set of all elements of the form $r[(\alpha A)(\alpha B)]$ we call the hull of A and B (denoted $\left.\mathcal{H}_{A B}\right)$ and the geometry of this set induced by the directed pseudometric d is the subject of the rest of the paper, and we begin this in section 4 . First we describe a directed metric space we call \mathcal{T} with directed metric $\delta . \mathcal{T}$ is similar to the taxicab metric but defined on a unit equilateral triangle with a triangular coordinate system and a distinguished element O at one vertex as in Figure 2. The distance between two points is the (Euclidean) length of the shortest piecewise linear path between the two points if the components of the path are restricted to being parallel to the sides of the triangle (See Figure 3). Furthermore, the directed metric on \mathcal{T} requires that linear paths in the direction of the origin parallel to a side have length 0 . We also introduce an operation of scalar multiplication on elements of \mathcal{T} where for any $r \in[0,1]$ and $X \in \mathcal{T}, r X$ is the point on $\overline{O X}$ at distance $r \delta(O \rightarrow X)$ from the origin.

The geometry of $\mathcal{H}_{A B}$ is studied by attempting to find linear isometries from $\mathcal{H}_{A B}$ into \mathcal{T} - where $\varphi: \mathcal{H}_{A B} \hookrightarrow \mathcal{T}$ is a linear isometry if it preserves the metric on $\mathcal{H}_{A B}$ and for all $X \in \mathcal{H}_{A B}$ and $r \in[0,1], \varphi(r X)=r \varphi(X)$.

The most basic example is when A and B are mutually random reals, in which case there is a linear isomorphism (bijective linear isometry) from $\mathcal{H}_{A B}$ onto \mathcal{T}. We also give an example of two mutually regular reals A and B (both randoms) for which, not only is $\mathcal{H}_{A B}$ not linearly isomorphic to \mathcal{T} but for which there exists no linear isometry at all of $\mathcal{H}_{A B}$ into \mathcal{T}.

To make this argument we define notions of angle and projection in \mathcal{T} and $\mathcal{H}_{A B}$ and show that these notions are preserved by linear isometries. The definitions are made in analogy to those in Euclidean space and we hope are natural enough to the reader. The angle between mutually random reals is maximal (equal to 1) and we take this concept to be a generalisation of 'mutually random" just as having maximal dimension is a generalisation of randomness. In \mathcal{T} the definitions of $\angle X O Y, \operatorname{Proj}_{X} Y$, and $\operatorname{Proj}_{Y} X$ (angles and projections respectively) are related by Equation 4.6 which we interpret as being the statement that the space \mathcal{T} is flat. As a final result we show that given two mutually regular reals A, B, Equation 4.6 is a necessary and sufficient condition for there to be a linear isometry from $\mathcal{H}_{A B}$ into \mathcal{T}.

We want to think of the existence of linear isometries as a framework for answering compression/dilution type questions. For example, in [5] Reimann asks the question if every real of positive Hausdorff dimension is created by "diluting" a random real :

If A has positive effective Hausdorff dimension, is there a random real $B \leqslant_{T}$ A ?

The question is answered negatively in [1] for positive effective packing dimension. Here we might ask a similar question thus:

For any regular real Y of dimension r, does there exist a regular real X of dimension 1 such that $Y \simeq_{d} r X$.

We can also ask a two-dimensional version of this question:
Given X, Y mutually regular, does there exist mutually regular A, B such that $\angle A B=1$ and $\operatorname{dim} A=\operatorname{dim} B=1$ and $X^{\prime}, Y^{\prime} \in \mathcal{H}_{A B}$ such that $X \simeq{ }_{d} X^{\prime}$ and $Y \simeq_{d} Y^{\prime}$?

A related question is:
Given X, Y mutually regular, does there exist mutually regular A, B such that $\angle A B=1$ and $\operatorname{dim} A=\operatorname{dim} B=1$ and a linear isometry from $\mathcal{H}_{X Y}$ into $\mathcal{H}_{A B}$ (equivalently into \mathcal{T})?

We answer this last question in the negative by describing such an X and Y for which no such isometry exists and using very simple geometric arguments to establish this.

2 Basic Definitions and Notation

Undefined terminology regarding Kolmogorov complexity follows [4].
Definition 2.1. Let $A, B \in 2^{\mathbb{N}}$, define

$$
d(A \rightarrow B)=\limsup _{n} \frac{C(B \upharpoonright n \mid A \upharpoonright n)}{n}
$$

Theorem 2.2. $d(A \rightarrow B)$ is a directed pseudometric on $2^{\mathbb{N}}$. That is, for all $A, B, C \in 2^{\mathbb{N}}$,

1. $d(A \rightarrow B) \geqslant 0$,
2. $d(A \rightarrow A)=0$,
3. $d(A \rightarrow C) \leqslant d(A \rightarrow B)+d(B \rightarrow C)$.

Proof. 1 and 2 are immediate. To prove 3, notice that in order to describe $C \upharpoonright n$ given $A \upharpoonright n$ it is sufficient to be given a description of $B \upharpoonright n$ given $A \upharpoonright n$, a description of $C \upharpoonright n$ given $B \upharpoonright n$, and enough extra bits to distinguish these two descriptions from each other. That is, for all n

$$
C(B \upharpoonright n \mid A \upharpoonright n)+C(C \upharpoonright n \mid B \upharpoonright n)+\mathcal{O}(\log C(C \upharpoonright n \mid B \upharpoonright n)) \geqslant C(C \upharpoonright n \mid A \upharpoonright n)
$$

So

$$
\begin{aligned}
d(A \rightarrow B)+d(B \rightarrow C) & =\underset{n}{\limsup } \frac{C(B \upharpoonright n \mid A \upharpoonright n)}{n}+\limsup _{n} \frac{C(C \upharpoonright n \mid B \upharpoonright n)}{n} \\
& \geqslant \limsup _{n} \frac{C(B \upharpoonright n \mid A \upharpoonright n)+C(C \upharpoonright n \mid B \upharpoonright n)}{n} \\
& \geqslant \limsup _{n} \frac{C(C \upharpoonright n \mid A \upharpoonright n)-\mathcal{O}(\log C(C \upharpoonright n \mid B \upharpoonright n))}{n} \\
& =d(A \rightarrow C)
\end{aligned}
$$

We now can create a metric from d in the standard way:
Definition 2.3. Let

$$
d(A, B)=\max \{d(A \rightarrow B), d(B \rightarrow A)\}
$$

We write $A \simeq_{d} B$ if $d(A, B)=0$, and denote $\left\{X: X \simeq_{d} A\right\}$ by $[A]_{d}$ - the d-equivalence class of A. A metric is induced by d on these equivalence classes.

Definition 2.4.

The quantity $\limsup _{n} C(A \upharpoonright n) / n$ is referred to as the effective packing dimension of A. The dual quantity,

$$
\liminf _{n} \frac{C(A \upharpoonright n)}{n},
$$

is the effective Hausdorff dimension of A. For a detailed discussion of the packing and Hausdorff dimension, see for example [3]. If these two dimensions are equal then we will simply refer to the dimension of A, and denote this $\operatorname{dim} A$.

Definition 2.5. $A \in 2^{\mathbb{N}}$ is regular if

$$
\limsup _{n} \frac{C(A \upharpoonright n)}{n}=\liminf _{n} \frac{C(A \upharpoonright n)}{n} .
$$

That is, if $\lim _{n} C(A \upharpoonright n) / n$ exists.
If $\mathbf{0}$ is the infinite sequence of 0 s (or equivalently any computable sequence) then it is immediate that:

Observation 2.6. For all $A \in 2^{\mathbb{N}}$,

$$
d(\mathbf{0} \rightarrow A)=\text { the effective packing dimension of } A
$$

and if A is regular, then

$$
d(\mathbf{0} \rightarrow A)=\operatorname{dim} A
$$

Definition 2.7. Let REG be the class of regular elements of $2^{\mathbb{N}}$ equipped with the directed pseudometric d defined above.

The main result of this section is that REG is a path-connected topological space. Given any $A \in$ REG, we explicitly construct a continuous function $\varphi:[0,1] \rightarrow$ REG such that $\varphi(1)=A$ and $\varphi(0)=\mathbf{0}$. Furthermore, the mapping φ will also have the property that for all $\alpha, \beta \in[0,1]$

$$
d(\varphi(\alpha), \varphi(\beta))=|\alpha-\beta| \operatorname{dim} A .
$$

Concatenation of paths then allows us to connect any two $A, B \in \mathbf{R E G}$.
First we define φ and prove some lemmas.
Definition 2.8. Let $\alpha \in[0,1]$ and $n \in \mathbb{N}$. Then let $p_{n}(\alpha)$ be the least natural number x that minimises $|\alpha n-x|$. We then have that

$$
\alpha n-1 / 2 \leqslant p_{n}(\alpha) \leqslant \alpha n+1 / 2
$$

and that $\lim _{n} p_{n}(\alpha) / n=\alpha$.

Definition 2.9. Let $A \in$ REG and let $\alpha \in[0,1]$. Let $\varphi(\alpha)$ be

$$
\sigma_{1} 0^{a_{1}} \sigma_{2} 0^{a_{2}} \sigma_{3} 0^{a_{3}} \ldots \sigma_{i} 0^{a_{i}} \ldots
$$

where

1. $A=\sigma_{1} \sigma_{2} \sigma_{3} \ldots$
2. $\left|\sigma_{i}\right|=p_{i}(\alpha)$
3. $\left|\sigma_{i} 0^{a_{i}}\right|=i$.

Notation. Note that $\left|\sigma_{1} 0^{a_{1}} \sigma_{2} 0^{a_{2}} \ldots \sigma_{n} 0^{a_{n}}\right|=n(n+1) / 2$. To make the calculations more readable, we let

- $N:=n(n+1) / 2$,
- $P_{n}(\alpha):=\sum_{i=1}^{n} p_{i}(\alpha)$ and
- $\alpha A:=\varphi(\alpha)$.

This notation will be used throughout the paper. We will also refer to the string $\sigma_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{n}$ above as the bits of A in $\alpha A \upharpoonright N$, and to the added 0 s as the padding bits.

Lemma 2.10. If $A \in$ REG, then $\alpha A \in$ REG for all $\alpha \in[0,1]$. Furthermore, $\operatorname{dim}(\alpha A)=\alpha \operatorname{dim}(A)$.

Proof. Let $n \in \mathbb{N}^{+}$and consider $\alpha A \upharpoonright n$. Let $m=m(n)$ be the the largest positive integer such that $m(m+1) / 2 \leqslant n$. Then $\alpha A \upharpoonright n$ is of the form

$$
\sigma_{1} 0^{a_{1}} \sigma_{2} 0^{a_{2}} \sigma_{3} 0^{a_{3}} \ldots \sigma_{m} 0^{a_{m}} \tau
$$

where $|\tau|<m+1$. To describe $\alpha A \upharpoonright n$ it is sufficient to know $A \upharpoonright P_{m}(\alpha)$, the values of $p_{i}(\alpha)$ for all $i \leqslant m$, and the string τ. Each $p_{i}(\alpha)$ is bounded by i, and there are m of them so we need no more than $\mathcal{O}(m \log m)$ bits to describe them. The length of τ is bounded by m so we need at most $\mathcal{O}(m)$ bits to describe τ. Therefore

$$
C(\alpha A \upharpoonright n) \leqslant C\left(A \upharpoonright P_{m}(\alpha)\right)+\mathcal{O}(m \log m)
$$

Conversely, to describe $A \upharpoonright P_{m}(\alpha)$, it is sufficient to describe $\alpha A \upharpoonright n$ and to distinguish in $\alpha A \upharpoonright n$ the padding bits from the bits of A. To do this it is sufficient to know the values of $p_{i}(\alpha)$ for all $i \leqslant m$. Thus

$$
C\left(A \upharpoonright P_{m}(\alpha)\right) \leqslant C(\alpha A \upharpoonright n)+\mathcal{O}(m \log m)
$$

and consequently

$$
\begin{equation*}
C\left(A \upharpoonright P_{m}(\alpha)\right)=C(\alpha A \upharpoonright n) \pm \mathcal{O}(m \log m) \tag{1}
\end{equation*}
$$

But $n \geqslant m(m+1) / 2$ so $\sqrt{2 n} \geqslant m$, and therefore

$$
\begin{align*}
\underset{n}{\limsup } \frac{C(\alpha A \upharpoonright n)}{n} & \leqslant \limsup _{n} \frac{C\left(A \upharpoonright P_{m}(\alpha)\right)+\mathcal{O}(m \log m)}{n} \\
& \leqslant \limsup _{n} \frac{C\left(A \upharpoonright P_{m}(\alpha)\right)+\mathcal{O}(\sqrt{n} \log \sqrt{n})}{n} \\
& \leqslant \limsup _{n} \frac{P_{m}(\alpha)}{n} \limsup _{n} \frac{C\left(A \upharpoonright P_{m}(\alpha)\right)}{P_{m}(\alpha)} \tag{2}\\
& =\liminf _{n} \frac{P_{m}(\alpha)}{n} \liminf _{n} \frac{C\left(A \upharpoonright P_{m}(\alpha)\right)}{P_{m}(\alpha)} \\
& \left(\operatorname{as} \lim _{n} \frac{P_{m}(\alpha)}{n} \operatorname{exists} \text { and } A \text { is regular }\right) \\
& \leqslant \liminf _{n} \frac{C\left(A \upharpoonright P_{m}(\alpha)\right)}{n} \\
& \leqslant \liminf _{n} \frac{C(\alpha A \upharpoonright n)+\mathcal{O}(m \log m)}{n} \\
& =\liminf _{n} \frac{C(\alpha A \upharpoonright n)}{n}
\end{align*}
$$

Thus αA is regular. From line (2) it is now straightforward to show $\operatorname{dim}(\alpha A)=$ $\alpha \operatorname{dim}(A)$.

Lemma 2.11.

$$
\alpha(\beta A) \simeq_{d}(\alpha \beta) A,
$$

and we can thus write $\alpha \beta A$ with only marginal ambiguity.
Proof. (Sketch.) For large values of n, the number of bits of A in $\alpha(\beta A)$ is approximately equal to the number of bits of A in $(\alpha \beta) A$ (when compared to N). So to describe $\alpha(\beta A)$ from $(\alpha \beta) A$ one only needs to know the values of $p_{i}(\alpha), p_{i}(\beta)$, and $p_{i}(\alpha \beta)$. As before this requires at most $\mathcal{O}(n \log n)$ bits. This term disappears in the limit, so $d((\alpha \beta) A \rightarrow$ $\alpha(\beta A))=0$. A symmetrical argument shows $d(\alpha(\beta A) \rightarrow(\alpha \beta) A)=0$.

Lemma 2.12. Let $f \leqslant g \leqslant h$ be functions from \mathbb{N}^{+}to \mathbb{N}^{+}with $f(n)$ and $g(n)$ nondecreasing, $\lim _{n} f(n)=\lim _{n} g(n)=\infty$, and h strictly increasing. If $A \in 2^{\mathbb{N}}$ is regular and $\lim _{n} \frac{g(n)}{h(n)}$ and $\lim _{n} \frac{f(n)}{h(n)}$ both exist, then

$$
\lim _{n} \frac{C(A \upharpoonright g(n) \mid A \upharpoonright f(n))}{h(n)}=\lim _{n} \frac{g(n)-f(n)}{h(n)} \cdot \operatorname{dim} A .
$$

Proof. It is well known (see for example [2]) that for all $\sigma, \tau \in 2^{<\mathbb{N}}$,

$$
C(\sigma \mid \tau)+C(\tau)=C(\sigma, \tau)+\mathcal{O}(\log C(\sigma, \tau))
$$

This equality is usually referred to as the symmetry of information.
If $\tau \preceq \sigma$, then this implies

$$
C(\sigma) \leqslant C(\sigma \mid \tau)+C(\tau)+\mathcal{O}(\log C(\tau)) \leqslant C(\sigma)+\mathcal{O}(\log |\tau|)+\mathcal{O}(\log C(\sigma, \tau))
$$

Taking σ and τ to be $A \upharpoonright g(n)$ and $A \upharpoonright f(n)$ respectively gives the two inequalities

$$
C(A \upharpoonright g(n))-C(A \upharpoonright f(n)) \leqslant C(A \upharpoonright g(n) \mid A \upharpoonright f(n))+\mathcal{O}(\log C(A \upharpoonright f(n)))
$$

and
$C(A \upharpoonright g(n) \mid A \upharpoonright f(n)) \leqslant C(A \upharpoonright g(n))-C(A \upharpoonright f(n))+\mathcal{O}(\log f(n))+\mathcal{O}(\log C(A \upharpoonright g(n), A \upharpoonright f(n)))$.
Dividing by $h(n)$ and taking limit suprema of both sides of the first inequality gives

$$
\begin{aligned}
\limsup _{n} \frac{C(A \upharpoonright g(n) \mid A \upharpoonright f(n))}{h(n)} & \geqslant \underset{n}{\lim \sup } \frac{C(A \upharpoonright g(n))-C(A \upharpoonright f(n))}{h(n)} \\
& =\limsup _{n} \frac{g(n)}{h(n)} \frac{C(A \upharpoonright g(n))}{g(n)}-\frac{f(n)}{h(n)} \frac{C(A \upharpoonright f(n))}{f(n)}
\end{aligned}
$$

As A is regular, the limit of the RHS exists, so

$$
\lim _{n} \frac{C(A \upharpoonright g(n) \mid A \upharpoonright f(n))}{h(n)} \geqslant \lim _{n} \frac{g(n)-f(n)}{h(n)} \cdot \operatorname{dim} A
$$

The same calculation on the second inequality will give

$$
\lim _{n} \frac{C(A \upharpoonright g(n) \mid A \upharpoonright f(n))}{h(n)} \leqslant \lim _{n} \frac{g(n)-f(n)}{h(n)} \cdot \operatorname{dim} A
$$

when one observes that

$$
\lim _{n} \frac{\mathcal{O}(\log f(n))+\mathcal{O}(\log C(A \upharpoonright g(n), A \upharpoonright f(n)))}{h(n)}=0
$$

Theorem 2.13. If $\alpha, \beta \in[0,1]$, then

$$
d(\alpha A \rightarrow \beta A)=\max \{0,(\beta-\alpha) \operatorname{dim} A\},
$$

and thus $d(\alpha A, \beta B)=|\beta-\alpha| \operatorname{dim} A$.

Proof. If $\alpha \geqslant \beta$, then $C(\beta A \mid \alpha A) \leqslant \mathcal{O}(n \log (n))$ which approaches 0 after being divided by N. So $d(\alpha A \rightarrow \beta B)=0$. If $\alpha \leqslant \beta$, then by an argument similar to that in Lemma 2.10, we show that

$$
C(\alpha A \upharpoonright N, \beta A \upharpoonright N)=C\left(A \upharpoonright P_{n}(\alpha), A \upharpoonright P_{n}(\beta)\right) \pm \mathcal{O}(n \log (n))
$$

and so

$$
\begin{align*}
\lim _{n} \frac{C(\beta A \upharpoonright N \mid \alpha A \upharpoonright N)}{N} & =\lim _{n} \frac{C(\alpha A \upharpoonright N, \beta A \upharpoonright N)-C(\alpha A \upharpoonright N)}{N} \\
& =\lim _{n} \frac{C\left(A \upharpoonright P_{n}(\alpha), A \upharpoonright P_{n}(\beta)\right)-C\left(A \upharpoonright P_{n}(\alpha)\right)}{N} \\
& =\lim _{n} \frac{C\left(A \upharpoonright P_{n}(\beta) \mid A \upharpoonright P_{n}(\alpha)\right)}{N} \\
& =(\beta-\alpha) \operatorname{dim}(A) \tag{byLemma2.12}
\end{align*}
$$

We have established the following with φ given in Definition 2.8.
Theorem 2.14. REG is a path connected topological space. That is, for any $A, B \in$ REG, there is a continuous mapping φ from $[0,1]$ into REG with $\varphi(0)=A$ and $\varphi(1)=$ B.

Proof. The continuous map φ defined above connects any regular X to $\mathbf{0}$. Concatenation of paths gives the result.

3 Mutually Regular Reals

Definition 3.1. We call any pair of reals, A and B, mutually regular if for all $\alpha, \beta \in[0,1]$,

$$
\lim _{n} \frac{C(\alpha A \upharpoonright n, \beta B \upharpoonright n)}{n}
$$

exists.
By taking $\alpha=0$ and $\beta=1$ (or vice versa) we see immediately that mutually regular reals are regular.

Lemma 3.2. Mutually regular reals exist.

Proof. If R_{1} and R_{2} are such that $R_{1} \oplus R_{2}$ is random, then we claim that R_{1} and R_{2} are mutually regular. Let $\alpha, \beta \in[0,1]$. By the symmetry of information, it is sufficient to show that $\lim _{n} \frac{C\left(\beta R_{2} \upharpoonright n \mid \alpha R_{1} \upharpoonright n\right)}{n}$ exists, which is what we do.

$$
\begin{align*}
\beta & =\limsup _{n} \frac{C\left(\beta R_{2} \upharpoonright n\right)}{n} \\
& \geqslant \limsup _{n} \frac{C\left(\beta R_{2} \upharpoonright n \mid \alpha R_{1} \upharpoonright n\right)}{n} \\
& \geqslant \liminf _{n} \frac{C\left(\beta R_{2} \upharpoonright n \mid \alpha R_{1} \upharpoonright n\right)}{n} \\
& =\liminf _{n} \frac{C\left(R_{2} \upharpoonright P_{n}(\beta) \mid R_{1} \upharpoonright P_{n}(\alpha)\right)}{N} \\
& \geqslant \liminf _{n} \frac{C^{R_{1}}\left(R_{2} \upharpoonright P_{n}(\beta)\right)}{N} \tag{3}\\
& =\liminf _{n} \frac{C\left(R_{2} \upharpoonright P_{n}(\beta)\right)}{N} \tag{4}\\
& =\beta
\end{align*}
$$

Line 4 follows from the fact that R_{2} is random relative to R_{1} and hence has $R_{2^{-}}$ effective Hausdorff dimension 1. Line 3 follows from the previous line because if $f \in 2^{\mathbb{N}}$ and $\sigma, \tau \in 2^{<\mathbb{N}}$ such that $f \succ \tau$, then

$$
C(\sigma \mid \tau)+\mathcal{O}(C(|\tau|)) \geqslant C^{f}(\sigma)
$$

Lemma 3.3. If A and B are mutually regular and $\operatorname{dim} A=\operatorname{dim} B$, then $d(A \rightarrow B)=$ $d(B \rightarrow A)=d(A, B)$

Proof. Using again the symmetry of information:

$$
\begin{aligned}
d(B \rightarrow A) & =\lim _{n} \frac{C(A \upharpoonright n \mid B \upharpoonright n)}{n} \\
& =\lim _{n} \frac{C(A \upharpoonright n, B \upharpoonright n)-C(B \upharpoonright n)}{n} \\
& =\lim _{n} \frac{C(A \upharpoonright n, B \upharpoonright n)-C(A \upharpoonright n)}{n} \quad \text { as } \operatorname{dim} A=\operatorname{dim} B \\
& =\lim _{n} \frac{C(B \upharpoonright n \mid A \upharpoonright n)}{n} \\
& =d(A \rightarrow B)
\end{aligned}
$$

The expression $\lim _{n} \frac{C(A\lceil n, B \upharpoonright n)}{n}$ is used so often in the following that we introduce the following notation:

Definition 3.4. Let A and B be mutually regular reals. Then

$$
C^{*}(A, B):=\lim _{n} \frac{C(A \upharpoonright n, B \upharpoonright n)}{n} .
$$

We will also find use for the generalisation:

$$
C^{*}\left(A_{1}, A_{2} \ldots, A_{k}\right):=\lim _{n} \frac{C\left(A_{1} \upharpoonright n, A_{2} \upharpoonright n \ldots, A_{k} \upharpoonright n\right)}{n},
$$

if this limit exists.
Lemma 3.5. If A and B are mutually regular and $\alpha \in[0,1]$, then

$$
C^{*}(\alpha A, \alpha B)=\alpha C^{*}(A, B),
$$

and hence $d(\alpha A \rightarrow \alpha B)=\alpha d(A \rightarrow B)$.
Proof.

$$
\begin{aligned}
C^{*}(\alpha A, \alpha B) & =\lim _{n} \frac{C(\alpha A \upharpoonright N, \alpha B \upharpoonright N)}{N} \\
& =\lim _{n} \frac{P_{n}(\alpha)}{N} \cdot \frac{\stackrel{C}{ }\left(A \upharpoonright P_{n}(\alpha), B \upharpoonright P_{n}(\alpha)\right)}{P_{n}(\alpha)} \\
& =\alpha C^{*}(A, B) .
\end{aligned}
$$

Then $d(\alpha A \rightarrow \alpha B)=C^{*}(\alpha A, \alpha B)-\alpha \operatorname{dim}(A)=\alpha d(A \rightarrow B)$.
Definition 3.6. If $\gamma \in[0,1]$ and A and B are mutually regular reals, then let $\gamma[A B] \in 2^{\mathbb{N}}$ be defined as follows.

$$
\gamma[A B]=\alpha_{1} \beta_{1} \alpha_{2} \beta_{2} \ldots
$$

where

1. $\left|\alpha_{i} \beta_{i}\right|=i$
2. $\left|\alpha_{i}\right|=p_{i}(\gamma)$
3. $A=\alpha_{1} \alpha_{2} \alpha_{3} \ldots$
4. $B=\beta_{1} \beta_{2} \beta_{3} \ldots$

Notice that $\gamma[A B]$ is a generalisation of γA in the sense that $\gamma A=\gamma[A 0]$, but also notice that it is not in general true that $\alpha(\gamma[A B]) \simeq_{d}(\alpha \gamma)[A B]$.

Figure 1: $r[(\alpha A)(\alpha B)]$

Definition 3.7. Let $\mathcal{H}_{A B}$ be the space consisting of the set of reals

$$
\{r[(\alpha A)(\alpha B)]: r, \alpha \in[0,1]\}
$$

together with the directed pseudometric d. We refer to $\mathcal{H}_{A B}$ as the hull of A and B, and note that $A=1[(1 A)(1 B)], B=0[(1 A)(1 B)]$, and $\mathbf{0}=0[(1 A)(1 B)]$ are all elements of $\mathcal{H}_{A B}$. See Figure 1.

We will need to extend this to the space of all reals that are distance 0 from elements of $\mathcal{H}_{A B}$. Thus we define:

Definition 3.8. Let A and B be mutually regular reals. Then the extended hull of A and B is

$$
\widehat{\mathcal{H}}_{A B}=\left\{Y \in 2^{\mathbb{N}}: \exists X \in \mathcal{H}_{A B} X \simeq_{d} Y\right\}
$$

together with the directed pseudometric d.

Lemma 3.9. If A and B are mutually regular, then any two elements of $\mathcal{H}_{A B}$ (and hence any two elements of $\widehat{\mathcal{H}}_{A B}$) are mutually regular.

Proof. Sketch Let $r_{1}\left[\left(\alpha_{1} A\right)\left(\alpha_{1} B\right)\right], r_{2}\left[\left(\alpha_{2} A\right)\left(\alpha_{2} B\right)\right] \in \mathcal{H}_{A B}$. By keeping a track of the number of bits of A and B in $r_{1}\left[\left(\alpha_{1} A\right)\left(\alpha_{1} B\right)\right] \upharpoonright n$ and $r_{2}\left[\left(\alpha_{2} A\right)\left(\alpha_{2} B\right)\right] \upharpoonright n$ we can see that

$$
\begin{aligned}
& C\left(r_{1}\left[\left(\alpha_{1} A\right)\left(\alpha_{1} B\right)\right] \upharpoonright n, r_{2}\left[\left(\alpha_{2} A\right)\left(\alpha_{2} B\right)\right] \upharpoonright n\right) \\
& =C\left(r_{1} \alpha_{1} A \upharpoonright n,\left(1-r_{1}\right) \alpha_{1} B \upharpoonright n, r_{2} \alpha_{2} A \upharpoonright n,\left(1-r_{2}\right) \alpha_{2} B \upharpoonright n\right) \pm \mathcal{O}(n \log n) \\
& =C\left(\max \left\{r_{1} \alpha_{1}, r_{2} \alpha_{2}\right\} A \upharpoonright n, \max \left\{\left(1-r_{1}\right) \alpha_{1},\left(1-r_{2}\right) \alpha_{2}\right\} B \upharpoonright n\right) \pm \mathcal{O}(n \log n)
\end{aligned}
$$

Figure 2: Coordinate System for $\mathcal{T}_{P Q}$

and then use the fact that A and B are mutually regular to show that the relevant limit exists. Taking $\beta, \gamma \in[0,1]$ and repeating the argument on $\beta\left(r_{1}\left[\left(\alpha_{1} A\right)\left(\alpha_{1} B\right)\right]\right)$ and $\gamma\left(r_{2}\left[\left(\alpha_{2} A\right)\left(\alpha_{2} B\right)\right]\right)$ gives the result.

4 The geometry of $\widehat{\mathcal{H}}_{A B}$

4.1 The metric space \mathcal{T}

We wish to investigate the space $\widehat{\mathcal{H}}_{A B}$ geometrically. To do this we first describe a geometrical space we call \mathcal{T}.

Let O, P and Q be the vertices of an equilateral triangle with unit sides. O is called the origin. We will define a directed metric δ (and hence an induced metric) on the triangular region bounded by $\triangle O P Q . \mathcal{T}$ will be this triangular region along with δ. To define δ we first coordinatise the points in the region as shown in Figure 2. We write simply $X=\langle x, y\rangle$ to mean X has coordinates $\langle x, y\rangle$. If $S=\langle x, y\rangle \in \mathcal{T}$ and $r \in[0,1]$, then by $r S$ we mean $\langle r x, r y\rangle$. The directed metric δ is given by

$$
\delta\left(\left\langle x_{1}, y_{1}\right\rangle \rightarrow\left\langle x_{2}, y_{2}\right\rangle\right)=\max \left\{0, x_{2}-x_{1}\right\}+\max \left\{0, y_{2}-y_{1}\right\} .
$$

This gives rise to the metric

$$
\delta\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)=\max \left\{\left|x_{2}-x_{1}\right|,\left|y_{2}-y_{1}\right|,\left|\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)\right|\right\},
$$

and is the Euclidean length of a path from $\left\langle x_{1}, y_{1}\right\rangle$ and $\left\langle x_{2}, y_{2}\right\rangle$ if one is restricted to moving along lines parallel to the sides of the triangle (compare the New York metric in rectangular coordinates) The directed metric is similar, with distances calculated by moving parallel to the sides of the triangle. However if one moves towards the origin parallel to a side, the distance is 0 - see Figure 3. The reader may confirm that $\delta(r X \rightarrow$ $r Y)=r \delta(X \rightarrow Y)$.

We also note that with this coordinate system we have the convenient fact that if $X=\langle x, y\rangle$, then $|\overline{O X}|=\delta(O \rightarrow X)=x+y$. We can thus extend the definition of $r\langle x, y\rangle$ to the case where $r>1$ as long as $r x+r y \leqslant 1$.

Angles in \mathcal{T} will be defined in analogy to Euclidean angles - the length of arc of a sector. Given R and S in \mathcal{T} with $|O R|=r$ and $|O S|=s$, both nonzero,

$$
\angle R O S:=\delta\left(\frac{1}{r} R \rightarrow \frac{1}{S} S\right) .
$$

See Figure 4. The reader may confirm that the expected properties of angles hold. For example

1. $\angle R O S=\angle S O R$,
2. If $\overline{O S}$ is between $\overline{O R}$ and $\overline{O T}$, then

$$
\angle R O S+\angle S O T=\angle R O T
$$

3. If $\alpha, \beta \in(0,1]$, then

$$
\angle(\alpha R) O(\beta S)=\angle R O S
$$

When we say we wish to determine the geometry of $\widehat{\mathcal{H}}_{A B}$ we mean we wish to find a map $\widehat{\varphi}$ from $\widehat{\mathcal{H}}_{A B}$ into \mathcal{T} with the following properties:

1. For all $X \in \widehat{\mathcal{H}}_{A B}$ and $r \in[0,1]$,

$$
\widehat{\varphi}(r X)=r \widehat{\varphi}(X)
$$

2. For all $X, Y \in \widehat{\mathcal{H}}_{A B}$,

$$
\delta(\widehat{\varphi}(X) \rightarrow \widehat{\varphi}(Y))=d(X \rightarrow Y)
$$

We will refer to such a $\widehat{\varphi}$ as a linear isometry. If such a linear isometry is found for some extended hull $\widehat{\mathcal{H}}_{A B}$, we can pull back geometric properties from \mathcal{T} and apply them to $\widehat{\mathcal{H}}_{A B}$. To show the usefulness of such techniques we will use them to answer the following question in the negative:

Question 4.1. Given any pair A, B of mutually regular reals, does there exist a pair R_{1}, R_{2} of mutually random reals such that $A, B \in \widehat{\mathcal{H}}_{R_{1} R_{2}}$?

Figure 3:
Two points where $\delta\left(\left\langle x_{1}, y_{1}\right\rangle \rightarrow\left\langle x_{2}, y_{2}\right\rangle\right)=y_{2}-y_{1}$ and $\delta\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)=x_{1}-x_{2}$

We can define a concept of angle in REG as well:
Definition 4.2. Suppose $A, B \in \mathbf{R E G}$ with $\operatorname{dim} A=a$ and $\operatorname{dim} B=b$. Then let

$$
\angle A B:=\frac{1}{a b} d(b A \rightarrow a B) .
$$

As $\operatorname{dim} a B=\operatorname{dim} b A, \angle A B=\angle B A=d(b A, a B)$. It may be thought clearer to define $\angle A B:=d\left(\frac{1}{a} A \rightarrow \frac{1}{b} B\right)$ as in \mathcal{T} but $\frac{1}{a} A$ and $\frac{1}{b} B$ are not defined when $a, b<1$. The maximum angle between two regular reals is 1 and this is achieved by two mutually random reals. We intend $\angle A B=1$ to be seen as a generalisation of A and B 's being mutually random, and $\angle A B$ to be a measure of how independent A and B are. It is straightforward to show that linear isometries preserve angles.

We will now establish some results for mutually regular reals at maximum angle.
Lemma 4.3. Let A, B be mutually regular with $\operatorname{dim}(A)=a \geqslant \operatorname{dim}(B)=b>0$ and such that $\angle A B=1$. If $\alpha, \beta \in[0,1]$, then

1. $d\left(\alpha \frac{b}{a} A \rightarrow \alpha B\right)=b \alpha=d\left(\alpha B \rightarrow \alpha \frac{b}{a} A\right)$
2. $d(\alpha A \rightarrow \beta B)=b \beta$.
3. $C^{*}(\alpha A, \beta B)=a \alpha+b \beta$

Figure 4: $\angle A B=\delta\left(\frac{1}{a} A \rightarrow \frac{1}{b} B\right)$

4. $\operatorname{dim} \gamma[(\alpha A)(\beta B)]=C^{*}(\gamma \alpha A,(1-\gamma) \beta B)$.
5. Given any element $Y \in \widehat{\mathcal{H}}_{A B}$, there is a unique element $X \in \mathcal{H}_{A B}$ such that $Y \simeq{ }_{d} X$.

Proof. 1.

$$
\begin{aligned}
d\left(\alpha \frac{b}{a} A \rightarrow \alpha B\right) & =\frac{\alpha}{a} d(b A \rightarrow a B) \\
& =b \alpha \angle A B \\
& =b \alpha
\end{aligned}
$$

2. If $\alpha \frac{a}{b} \leqslant \beta$, then

$$
\begin{aligned}
d(\alpha A \rightarrow \beta B) & \leqslant d\left(\alpha \frac{a}{b} \cdot \frac{b}{a} A \rightarrow \alpha \frac{a}{b} B\right)+d\left(\alpha \frac{a}{b} B \rightarrow \beta B\right) \\
& =\alpha \frac{a}{b} \cdot b+\left(\beta-\alpha \frac{a}{b}\right) b \\
& =b \beta
\end{aligned}
$$

But

$$
\begin{aligned}
b \beta & =d\left(\beta \frac{b}{a} A \rightarrow \beta B\right) & & \text { (using Part 1.) } \\
& \leqslant d\left(\beta \frac{b}{a} A \rightarrow \alpha A\right)+d(\alpha A \rightarrow \beta B) & & \\
& =0+d(\alpha A \rightarrow \beta B) & & \left(\text { as } \beta \frac{b}{a} \geqslant \alpha\right)
\end{aligned}
$$

So $d(\alpha A \rightarrow \beta B)=b \beta$. If $\alpha \frac{a}{b} \geqslant \beta$, then

$$
\begin{aligned}
d(\alpha A \rightarrow \beta B) & \leqslant d\left(\alpha A \rightarrow \beta \frac{b}{a} A\right)+d\left(\beta \frac{b}{a} A \rightarrow \beta B\right) \\
& =0+b \beta
\end{aligned}
$$

And

$$
\begin{aligned}
a \alpha & =d\left(\alpha A \rightarrow \alpha \frac{a}{b} B\right) \\
& \leqslant d(\alpha A \rightarrow \beta B)+d\left(\beta B \rightarrow \alpha \frac{a}{b} B\right) \\
& =d(\alpha A \rightarrow \beta B)+\left(\alpha \frac{a}{b}-\beta\right) b
\end{aligned}
$$

So in this case too, $d(\alpha A \rightarrow \beta B)=b \beta$.
3.

$$
\begin{aligned}
\lim _{n} \frac{C(\alpha A \upharpoonright n, \beta B \upharpoonright n)}{n} & =\lim _{n} \frac{C(\beta B \upharpoonright n \mid \alpha A \upharpoonright n)}{n}+\lim _{n} \frac{C(\alpha A \upharpoonright n)}{n} \\
& =d(\alpha A \rightarrow \beta B)+\operatorname{dim} \alpha A \\
& =b \beta+a \alpha
\end{aligned}
$$

4.

$$
\begin{aligned}
\lim _{n} \frac{C(\gamma[(\alpha A)(\beta B)] \upharpoonright n)}{n} & =\lim _{n} \frac{C\left(\alpha A \upharpoonright P_{n}(\gamma), \beta B \upharpoonright P_{n}(1-\gamma)\right)}{N} \\
& =\lim _{n} \frac{C(\gamma \alpha A \upharpoonright n,(1-\gamma) \beta B \upharpoonright n)}{n}
\end{aligned}
$$

and Part 3 completes the proof.
5. Suppose $X_{1}=r_{1}\left[\left(\alpha_{1} A\right)\left(\alpha_{1} B\right)\right] \simeq_{d} Y \simeq_{d} r_{2}\left[\left(\alpha_{2} A\right)\left(\alpha_{2} B\right)\right]=X_{2}$. We prove that $r_{1}=r_{2}$ and $\alpha_{1}=\alpha_{2}$. The dimensions of X_{1} and X_{2} must be the same and so by 4 ,

$$
\begin{equation*}
\operatorname{dim}\left(X_{i}\right)=r_{1} \alpha_{1} a+\left(1-r_{1}\right) \alpha_{1} b=r_{2} \alpha_{2} a+\left(1-r_{2}\right) \alpha_{2} b \tag{5}
\end{equation*}
$$

Let $\gamma=\operatorname{dim}\left(X_{i}\right)$. Then if $\gamma \leqslant a$,

$$
\begin{aligned}
d\left(\frac{\gamma}{a} A \rightarrow X_{i}\right) & =C^{*}\left(\max \left\{\frac{\gamma}{a}, r_{i} \alpha_{i}\right\} A,\left(1-r_{i}\right) \alpha_{i} B\right)-\gamma & & \\
& =\max \left\{\gamma, r_{i} \alpha_{i} a\right\}+\left(1-r_{i}\right) \alpha_{i} b-\gamma & & \text { (by } 3) \\
& =\left(1-r_{i}\right) \alpha_{i} b & & \left(\text { as } \gamma \geqslant r_{i} \alpha_{i} a \text { by }(5)\right)
\end{aligned}
$$

Therefore $\left(1-r_{1}\right) \alpha_{1}=\left(1-r_{2}\right) \alpha_{2}$ and with Equation (5) gives $r_{1}=r_{2}$ and $\alpha_{1}=\alpha_{2}$. Otherwise, if $a \leqslant \gamma$, we have

$$
\begin{aligned}
d\left(A \rightarrow \frac{a}{\gamma} X_{i}\right) & =C^{*}\left(A, \frac{a}{\gamma}\left(1-r_{i}\right) \alpha_{i} B\right)-a \\
& =a+\frac{a}{\gamma}\left(1-r_{i}\right) \alpha_{i} b-a \\
& =\frac{a}{\gamma}\left(1-r_{i}\right) \alpha_{i} b
\end{aligned}
$$

and so again $\left(1-r_{1}\right) \alpha_{1}=\left(1-r_{2}\right) \alpha_{2}$, which gives the result with Equation (5).

Theorem 4.4. Let $A, B \in 2^{\mathbb{N}}$ be mutually regular and such that $\angle A B=1$ and let $\operatorname{dim} A=a, \operatorname{dim} B=b>0$. If $\widehat{\mathcal{H}}_{A B}$ and \mathcal{T} are defined as above, then there is a linear isometry $\widehat{\varphi}: \widehat{\mathcal{H}}_{A B} \rightarrow \mathcal{T}$. Furthermore, this isometry is unique up to the interchange of the x and y coordinates in \mathcal{T}.

Consequently, if $A^{\prime}, B^{\prime} \in 2^{\mathbb{N}}$ are mutually regular and have the same respective dimensions as A and B, and if $\angle A^{\prime} B^{\prime}=1$, then $\widehat{\mathcal{H}}_{A^{\prime} B^{\prime}}$ is linearly isometrically isomorphic to $\widehat{\mathcal{H}}_{A B}$.

We can express this by saying that if $\angle A B=1$, then the geometry of $\widehat{\mathcal{H}}_{A B}$ is determined completely by the respective dimensions of A and B.

Proof. We define $\widehat{\varphi}$ by first defining

$$
\varphi(r[(\alpha A)(\alpha B)])=\langle\alpha a r, \alpha b(1-r)\rangle .
$$

Then we let $\widehat{\varphi}(Y)=\varphi(X)$ where X is the unique element of $\mathcal{H}_{A B}$ such that $X \simeq_{d} Y$ (see Lemma 4.3 Part 5). That this is a bijection on the d-equivalence classes of $\widehat{\mathcal{H}}_{A B}$ is easy to confirm as $\varphi^{-1}(\langle x, y\rangle)=r[(\alpha A)(\alpha B)]$ where

$$
r=\left\{\begin{array}{ll}
0 & \text { if } x=y=0 \\
\frac{b x}{a y+b x} & \text { otherwise }
\end{array} \quad \text { and } \quad \alpha=\frac{a y+b x}{a b}\right.
$$

That it is linear follows from the fact that $s(r[(\alpha A)(\alpha B)]) \simeq_{d} r[(s \alpha A)(s \alpha B)]$ and Lemma 4.3 Part 5.

We now show that φ preserves the directed metric. That is, that
$\delta\left(\left\langle\alpha_{1} a r_{1}, \alpha_{1} b\left(1-r_{1}\right)\right\rangle \rightarrow\left\langle\alpha_{2} a r_{2}, \alpha_{2} b\left(1-r_{2}\right)\right\rangle\right)=d\left(r_{1}\left[\left(\alpha_{1} A\right)\left(\alpha_{1} B\right)\right] \rightarrow r_{2}\left[\left(\alpha_{2} A\right)\left(\alpha_{2} B\right)\right]\right)$.
The left hand side of this equation is just

$$
\begin{aligned}
\text { LHS } & =\max \left\{0, \alpha_{2} a r_{2}-\alpha_{1} a r_{1}\right\}+\max \left\{0, \alpha_{2} b\left(1-r_{2}\right)-\alpha_{1} b\left(1-r_{1}\right)\right\} \\
& =a \max \left\{0, \alpha_{2} r_{2}-\alpha_{1} r_{1}\right\}+b \max \left\{0, \alpha_{2}\left(1-r_{2}\right)-\alpha_{1}\left(1-r_{1}\right)\right\}
\end{aligned}
$$

And the right hand side we calculate using Lemma 4.3 Part 3:

$$
\begin{aligned}
\mathrm{RHS} & =\lim _{n} \frac{C\left(r_{2}\left[\left(\alpha_{2} A\right)\left(\alpha_{2} B\right)\right] \upharpoonright n \mid r_{1}\left[\left(\alpha_{1} A\right)\left(\alpha_{1} B\right)\right] \upharpoonright n\right)}{n} \\
& =C^{*}\left(r_{2} \alpha_{2} A,\left(1-r_{2}\right) \alpha_{2} B, r_{1} \alpha_{1} A,\left(1-r_{1}\right) \alpha_{1} B\right)-C^{*}\left(r_{1} \alpha_{1} A,\left(1-r_{1}\right) \alpha_{1} B\right) \\
& =a \max \left\{\alpha_{2} r_{2}, \alpha_{1} r_{1}\right\}+b \max \left\{\alpha_{2}\left(1-r_{2}\right), \alpha_{1}\left(1-r_{1}\right)\right\}-a \alpha_{1} r_{1}-b \alpha_{1}\left(1-r_{1}\right) \\
& =a \max \left\{0, \alpha_{2} r_{2}-\alpha_{1} r_{1}\right\}+b \max \left\{0, \alpha_{2}\left(1-r_{2}\right)-\alpha_{1}\left(1-r_{1}\right)\right\} \\
& =\text { LHS. }
\end{aligned}
$$

To see that $\hat{\varphi}$ is unique up to swapping x and y coordinates, notice that for any map ψ that preserves angles and dimensions $\psi(A)=a P$ and $\psi(B)=b Q$, or $\psi(A)=a Q$ and $\psi(B)=b P$. If $X \in \widehat{\mathcal{H}}_{A B}$, then $\angle A X$ and $\operatorname{dim}(X)$ are preserved by ψ and the result follows.

4.2 The General Case.

We now address the more general situation where C and D are mutually regular reals and $\angle C D<1$. We will be guided by the question - what properties of C and D determine the geometry of $\widehat{\mathcal{H}}_{C D}$? If, as in the previous section, $\angle C D=1$, then only the dimensions of C and D would be relevant, and these determined an essentially unique linear isometry into \mathcal{T}. In contrast, however, if $\angle C D<1$, one would suspect intuitively that the dimensions of C and D alone would not be sufficient to determine the geometry of $\widehat{\mathcal{H}}_{C D}$ because there are many distinct ways to embed C and D into \mathcal{T} preserving their dimensions and the angle between them.

In a first attempt to answer the question, we make use of a notion of projection. If R and S are two points in \mathcal{T} such that $\angle P O R \leqslant \angle P O S$ and a line drawn through R parallel to the side $|O P|$ that intersects the ray $\overrightarrow{O S}$ at T, then we define the projection of R onto S to be

$$
\operatorname{Proj}_{S}(R):=|O T| /|O S|
$$

See Figure 5. A similar definition gives the projection of S onto R. It is more useful to formally define projections in terms of the coordinates of R and S.

Definition 4.5. If $R, S \in \mathcal{T}$ with $R=\left\langle x_{R}, y_{R}\right\rangle$ and $Y=\left\langle x_{S}, y_{S}\right\rangle$ and such that (without losing generality) $\frac{y_{R}}{x_{R}} \leqslant \frac{y_{S}}{x_{S}}$ (equivalently $\angle P O R \leqslant \angle P O S$), then

$$
\operatorname{Proj}_{R}(S)=\frac{x_{S}}{x_{R}}
$$

Figure 5: $\operatorname{Proj}_{S}(R):=|O T| /|O S|$

and

$$
\operatorname{Proj}_{S}(R)=\frac{y_{R}}{y_{S}}
$$

Theorem 4.6. For any two points $R, S \in \mathcal{T}$, the angle $\angle R O S$ is completely determined by the numbers $\operatorname{Proj}_{R}(S), \operatorname{Proj}_{S}(R),|O R|$, and $|O S|$, and given by the formula:

$$
\angle R O S=\frac{(s-\tau r)(r-\sigma s)}{r s(1-\sigma \tau)}
$$

where $r=|O R|, s=|O S|, \sigma=\operatorname{Proj}_{S}(R)$, and $\tau=\operatorname{Proj}_{R}(S)$.
Proof. This is a straightforward geometric calculation in \mathcal{T}.
We can define a corresponding projection notion for any pair of mutually regular reals.

Definition 4.7. Let C, D be mutually regular such that $\operatorname{dim} C=c$ and $\operatorname{dim} D=d$. Then the projection of C onto D is defined to be

$$
\operatorname{Proj}_{D}(C)=\max \{r: d(d C \rightarrow r d D)=0\}
$$

which exists by an elementary topological argument using the continuity of d.
At first it may seem preferable to define the projection of C onto D as $\max \{r: d(C \rightarrow$ $r D)=0\}$. This amounts to almost the same thing as $d(C \rightarrow r D)=0$ if and only if
$d(d C \rightarrow r d D)=0$. If this were the definition however, we would have to restrict the projection to having a value at most 1 , which is not a restriction on the text definition (in which it may be arbitrarily large depending on the values of c and d and $\angle C D$). Similar comments of course apply to the projection of D onto C.

We have used the same notation and terminology for projections in \mathcal{T} and $\widehat{\mathcal{H}}_{C D}$. This is justified by the next lemma.

Lemma 4.8. Linear isometries preserve projections, that is for every pair of mutually regular reals C and D, and any linear isometry $\psi: \widehat{\mathcal{H}}_{C D} \rightarrow \mathcal{T}$,

$$
\operatorname{Proj}_{C}(D)=\operatorname{Proj}_{\psi(C)}(\psi(D))
$$

Proof. This is just a straightforward application of the definitions.
The following fact is the essential point in answering question 4.1
Theorem 4.9. The angle between two mutually regular reals C and D is not determined by the four numbers $\operatorname{Proj}_{C}(D), \operatorname{Proj}_{D}(C), \operatorname{dim} C$, and $\operatorname{dim} D$. In particular, there are pairs of mutually regular reals X and Y for which the formula in Theorem 4.6 does not hold. As distances, angles and projections are preserved by linear isometries, this means there can be no linear isometry from $\widehat{\mathcal{H}}_{X Y}$ into \mathcal{T}.

Proof. Let $R=r_{0} r_{1} r_{2} \ldots r_{n} \ldots$ be a random real and let

$$
\begin{aligned}
X & =r_{0} r_{2} r_{4} \ldots r_{2 n} \ldots \\
Y & =r_{0} r_{3} r_{6} \ldots r_{3 n} \ldots
\end{aligned}
$$

Then the reader can confirm that

1. X and Y are mutually regular
2. $\operatorname{dim} X=\operatorname{dim} Y=1$
3. $\angle X Y=d(Y \rightarrow X)=2 / 3$
4. $\operatorname{Proj}_{X}(Y)=\operatorname{Proj}_{Y}(X)=0$
and that these values violate the formula in Theorem 4.6.
These two reals now give an answer to Question 4.1.
Corollary 4.10. There is a pair of mutually regular reals X, Y for which there does not exist a pair of mutually random reals R_{1}, R_{2} with $X, Y \in \widehat{\mathcal{H}}_{R_{1} R_{2}}$.

The fact that all linear isometries preserve angles and projections means that if there is a linear isometry from an extended hull $\widehat{\mathcal{H}}_{C D}$ into \mathcal{T}, then the formula in Theorem 4.6 is necessarily respected in $\widehat{\mathcal{H}}_{C D}$. We now show that this is also sufficient that this formula be respected for there to be a linear isometry from $\widehat{\mathcal{H}}_{C D}$ into \mathcal{T}.

Theorem 4.11. If C and D are mutually regular and with nonzero dimensions and $\angle C D>0$, then there is a linear isometry from $\widehat{\mathcal{H}}_{C D}$ into \mathcal{T} if and only if

$$
\begin{equation*}
\angle C D=\frac{(d-\tau c)(c-\sigma d)}{c d(1-\sigma \tau)} \tag{6}
\end{equation*}
$$

where $c=\operatorname{dim} C, d=\operatorname{dim} D, \sigma=\operatorname{Proj}_{D}(C)$, and $\tau=\operatorname{Proj}_{C}(D)$.
Proof. The only if direction is immediate as linear isometries preserve angles and projections. For the if direction we define a linear isometry $\Phi: \widehat{\mathcal{H}}_{C D} \rightarrow \mathcal{T}$ directly. First let $\Phi(C)=\left\langle x_{C}, y_{C}\right\rangle$ and $\Phi(D)=\left\langle x_{D}, y_{D}\right\rangle$ where

$$
\begin{array}{rlr}
x_{C} & =\frac{\sigma(d-c \tau)}{1-\sigma \tau} & y_{C}
\end{array}=\frac{c-d \sigma}{1-\sigma \tau}, ~ y_{D}=\frac{\tau(c-d \sigma)}{1-\sigma \tau}
$$

All angles distances and projections must be preserved by Φ and these are the only possible values for the images of C and D except for transposing the x and y coordinates. To eliminate this symmetry we assume, without losing generality, that $x_{D} / d>x_{C} / c$ and that consequently

$$
\begin{equation*}
y_{C} x_{D}>x_{C} y_{D}, y_{C}>0, x_{D}>0 \text { and } \frac{x_{D}}{x_{C}+x_{D}}>\frac{y_{D}}{y_{C}+y_{D}} . \tag{7}
\end{equation*}
$$

We now extend Φ to $\mathcal{H}_{C D}$ and from there to $\widehat{\mathcal{H}}_{C D}$. If $X=r[(a C)(a D)]$, we define

$$
\begin{align*}
\Phi(X) & =\left\langle a \max \left\{r x_{C},(1-r) x_{D}\right\}, a \max \left\{r y_{C},(1-r) y_{D}\right\}\right\rangle \tag{8}\\
& = \begin{cases}\left\langle a(1-r) x_{D}, a(1-r) y_{D}\right\rangle & \text { if } r \leqslant \frac{y_{D}}{y_{C}+y_{D}} \\
\left\langle a(1-r) x_{D}, a r y_{C}\right\rangle & \text { if } \frac{y_{D}}{y_{C}+y_{D}} \leqslant r \leqslant \frac{x_{D}}{x_{C}+x_{D}} \\
\left\langle a r x_{C}, a r y_{C}\right\rangle & \text { if } r \geqslant \frac{x_{D}}{x_{C}+x_{D}}\end{cases} \tag{9}
\end{align*}
$$

One can confirm that, as expected, this agrees with the values of $\Phi(C)$ and $\Phi(D)$ when $a=1$ and r takes the values 1 and 0 respectively. If $Y \in \widehat{\mathcal{H}}_{C D}$ then we define
$\Phi(Y)=\Phi(X)$ where X is any element of $\mathcal{H}_{C D}$ with $Y \simeq_{d}$ X. For the definition of $\Phi(Y)$ to be coherent, we have to show that Φ is well-defined on the d-equivalence classes of $\mathcal{H}_{C D}$. This is not as straightforward as the earlier situation in Section 4.1 where we had $\angle C D=1$, and in fact Lemma 4.3 Part 5 doesn't hold when $\angle C D<1$.

Lemma 4.12. Φ is well-defined on the equivalence classes of $\mathcal{H}_{C D}$.
Proof. Let $X_{i}=r_{i}\left[\left(a_{i} C\right)\left(a_{i} D\right)\right]$ for $i \in\{1,2\}$, and suppose $X_{1} \simeq_{d} X_{2}$. We will break the proof into cases.
Case 1. $r_{1} \leqslant \frac{y_{D}}{y_{C}+y_{D}}$ and $r_{2} \geqslant \frac{x_{D}}{x_{C}+x_{D}}$ (or vice-versa). This contradicts the fact that $\angle C D>0$ by the following calculation. Let $\gamma=\operatorname{dim} X_{2}$.

$$
\begin{aligned}
\angle C X_{2} & =\frac{1}{c \gamma} d\left(\gamma C \rightarrow c X_{2}\right) \\
& =\frac{1}{c \gamma} C^{*}\left(\gamma C, c X_{2}\right)-1 \\
& =\frac{1}{c \gamma} C^{*}\left(\max \left\{\gamma, c a_{2} r_{2}\right\} C, c a_{2}\left(1-r_{2}\right) D\right)-1
\end{aligned}
$$

But $\gamma \geqslant a_{2} r_{2} c$ as

$$
\gamma=\operatorname{dim}\left(X_{2}\right)=C^{*}\left(a_{2} r_{2} C, a_{2}\left(1-r_{2}\right) D\right) \geqslant C^{*}\left(a_{2} r_{2} C\right)=a_{2} r_{2} c .
$$

Therefore

$$
\begin{aligned}
\angle C X_{2} & =\frac{1}{c \gamma} C^{*}\left(\gamma C, c a_{2}\left(1-r_{2}\right) D\right)-1 \\
& =\frac{1}{c \gamma} d\left(\gamma C \rightarrow c a_{2}\left(1-r_{2}\right) D\right) .
\end{aligned}
$$

But $\gamma \geqslant a_{2} r_{2} c$ and $r_{2} \geqslant \frac{x_{D}}{x_{C}+x_{D}}$ together imply

$$
c a_{2}\left(1-r_{2}\right) \leqslant \gamma \frac{1-r_{2}}{r_{2}} \leqslant \gamma \sigma
$$

and so $\angle C X_{2}=0$ by the definition of σ. A similar argument shows that $\angle D X_{1}=0$ and as

$$
\angle C D \leqslant \angle C X_{2}+\angle X_{2} X_{1}+\angle D X_{1}=0
$$

we get the required contradiction.
Case 2. $r_{1}, r_{2} \leqslant \frac{y_{D}}{y_{C}+y_{D}}$ or $r_{1}, r_{2} \geqslant \frac{x_{D}}{x_{C}+x_{D}}$. We show only the former as the latter is symmetrical. We have

$$
\begin{aligned}
\operatorname{dim} X_{i} & =C^{*}\left(a_{i} r_{i} C, a_{i}\left(1-r_{i}\right) D\right) \\
& =a_{i}\left(1-r_{i}\right) d\left(D \rightarrow \frac{r_{i}}{1-r_{i}} C\right)+a_{i}\left(1-r_{i}\right) d .
\end{aligned}
$$

But as $r_{i} \leqslant \frac{y_{D}}{y_{C}+y_{D}}$, we have $\frac{r_{i}}{1-r_{i}} \leqslant \frac{y_{D}}{y_{D}}=\tau$. Thus $d\left(D \rightarrow \frac{r_{i}}{1-r_{i}} C\right)=0$ by the definition of τ. Therefore $\operatorname{dim} X_{i}=a_{i}\left(1-r_{i}\right) d$. As $X_{1} \simeq_{d} X_{2}$ and thus $\operatorname{dim} X_{1}=\operatorname{dim} X_{2}$, we get $a_{1}\left(1-r_{1}\right)=a_{2}\left(1-r_{2}\right)$. Therefore $\Phi\left(X_{1}\right)=\Phi\left(X_{2}\right)$.

Case 3. $r_{1}, r_{2} \in\left(\frac{y_{D}}{y_{C}+y_{D}}, \frac{x_{D}}{x_{C}+x_{D}}\right)$. Without losing generality suppose $a_{1}\left(1-r_{1}\right) \geqslant a_{2}\left(1-r_{2}\right)$. Consider the distance $d\left(a_{2}\left(1-r_{2}\right) C \rightarrow \sigma a_{1}\left(1-r_{1}\right) D\right)$:

$$
\begin{array}{r}
d\left(a_{2}\left(1-r_{2}\right) C \rightarrow \sigma a_{1}\left(1-r_{1}\right) D\right) \leqslant d\left(a_{2}\left(1-r_{2}\right) C \rightarrow \sigma X_{2}\right)+d\left(\sigma X_{2} \rightarrow \sigma X_{1}\right)+ \\
d\left(\sigma X_{1} \rightarrow \sigma a_{1}\left(1-r_{1}\right) D\right)
\end{array}
$$

But the last two terms on the RHS are 0 as $X_{1} \simeq_{d} X_{2}$ and

$$
d\left(X_{1} \rightarrow a_{1}\left(1-r_{1}\right) D\right)=C^{*}\left(a_{1} r_{1} C, a_{1}\left(1-r_{1}\right) D\right)-\operatorname{dim} X_{1}=0 .
$$

Therefore
$d\left(a_{2}\left(1-r_{2}\right) C \rightarrow \sigma a_{1}\left(1-r_{1}\right) D\right) \leqslant C^{*}\left(a_{2} \max \left\{1-r_{2}, \sigma r_{2}\right\} C, \sigma a_{2}\left(1-r_{2}\right) D\right)-a_{2}\left(1-r_{2}\right) c$.
But $r_{2} \leqslant \frac{x_{D}}{x_{C}+x_{D}}$ implies that $r_{2} \sigma \leqslant 1-r_{2}$, and so

$$
\begin{aligned}
d\left(a_{2}\left(1-r_{2}\right) C \rightarrow \sigma a_{1}\left(1-r_{1}\right) D\right) & \leqslant a_{2}\left(1-r_{2}\right) C^{*}(C, \sigma D)-a_{2}\left(1-r_{2}\right) c \\
& =a_{2}\left(1-r_{2}\right) d(C \rightarrow \sigma D) \\
& =0
\end{aligned}
$$

But $d\left(a_{2}\left(1-r_{2}\right) C \rightarrow \sigma a_{1}\left(1-r_{1}\right) D\right)=0$ if and only if $d\left(C \rightarrow \sigma \frac{a_{1}\left(1-r_{1}\right)}{a_{2}\left(1-r_{2}\right)} D\right)=0$ if and only if $a_{1}\left(1-r_{1}\right) \leqslant a_{2}\left(1-r_{2}\right)$ by the definition of σ. Hence from our original assumption, $a_{1}\left(1-r_{1}\right)=a_{2}\left(1-r_{2}\right)$. An entirely symmetrical argument can be used to show that $a_{1} r_{1}=a_{2} r_{2}$. First it is shown that $d\left(a_{2} r_{2} D \rightarrow \tau a_{1} r_{1} C\right)=0$ and then using the definition of τ that $a_{1} r_{1}=a_{2} r_{2}$. Therefore $X_{1}=X_{2}$ and $\varphi\left(X_{1}\right)=\Phi\left(X_{2}\right)$.

It is now left to prove that Φ is a linear isometry.
Lemma 4.13. Let $X_{1}, X_{2} \in \widehat{\mathcal{H}}_{C D}$. If $\Phi\left(X_{1}\right)=\Phi\left(X_{2}\right)$, then $X_{1} \simeq_{d} X_{2}$.
Proof. It is enough to prove this for $X_{1}, X_{2} \in \mathcal{H}_{C D}$. We first deal with the situation where $\Phi\left(X_{i}\right)=\mathrm{O}$ with $X_{i}=r_{i}\left[\left(a_{i} C\right)\left(a_{i} D\right)\right]$ and $i \in\{1,2\}$. We look at all three possible values for $\Phi\left(X_{i}\right)$ according to (9). If $r_{i} \leqslant \frac{y_{D}}{y_{C}+y_{D}}$, then $\left\langle a_{i}\left(1-r_{i}\right) x_{D}, a_{i}\left(1-r_{i}\right) y_{D}\right\rangle=\langle 0,0\rangle$. But $r_{i}<1$ as by (7) above $y_{C}>0$. Thus $a_{i}=0$ and $X_{i}=\mathbf{0}$. If $\frac{y_{D}}{y_{C}+y_{D}} \leqslant r_{i} \leqslant \frac{x_{D}}{x_{C}+x_{D}}$, then $\left\langle a_{i}\left(1-r_{i}\right) x_{D}, a_{i} r_{i} y_{C}\right\rangle=\langle 0,0\rangle$ and thus $a_{i}=0$ and $X_{i}=\mathbf{0}$. If $r_{i} \geqslant \frac{x_{D}}{x_{C}+x_{D}}$, then $\left\langle a_{i} r_{i} x_{C}, a_{i} r_{i} y_{C}\right\rangle=\langle 0,0\rangle$. But $r_{i} \neq 0$ as $x_{D} \neq 0$ and so $a_{i}=0$ and $X_{i}=\mathbf{0}$.

Now we deal the general situation. Let $X_{i}=r_{i}\left[\left(a_{i} C\right)\left(a_{i} D\right)\right]$ and $\Phi\left(X_{1}\right)=\Phi\left(X_{2}\right)$ with $i \in\{1,2\}$. We divide into four cases. Every possible situation falls into one of these cases or is symmetrical to one of them.

Case 1. $\frac{y_{D}}{y_{C}+y_{D}} \leqslant r_{1}, r_{2} \leqslant \frac{x_{D}}{x_{C}+x_{D}}$. As above $x_{D} \neq 0$ and $y_{C} \neq 0$. Thus

$$
\Phi\left(X_{1}\right)=\left\langle a_{1}\left(1-r_{1}\right) x_{D}, a_{1} r_{1} y_{C}\right\rangle=\left\langle a_{2}\left(1-r_{2}\right) x_{D}, a_{2} r_{2} y_{C}\right\rangle=\Phi\left(X_{2}\right)
$$

which implies $a_{1}=a_{2}$ and $r_{1}=r_{2}$ and $X_{1}=X_{2}$.
Case 2. $r_{1}, r_{2} \leqslant \frac{y_{D}}{y_{C}+y_{D}}$. Then

$$
\Phi\left(X_{1}\right)=\left\langle a_{1}\left(1-r_{1}\right) x_{D}, a_{1}\left(1-r_{1}\right) y_{C}\right\rangle=\left\langle a_{2}\left(1-r_{2}\right) x_{D}, a_{2}\left(1-r_{2}\right) y_{C}\right\rangle=\Phi\left(X_{2}\right) .
$$

so we can conclude only that $a_{1}\left(1-r_{1}\right)=a_{2}\left(1-r_{2}\right)$. Without losing generality assume that $a_{1} r_{1} \leqslant a_{2} r_{2}$. Now

$$
\begin{aligned}
d\left(X_{2} \rightarrow X_{1}\right) & =C^{*}\left(X_{1}, X_{2}\right)-\operatorname{dim}\left(X_{2}\right) \\
& =C^{*}\left(a_{1} r_{1} C, a_{1}\left(1-r_{1}\right) D, a_{2} r_{2} C, a_{2}\left(1-r_{2}\right) D\right)-C^{*}\left(a_{2} r_{2} C, a_{2}\left(1-r_{2}\right) D\right) \\
& =C^{*}\left(a_{2} r_{2} C, a_{2}\left(1-r_{2}\right) D\right)-C^{*}\left(a_{2} r_{2} C, a_{2}\left(1-r_{2}\right) D\right) \quad\left(\text { as } a_{1} r_{1} \leqslant a_{2} r_{2}\right) \\
& =0
\end{aligned}
$$

To calculate $d\left(X_{1} \rightarrow X_{2}\right)$ first note that for each X_{i}

$$
\begin{aligned}
\operatorname{dim}\left(X_{i}\right) & =C^{*}\left(a_{i} r_{i} C, a_{i}\left(1-r_{i}\right) D\right) \\
& =d\left(a_{i}\left(1-r_{i}\right) D \rightarrow a_{i} r_{i} C\right)+a_{i}\left(1-r_{i}\right) d \\
& =a_{i}\left(1-r_{i}\right) d\left(D \rightarrow \frac{r_{i}}{\left(1-r_{i}\right)} C\right)+a_{i}\left(1-r_{i}\right) d
\end{aligned}
$$

But as $r_{i} \leqslant \frac{y_{D}}{y_{C}+y_{D}}<1$,

$$
\frac{r_{i}}{\left(1-r_{i}\right)} \leqslant \frac{y_{D}}{y_{C}+y_{D}} \cdot \frac{y_{C}+y_{D}}{y_{C}}=\frac{y_{D}}{y_{C}}=\tau
$$

Thus by the definition of $\tau, d\left(D \rightarrow \frac{r_{i}}{\left(1-r_{i}\right)} C\right)=0$. So for each $i, \operatorname{dim}\left(X_{i}\right)=a_{i}\left(1-r_{i}\right) d$ and therefore $\operatorname{dim}\left(X_{1}\right)=\operatorname{dim}\left(X_{2}\right)$. As $d\left(X_{1} \rightarrow X_{2}\right)=d\left(X_{2} \rightarrow X_{1}\right)+\operatorname{dim}\left(X_{2}\right)-\operatorname{dim}\left(X_{1}\right)$ and $d\left(X_{2} \rightarrow X_{1}\right)=0$, the result follows.
Case 3. $r_{1} \leqslant \frac{y_{D}}{y_{C}+y_{D}} \leqslant r_{2} \leqslant \frac{x_{D}}{x_{C}+x_{D}}$. In this case

$$
\Phi\left(X_{1}\right)=\left\langle a_{1}\left(1-r_{1}\right) x_{D}, a_{1}\left(1-r_{1}\right) y_{D}\right\rangle=\left\langle a_{2}\left(1-r_{2}\right) x_{D}, a_{2} r_{2} y_{C}\right\rangle=\Phi\left(X_{2}\right)
$$

So that $a_{1}\left(1-r_{1}\right)=a_{2}\left(1-r_{2}\right)$ and $a_{1}\left(1-r_{1}\right) y_{D}=a_{2} r_{2} y_{C}$. But from these equations we deduce that $r_{2}=\frac{y_{D}}{y_{C}+y_{D}}$ and we are actually in the previous case.

Case 4. $r_{1} \leqslant \frac{y_{D}}{y_{C}+y_{D}} \leqslant \frac{x_{D}}{x_{C}+x_{D}} \leqslant r_{2}$. Then

$$
\Phi\left(X_{1}\right)=\left\langle a_{1}\left(1-r_{1}\right) x_{D}, a_{1}\left(1-r_{1}\right) y_{D}\right\rangle=\left\langle a_{2} r_{2} x_{C}, a_{2} r_{2} y_{C}\right\rangle=\Phi\left(X_{2}\right) .
$$

But this implies that $y_{C} x_{D}=x_{C} y_{D}$, contradicting (7).
The rest of the cases can be dealt with by exchanging r with $1-r$.
Lemma 4.14. Φ is linear.
Proof. Let $X=r[(a C)(a D)]$. If $\alpha \in[0,1]$, then $\alpha X \simeq_{d} r[(\alpha a C)(\alpha a D)]$. By inspection of the definition of $\Phi(\alpha X)$ and Lemma 4.13, this now follows.

Lemma 4.15. There is a positive number $\gamma \leqslant 1$ such that for all $\mu \leqslant \gamma$ and all $x \in$ $\left[\frac{\mu x_{C}}{c}, \frac{\mu x_{D}}{d}\right]$,

$$
\langle x, \mu-x\rangle \in \text { range } \Phi
$$

That is, the triangular region bordered by the line segments $\overline{\mathbf{0} D}, \overline{\mathbf{0} C}$ and the horizontal line $\overline{\frac{\gamma}{d} D \frac{\gamma}{c} C}$ lies completely within the range of Φ.

Proof. Let $\gamma=\min \left\{\frac{c x_{D}}{x_{C}+x_{D}}, \frac{d y_{C}}{y_{C}+y_{D}}\right\}$ and $\mu \leqslant \gamma$. Given $x \in\left[\frac{\mu x_{C}}{c}, \frac{\mu x_{D}}{d}\right]$, let

$$
r=\frac{(\mu-x) x_{D}}{x y_{C}+(\mu-x) x_{D}} \quad a=\frac{x y_{C}+(\mu-x) x_{D}}{x_{D} y_{C}} .
$$

We will now show, using the bounds on x and μ, that

$$
a \in[0,1] \quad r \in\left[\frac{y_{D}}{y_{C}+y_{D}}, \frac{x_{D}}{x_{C}+x_{D}}\right]
$$

and that

$$
\langle x, \mu-x\rangle=\left\langle a(1-r) x_{D}, a r y_{C}\right\rangle,
$$

so that we are in the second case of (9) and $\langle x, \mu-x\rangle=\Phi(r[(a C)(a D)])$ as required. The calculations are quite straightforward and we present here only the proof that $a \leqslant 1$.

$$
\begin{aligned}
a & =\frac{x y_{C}+(\mu-x) x_{D}}{x_{D} y_{C}} \\
& =\frac{x\left(y_{C}-x_{D}\right)+\mu x_{D}}{x_{D} y_{C}}
\end{aligned}
$$

If $y_{C} \geqslant x_{D}$ then, as $x \leqslant \frac{\mu x_{D}}{d}$,

$$
\begin{aligned}
a & \leqslant \frac{\frac{\mu x_{D}}{d}\left(y_{C}-x_{D}\right)+\mu x_{D}}{x_{D} y_{C}} \\
& =\frac{\mu\left(y_{C}-x_{D}+d\right)}{d y_{C}} \\
& =\mu \cdot \frac{y_{C}+y_{D}}{d y_{C}} \\
& \leqslant 1 .
\end{aligned} \quad\left(\text { as } x_{D}+y_{D}=d\right)
$$

If however $y_{C} \leqslant x_{D}$, then as $x \geqslant \frac{\mu x_{C}}{c}$

$$
\begin{aligned}
a & \leqslant \frac{\frac{\mu x_{C}}{c}\left(y_{C}-x_{D}\right)+\mu x_{D}}{x_{D} y_{C}} \\
& =\mu \cdot \frac{x_{C}\left(y_{C}-x_{D}\right)+c x_{D}}{c x_{D} y_{C}} \\
& =\mu \cdot \frac{x_{C}+x_{D}}{c x_{D}} \\
& \leqslant 1 .
\end{aligned} \quad\left(\text { as } x_{C}+y_{C}=c\right)
$$

Corollary 4.16 (Procrustean Principle). For any $\langle x, y\rangle \in[0, \infty)^{2}$ such that $\frac{x_{C}}{c} \leqslant \frac{x}{x+y} \leqslant$ $\frac{x_{D}}{d}$, there is an $\alpha \in \mathbb{R}^{+}$such that $\langle\alpha x, \alpha y\rangle \in$ range Φ.

Proof. Take $\alpha=\frac{\gamma}{x+y}$, where γ is as in Lemma 4.15. Then $\frac{\gamma x}{x+y} \in\left[\frac{\gamma x_{C}}{c}, \frac{\gamma x_{D}}{d}\right]$ and $\langle\alpha x, \alpha y\rangle=$ $\left\langle\frac{\gamma x}{x+y}, \gamma-\frac{\gamma x}{x+y}\right\rangle$ as required to apply the lemma.

We will use the Procrustean Principle to simplify calculations of distances of elements in $\widehat{\mathcal{H}}_{C D}$. Suppose $X, Y \in \widehat{\mathcal{H}}_{C D}$, and we want to work out $d(X \rightarrow Y)$. To do this we take $\Phi(X)$ and $\Phi(Y)$ and construct using their coordinates a third point $Z \in \mathcal{T}$. We want to consider $\Phi^{-1}(Z)$ but have no guarantee that such an element of $\widehat{\mathcal{H}}_{C D}$ exists. So we take using the Procrustean principle a γ such that $\Phi^{-1}(\gamma Z)$ exists and instead compute the distance from γX to γY. The corresponding construction point will be γZ and then we use the fact that $d(X \rightarrow Y)=\frac{1}{\gamma} d(\gamma X \rightarrow \gamma Y)$. The γ factor will not affect the calculations and will be ommitted, and $\Phi^{-1}(Z)$ will simply be assumed to exist.

The next lemma allows us to eliminate many of the cases when using the definition of Φ in calculations. It also involves introducing a constant γ that scales down the
calculations to a point that provides us convenient shortcuts. In this case we show that we can usually assume without losing generality that if $r[(a C)(a D)] \in \widehat{\mathcal{H}}_{C D}$, then $r \in\left[\frac{y_{D}}{y_{C}+y_{D}}, \frac{x_{D}}{x_{C}+x_{D}}\right]$.
Lemma 4.17. For all $X \simeq{ }_{d} r[(a C)(a D)] \in \widehat{\mathcal{H}}_{C D}$ and for any $\gamma \leqslant \min \left\{\frac{y_{C}}{y_{C}+y_{D}}, \frac{x_{D}}{x_{C}+x_{D}}\right\}$, there is some $r^{\prime} \in\left[\frac{y_{D}}{y_{C}+y_{D}}, \frac{x_{D}}{x_{C}+x_{D}}\right]$ and some $a^{\prime} \in[0,1]$, such that $\gamma X \simeq{ }_{d} r^{\prime}\left[\left(a^{\prime} C\right)\left(a^{\prime} D\right)\right]$.

Proof. Let X and γ be as given. If $r \in\left[\frac{y_{D}}{y_{C}+y_{D}}, \frac{x_{D}}{x_{C}+x_{D}}\right]$, then

$$
\gamma X \simeq{ }_{d} r[(\gamma a C)(\gamma a D)] .
$$

If $r<\frac{y_{D}}{y_{C}+y_{D}}$, then let $r^{\prime}=\frac{y_{D}}{y_{C}+y_{D}}$, and $a^{\prime}=\frac{\gamma a(1-r)\left(y_{C}+y_{D}\right)}{y_{C}}$. Then

$$
\begin{aligned}
\Phi(\gamma X) & =\left\langle\gamma a(1-r) x_{D}, \gamma a(1-r) y_{D}\right\rangle \\
& =\left\langle\frac{y_{C}}{y_{C}+y_{D}} a^{\prime} x_{D}, \frac{y_{C}}{y_{C}+y_{D}} a^{\prime} y_{D}\right\rangle \\
& =\Phi\left(r^{\prime}\left[\left(a^{\prime} C\right)\left(a^{\prime} D\right)\right]\right)
\end{aligned}
$$

So $\gamma x \simeq_{d} r^{\prime}\left[\left(a^{\prime} C\right)\left(a^{\prime} D\right)\right]$ by Lemma 4.13. If $r>\frac{x_{D}}{x_{C}+x_{D}}$, then let $r^{\prime}=\frac{x_{D}}{\left.x_{C}+x_{D}\right)}$ and $a^{\prime}=\frac{\gamma \operatorname{ar}\left(x_{C}+x_{D}\right)}{x_{D}}$ and argue similarly. In both cases the bound on γ guarantees that $a^{\prime} \leqslant 1$.

The next lemma shows that in order to establish that Φ preserves the directed pseudometric on $\widehat{\mathcal{H}}_{C D}$, it is enough to show that it preserves the distance from the origin.
Lemma 4.18. If Φ has the property that for all $X \in \widehat{\mathcal{H}}_{C D}$ with $\Phi(X)=\langle x, y\rangle$

$$
\operatorname{dim}(X)=x+y
$$

then for all $X_{1}, X_{2} \in \widehat{\mathcal{H}}_{C D}$ with $\Phi\left(X_{1}\right)=\left\langle x_{1}, y_{1}\right\rangle$ and $\Phi\left(X_{2}\right)=\left\langle x_{2}, y_{2}\right\rangle$,

$$
d\left(X_{1} \rightarrow X_{2}\right)=\max \left\{0, x_{2}-x_{1}\right\}+\max \left\{0, y_{2}-y_{1}\right\} .
$$

Proof. Let i range over $\{1,2\}$ and let Z be such that $\Phi(Z)=\left\langle\max _{i}\left\{x_{i}\right\}, \max _{i}\left\{y_{i}\right\}\right\rangle$. The Procrustean Principle allows us to assume that such a Z exists (it is straightforward to show that for all $\langle x, y\rangle \in$ range $\Phi, \frac{x_{C}}{c} \leqslant \frac{x}{x+y} \leqslant \frac{x_{D}}{d}$ and hence that $\frac{x_{C}}{c} \leqslant \frac{\max _{i}\left\{x_{i}\right\}}{\max _{i}\left\{x_{i}\right\}+\max _{i}\left\{y_{i}\right\}} \leqslant$ $\frac{x_{D}}{d}$ and that the principle can be applied to Z. The proof is omitted here). Let $X_{i} \simeq_{d}$ $r_{i}\left[\left(a_{i} C\right)\left(a_{i} D\right)\right]$. We can use Lemma 4.17 to assume without losing generality that $\frac{y_{D}}{y_{C}+y_{D}} \leqslant$ $r_{i} \leqslant \frac{x_{D}}{x_{C}+x_{D}}$ and so $\Phi\left(X_{i}\right)=\left\langle a_{i}\left(1-r_{i}\right) x_{D}, a_{i} r_{i} y_{C}\right\rangle$. Now let

$$
a:=\max _{i}\left\{a_{i} r_{i}\right\}+\max _{i}\left\{a_{i}\left(1-r_{i}\right)\right\}
$$

and

$$
r:=\frac{\max _{i}\left\{a_{i} r_{i}\right\}}{\max _{i}\left\{a_{i} r_{i}\right\}+\max _{i}\left\{a_{i}\left(1-r_{i}\right)\right\}} .
$$

Then $\frac{y_{D}}{y_{C}+y_{D}} \leqslant r \leqslant \frac{x_{D}}{x_{C}+x_{D}}$ (we omit the straightforward proof that, in fact, $\frac{y_{D}}{y_{C}+y_{D}} \leqslant$ $\left.\min \left\{r_{i}\right\} \leqslant r \leqslant \max _{i}\left\{r_{i}\right\} \leqslant \frac{x_{D}}{x_{C}+x_{D}}\right)$ and so

$$
\begin{aligned}
\Phi(r[a(C)(a D)]) & =\left\langle a(1-r) x_{D}, \operatorname{ary}_{C}\right\rangle \\
& =\left\langle\max _{i}\left\{a_{i}\left(1-r_{i}\right)\right\} x_{D}, \max _{i}\left\{a_{i} r_{i}\right\} y_{C}\right\rangle \\
& =\left\langle\max _{i}\left\{x_{i}\right\}, \max _{i}\left\{y_{i}\right\}\right\rangle \\
& =\Phi(Z) .
\end{aligned}
$$

Thus $Z \simeq_{d} a[(r C)(r D)]$ and

$$
\operatorname{dim}(Z)=C^{*}\left(\max _{i}\left\{a_{i} r_{i}\right\} C, \max _{i}\left\{a_{i}\left(1-r_{i}\right)\right\} D\right)
$$

Finally

$$
\begin{aligned}
d\left(X_{1} \rightarrow X_{2}\right) & =C^{*}\left(X_{1}, X_{2}\right)-\operatorname{dim}\left(X_{1}\right) \\
& =C^{*}\left(\max _{i}\left\{a_{i} r_{i}\right\} C, \max _{i}\left\{a_{i}\left(1-r_{i}\right)\right\} D\right)-\operatorname{dim}\left(X_{1}\right) \\
& =\operatorname{dim}(Z)-\operatorname{dim}\left(X_{1}\right) \\
& =\max _{i}\left\{x_{i}\right\}+\max _{i}\left\{y_{i}\right\}-x_{1}-y_{1} \quad \quad \text { (by our original assumption) } \\
& =\max _{i}\left\{0, x_{2}-x_{1}\right\}+\max \left\{0, y_{2}-y_{1}\right\} .
\end{aligned}
$$

Lemma 4.19. If $X_{i} \simeq_{d} r_{i}\left[\left(a_{i} C\right)\left(a_{i} D\right)\right]$ for $i \in\{1,2\}$, then if $x_{1}=x_{2}$ or $y_{1}=y_{2}$,

$$
d\left(X_{1} \rightarrow X_{2}\right)=\max \left\{0, \operatorname{dim}\left(X_{2}\right)-\operatorname{dim}\left(X_{1}\right)\right\}
$$

Proof. We can assume without losing generality that $x_{1}=x_{2}$ and $y_{1} \geqslant y_{2}$. It is enough then to prove that $d\left(X_{1} \rightarrow X_{2}\right)=0$ as then $d\left(X_{2} \rightarrow X_{1}\right)=d\left(X_{1} \rightarrow X_{2}\right)+\operatorname{dim} X_{1}-$ $\operatorname{dim} X_{2}=\operatorname{dim} X_{1}-\operatorname{dim} X_{2}$.

We can use Lemma 4.17 to assume that $r_{1}, r_{2} \in\left[\frac{y_{D}}{y_{C}+y_{D}}, \frac{x_{D}}{x_{C}+x_{D}}\right]$, and therefore that $\Phi\left(X_{i}\right)=\left\langle a_{i}\left(1-r_{i}\right) x_{D}, a_{i} r_{i} y_{C}\right\rangle$. Now

$$
a_{1}\left(1-r_{1}\right)=a_{2}\left(1-r_{2}\right) \text { and } a_{1} r_{1} \geqslant a_{2} r_{2} .
$$

Thus

$$
\begin{aligned}
d\left(X_{1} \rightarrow X_{2}\right) & =C^{*}\left(a_{1} r_{1} C, a_{1}\left(1-r_{1}\right) D, a_{2} r_{2} C, a_{2}\left(1-r_{2}\right) D\right)-C^{*}\left(a_{1} r_{1} C, a_{1}\left(1-r_{1}\right) D\right) \\
& =C^{*}\left(a_{1} r_{1} C, a_{1}\left(1-r_{1}\right) D\right)-C^{*}\left(a_{1} r_{1} C, a_{1}\left(1-r_{1}\right) D\right) \\
& =0
\end{aligned}
$$

Lemma 4.20. For any $\alpha \leqslant 1$, the function $x \mapsto \operatorname{dim} \Phi^{-1}\langle x, \alpha-x\rangle$ is continuous at any $\langle x, \alpha-x\rangle \in$ range Φ.

Proof. It is sufficient to prove this for $\alpha=\gamma$ as defined in Lemma 4.15, and $x \in\left[\frac{\gamma x_{C}}{c}, \frac{\gamma x_{D}}{d}\right]$. Let $i \in\{1,2\}$ and $\Phi\left(X_{i}\right)=\left\langle x_{i}, \gamma-x_{i}\right\rangle$. We show that $\operatorname{dim} X_{1} \rightarrow \operatorname{dim} X_{2}$ as $x_{1} \rightarrow x_{2}$.

Suppose a_{i} and $r_{i} \in\left[\frac{y_{D}}{y_{C}+y_{D}}, \frac{x_{D}}{x_{C}+x_{D}}\right]$ are such that $X_{i} \simeq_{d} r_{i}\left[\left(a_{i} C\right)\left(a_{i} D\right)\right]$ for $i \in\{1,2\}$. As $r_{i} \in\left[\frac{y_{D}}{y_{C}+y_{D}}, \frac{x_{D}}{x_{C}+x_{D}}\right]$ and the sum of the coordinates of $\Phi\left(X_{i}\right)$ is γ,

$$
a_{1} r_{1} \geqslant a_{2} r_{2} \Longleftrightarrow a_{1}\left(1-r_{1}\right) \leqslant a_{2}\left(1-r_{2}\right) .
$$

We assume without losing generality that $a_{1} r_{1} \geqslant a_{2} r_{2}$.
Now

$$
\begin{aligned}
\operatorname{dim} X_{1}-\operatorname{dim} X_{2} & \leqslant d\left(X_{2} \rightarrow X_{1}\right) \\
& =C^{*}\left(a_{1} r_{1} C, a_{2}\left(1-r_{2}\right) D\right)-C^{*}\left(a_{2} r_{2} C, a_{2}\left(1-r_{2}\right) D\right) \\
& =d\left(a_{2}\left(1-r_{2}\right) D \rightarrow a_{1} r_{1} C\right)-d\left(a_{2}\left(1-r_{2}\right) D \rightarrow a_{2} r_{2} C\right) \\
& \leqslant d\left(a_{2} r_{2} C \rightarrow a_{1} r_{1} C\right) \\
& =\left(a_{1} r_{1}-a_{2} r_{2}\right) c .
\end{aligned}
$$

But $a_{1} r_{1}-a_{2} r_{2} \rightarrow 0$ as $x_{1} \rightarrow x_{2}$.

Now we are able to provide the final proof for Theorem 4.11
Theorem 4.21. If C, D satisfy Equation (6), then for all $X_{1}, X_{2} \in \widehat{\mathcal{H}}_{C D}$ with $\Phi\left(X_{i}\right)=$ $\left\langle x_{i}, y_{i}\right\rangle$

$$
d\left(X_{1} \rightarrow X_{2}\right)=\max \left\{0, x_{2}-x_{1}\right\}+\max \left\{0, y_{2}-y_{1}\right\}
$$

Proof. By Lemma 4.18 it is enough to show that the dimension of any $X \in \widehat{\mathcal{H}}_{C D}$ is the sum of the coordinates of $\Phi(X)$. By the Procrustean Principle it is enough to show that this is true for any real $X=\Phi^{-1}(\langle x, \gamma-x\rangle)$ where γ is sufficiently small (but positive) and $x \in\left[\frac{\gamma x_{C}}{c}, \frac{\gamma x_{D}}{d}\right]$. How small we need to choose γ will be determined during the proof. We begin by assuming $\gamma \leqslant \min \left\{\frac{c x_{D}}{x_{C}+x_{D}}, \frac{d y_{D}}{y_{C}+y_{D}}\right\}$ as in Lemma 4.15.

For convenience let $a=\frac{\gamma x_{C}}{c}$ and $b=\frac{\gamma x_{D}}{d}$ so that $x \in[a, b]$. We need to show that $\operatorname{dim} \Phi^{-1}(\langle x, \gamma-x\rangle)=\gamma$ for all $x \in[a, b]$. Now consider the sets

$$
\begin{aligned}
S & =\left\{x \in[a, b]: \operatorname{dim}\left(\Phi^{-1}(\langle x, \gamma-x\rangle)<\gamma\right\}\right. \\
S^{c} & =\left\{x \in[a, b]: \operatorname{dim}\left(\Phi^{-1}(\langle x, \gamma-x\rangle) \geqslant \gamma\right\} .\right.
\end{aligned}
$$

S is open and S^{c} closed by Lemma 4.20 and so S is a countable union of pairwise disjoint open intervals $\left(a_{i}, b_{i}\right)$, and S^{c} is the union of an isolated set of points with a countable union of pairwise disjoint non-degenerate closed intervals $\left[c_{k}, d_{k}\right]$.

Figure 6: A representation of the argument in Theorem 4.21. Letters represent their images under Φ in \mathcal{T} and $X=\frac{\gamma}{\gamma+b_{i}-a_{i}} \Phi\left(E_{i}\right)$.

Consider an arbitrary $\left(a_{i}, b_{i}\right) \subseteq S$. Let $A_{i}=\Phi^{-1}\left(\left\langle a_{i}, \gamma-a_{i}\right\rangle\right), B_{i}=\Phi^{-1}\left(\left\langle b_{i}, \gamma-b_{i}\right\rangle\right)$ and $E_{i}=\Phi^{-1}\left(\left\langle b_{i}, \gamma-a_{i}\right\rangle\right)$. We can take γ to be chosen small enough so that all the E_{i} exist (in fact the sum of the coordinates of $\Phi\left(E_{i}\right), b_{i}+\gamma-a_{i} \leqslant \gamma x_{D}+\gamma y_{C}$ so we can chose $\gamma \leqslant \frac{1}{x_{D}+y_{C}} \min \left\{\frac{c x_{D}}{x_{C}+x_{D}}, \frac{d y_{D}}{y_{C}+y_{D}}\right\}$ to ensure this).

Now

$$
d\left(A_{i} \rightarrow B_{i}\right) \leqslant d\left(A_{i} \rightarrow E_{i}\right)+d\left(E_{i} \rightarrow B_{i}\right)
$$

but by Lemma 4.19 and the fact that $b_{i}>a_{i}, d\left(A_{i} \rightarrow E_{i}\right)=\operatorname{dim} E_{i}-\operatorname{dim} A_{i}$ and $d\left(E_{i} \rightarrow B_{i}\right)=0$. As a_{i} is the endpoint of an interval in S, Lemma 4.20 implies that $\operatorname{dim} A_{i}=\gamma$ so we have that

$$
d\left(A_{i} \rightarrow B_{i}\right) \leqslant \operatorname{dim} E_{i}-\gamma
$$

But now consider the point

$$
\left\langle\frac{\gamma b_{i}}{\gamma+b_{i}-a_{i}}, \gamma-\frac{\gamma b_{i}}{\gamma+b_{i}-a_{i}}\right\rangle=\frac{\gamma}{\gamma+b_{i}-a_{i}} \Phi\left(E_{i}\right)=\Phi\left(\frac{\gamma}{\gamma+b_{i}-a_{i}} E_{i}\right),
$$

which is the intersection of the line $\overline{O \Phi\left(E_{i}\right)}$ with the line $\overline{\Phi\left(A_{i}\right) \Phi\left(B_{i}\right)}$. See Figure 6.
It is straightforward to show that $\frac{\gamma b_{i}}{\gamma+b_{i}-a_{i}} \in\left(a_{i}, b_{i}\right)$ and so

$$
\operatorname{dim} \Phi^{-1}\left\langle\frac{\gamma b_{i}}{\gamma+b_{i}-a_{i}}, \gamma-\frac{\gamma b_{i}}{\gamma+b_{i}-a_{i}}\right\rangle<\gamma
$$

Hence $\operatorname{dim} \frac{\gamma}{\gamma+b_{i}-a_{i}} E_{i}<\gamma$ and

$$
\operatorname{dim} E_{i}<\gamma+b_{i}-a_{i}
$$

So we have finally that $d\left(A_{i} \rightarrow B_{i}\right)<b_{i}-a_{i}$.
There is also however a similar argument to show that if $\left[c_{k}, d_{k}\right]$ is one of the above closed intervals and

$$
C_{k}:=\Phi^{-1}\left(\left\langle c_{k}, \gamma-c_{k}\right\rangle\right) \text { and } D_{k}:=\Phi^{-1}\left(\left\langle d_{k}, \gamma-d_{k}\right\rangle\right),
$$

then

$$
d\left(C_{k} \rightarrow D_{k}\right) \leqslant d_{k}-c_{k}
$$

To see this consider the point $F_{k}=\Phi^{-1}\left(\left\langle c_{k}, \gamma-d_{k}\right\rangle\right)$. Our choice of γ and Lemma 4.15 guarantees that F_{k} exists as $c_{k}+\gamma-d_{k}<\gamma$. Then $d\left(C_{k} \rightarrow D_{k}\right) \leqslant d\left(C_{k} \rightarrow F_{k}\right)+d\left(F_{k} \rightarrow\right.$ $\left.D_{k}\right)$. But $d\left(C_{k} \rightarrow F_{k}\right)=0$ and $d\left(F_{k} \rightarrow D_{k}\right)=\operatorname{dim} D_{k}-\operatorname{dim} F_{k}=\gamma-\operatorname{dim} F_{k}$ by the previous argument. Therefore $d\left(C_{k} \rightarrow D_{k}\right) \leqslant \gamma-\operatorname{dim} F_{k}$. But now the point

$$
\left\langle\frac{\gamma c_{k}}{c_{k}+\gamma-d_{k}}, \gamma-\frac{\gamma c_{k}}{c_{k}+\gamma-d_{k}}\right\rangle=\frac{\gamma}{c_{k}+\gamma-d_{k}} \Phi\left(F_{k}\right)=\Phi\left(\frac{\gamma}{c_{k}+\gamma-d_{k}} F_{k}\right)
$$

lies between $\Phi\left(C_{k}\right)$ and $\Phi\left(D_{k}\right)$ as $\frac{\gamma c_{k}}{c_{k}+\gamma-d_{k}} \in\left[c_{k}, d_{k}\right]$. Therefore

$$
\operatorname{dim} \frac{\gamma}{c_{k}+\gamma-d_{k}} F_{k} \geqslant \gamma
$$

and so

$$
\operatorname{dim} F_{k} \geqslant c_{k}+\gamma-d_{k}
$$

Therefore $d\left(C_{k} \rightarrow D_{k}\right) \leqslant d_{k}-c_{k}$.
By the triangle inequality, the sum of all the distances $d\left(A_{i} \rightarrow B_{i}\right)$ and $d\left(C_{k} \rightarrow D_{k}\right)$ must be at least the distance from $\frac{\gamma}{c} C$ to $\frac{\gamma}{d} D$, and now using the original assumption on the size of $\angle C D$ from Theorem 4.11,

$$
\sum_{i} d\left(A_{i} \rightarrow B_{i}\right)+\sum_{k} d\left(C_{k} \rightarrow D_{k}\right) \geqslant d\left(\frac{\gamma}{c} C \rightarrow \frac{\gamma}{d} D\right)=\gamma \angle C D=\gamma\left(\frac{x_{D}}{d}-\frac{x_{C}}{c}\right)
$$

However,

$$
\sum_{i}\left(b_{i}-a_{i}\right)+\sum_{k}\left(d_{k}-c_{k}\right)=\gamma\left(\frac{x_{D}}{d}-\frac{x_{C}}{c}\right),
$$

and thus there can be no i with $d\left(A_{i} \rightarrow B_{i}\right)<b_{i}-a_{i}$.
Therefore $S=\emptyset$ and $\operatorname{dim} \Phi^{-1}(\langle x, \gamma-x) \geqslant \gamma$ for all $x \in[a, b]$.
A completely symmetrical argument can be used to show that $\operatorname{dim} \Phi^{-1}(\langle x, \gamma-x) \leqslant \gamma$ for all $x \in[a, b]$. We divide the interval $[a, b]$ into the sets

$$
T=\left\{x \in[a, b]: \operatorname{dim}\left(\Phi^{-1}(\langle x, \gamma-x\rangle)>\gamma\right\}\right.
$$

$$
T^{c}=\left\{x \in[a, b]: \operatorname{dim}\left(\Phi^{-1}(\langle x, \gamma-x\rangle) \leqslant \gamma\right\},\right.
$$

and then show $T=\emptyset$.

Which completes the proof of Theorem 4.11.

References

[1] Rod Downey and Noam Greenberg. Turing degrees of reals of positive effective packing dimension. Information Processing Letters, 108:198-203, 2008.
[2] Rod G. Downey and Denis Hirschfeldt. Algorithmic Randomness and Complexity. Springer, 2010. 588 pages.
[3] Jack H. Lutz Krishna B. Athreya, John M. Hitchcock and Elvira Mayordomo. Effective strong dimension, algorithmic information, and computational complexity. SIAM Journal on Computing, 37(3):671-705, 2007.
[4] André Nies. Computability and Randomness. Oxford University Press, USA, 2009. 420 pages.
[5] Jan Reimann. Computability and Fractal dimension. PhD thesis, Ruprecht-KarlsUniversität, Heidelberg, 2004. 130 pages.
[6] Claude Tricot. Two definitions of fractional dimension. Mathematical Poceedings of the Cambridge Philosophical Society, 91:57-74, 1982.

